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中文摘要  

 

 本論文開發一單軸循環桁架模型用以預測鋼筋混凝土柱承受循環剪力之實際

行為。經由應用物件導向程式設計，使用者可輕鬆將本模型與現有撓曲分析程式

碼結合用以分析鋼筋混凝土柱承受軸力、撓曲、剪力時的複雜行為。單軸循環桁

架模型分析結果將會反覆載重實驗結果比對結果成功預測破壞模式與遲滯行為。

除此之外，本研究另開發一簡易預測模式用以直接快速預測鋼筋混凝土柱的破壞

模式。此模式估測鋼筋混凝土柱的剪力容量並將之與側推分析得到的撓曲容量比

較藉以決定其破壞模式。 

 

關鍵字：單軸循環桁架模型、鋼筋混凝土柱、剪力 



 

 iv

ABSTRACT 

 

 A uniaxial cyclic truss model (UCTM) is developed to simulate the hysteretic 

behavior of reinforced concrete columns under cyclic shear. Object-oriented 

programming methods are used to combine the proposed UCTM easily with any other 

developed flexural analysis methods to predict the response of RC columns under 

axial-flexural-shear loading. Analytical results obtained using UCTM are compared 

with the test result of reinforced concrete column specimens subjected to cyclic loading. 

It is shown that the UCTM can successfully predict the failure mode of a reinforced 

concrete column. Hysteretic relationships in UCTM can agree satisfactorily with 

experimental data. This thesis also proposes a simplified procedure to predict the failure 

mode of RC columns rapidly. The procedure is to evaluate the nominal shear strength of 

an RC column by UCTM and compares it to its peak lateral force that is obtained from 

pushover analysis, and thereby determines its failure mode. 

 

Keywords: UCTM, Uniaxial cyclic truss model, Reinforced Concrete, RC column, 

Shear 
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Chapter 1 Introduction 

1.1 History and Background of Shear Analysis 

The prediction of failure modes associated with shear have been concerned for decades. 

Unlike flexural failure which involves saturated hysteretic loops under cyclic loading, 

shear failure involves severe pinching, which dissipated less hysteretic energy. 

Determining whether RC columns will fail by flexure or shear is difficult. Traditional 

parametric model simulating an RC column as shown in Fig. 1 can not clearly 

distinguishing it. Various factors will cause shear failure. Many researchers have 

developed various methods for analyzing the response of an RC column under cyclic 

loading. However, most of them are limited by the restriction that the corresponding 

failure mode must be predetermined so that the analysis can then be performed under 

the presumed conditions. Methods such as finite element method are more 

comprehensive but the obtained results are not always satisfactory. Consequently, 

models such as the strut and tie model [1] had been developed to predict the responses 

of RC columns as shown in Fig. 2 and Fig. 3. Such methods enabled RC columns to be 

analyzed without the need to presume the failure mode in advance. 

For simplicity, the elastic response of a reinforced concrete column can be conceptually 

divided into the axial, flexural, and shear responses. In nonlinear numerical analysis, 

this division yields valid approximate solution in incremental form. The cyclic inelastic 

axial and flexural analyses have been extensively developed for application to analyzing 

and designing RC columns. Whereas flexural analysis has been well established, 

theories of RC columns under shear are lacking. The flexural capacity of a column can 

be approximated from given sectional and material properties. But it is difficult to 

understand the behavior of RC columns under shear.  



 

 2

Shear analysis is multiaxial in either 2D or 3D coordinates. The shear analysis of 

structures was frequently simplified by treating the problem as a plane stress problem, 

even though in reality, the system has three degrees of freedom including longitudinal, 

lateral, and shear rotational directions. Multiaxial analysis, like the finite element 

method, provides high accuracy but is rather computationally intensive.  

To overcome the difficulty of solid mechanical analysis, shear theories assuming 

average stress-strain relationship had been proposed. Modified compression field theory 

(MCFT) [2] based on compression field theory (CFT) [3] had successfully been used to 

evaluate the shear performance of beams and shear walls, and had formed the basis of 

various methods presented subsequently. Similar to CFT, the rotating-angle softened 

truss model (RA-STM) and the fixed-angle softened truss model (FA-STM) predicted 

the prepeak ascending shear forces, neglecting the Poisson’s ratio [4]. The softened 

membrane model (SMM) [4, 5] was developed to predict postpeak descending branch 

of shear force using the new Poisson’s ratio (Hsu/Zhu ratio). Subsequently, the cyclic 

softened membrane model (CSMM) [6] derived from the softened membrane model 

(SMM) [4] improved upon SMM by including a cyclic shear analysis, rather than a 

monotonic. The model had been accurately utilized to shear walls and hollow columns 

under the plane stress assumption. Shear models that took a global view of a structural 

member had also been proposed. For example, Mo [7] developed an analytical model of 

cyclic shear that statically and dynamically predicted the shear force-deflection behavior 

of shear walls. A hysteretic shear model that established a primary envelope curve using 

compression field theory [8] had also been proposed to determine shear force- 

deformation relationship of RC members. The relevant parameters were obtained using 

regression approaches. Such a parametric model was relatively convenient, although 

some of its assumptions limited its use. The model was limited to structural members 
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that yield in flexure prior to shear failure and no attempt was made to define the 

response beyond the onset of strength decay [8].  

On the other hand, few structural programs are available that provide a shear model for 

sectional analysis in situations in which a uniaxial relationship exists between shear 

force and rotational angle. Only some of the programs supported a user-defined 

nonlinear sectional uniaxial shear relationship. The users can input basic parameters, 

including the values of shear stiffness and strength in the initial, post-yield, post peak, 

and residual stages. These shear models are easy to be used in programs, but the 

corresponding parameters are difficult to decide. In sectional analysis in practice, the 

shear response is commonly either neglected or presumed to be linear.  

Cyclic behaviors of RC columns under shear are problematic. Based on the well known 

truss model [9, 10], a uniaxial cyclic truss model (UCTM) is developed in this paper to 

simulate an RC column. The proposed UCTM condenses three degrees of freedom into 

one. Shear rotation is the only degree of freedom that is preserved. This method isolates 

the shear behavior of a column from flexural and axial behaviors.  

In traditional flexural analysis, one cross section yields one hysteretic relationship. 

Similarly, UCTM converts the sectional and material properties to a uniaxial hysteretic 

relationship between the shear force and the angle of rotation. To verify the proposed 

procedure, the analytical results obtained by UCTM are compared with the experimental 

results of seven specimens from different laboratories. 

1.2 Summary of Shear Prediction 

Shear analysis can be grouped into 5 groups according to linearnity, loading paths, and 

uniaxial or multiaxial stress-strain (or force-deformation) relationships. 
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1.2.1 1 point shear value 

For decades, ultimate shear strength of an RC element is calculated to evaluate the shear 

capacity. Most of them calculate the summation of shear strength contributed by 

concrete and transverse reinforcing steels. This value is independent with loading paths. 

In this case, shear stiffness is neither calculated. This method are mostly assumed by 

building codes such as ACI building codes [1] to evaluate shear capacity of an RC 

column. Fig. 4 shows 11 kinds of calculated results of 1 point shear values using 

different methods compared with 9 experimental results [11]. The calculated results 

using these methods are not always trusted. The error may up to near 200% as shown in 

Fig. 5. It shows the difficulty of shear capacity prediction. The existing method shows 

huge deviation even for only 1 point calculation of ultimate shear value. Of course the 

monotonic and hysteretic behaviors have not been considered yet in this case. 

1.2.2 Uniaxial linear shear analysis 

Shear stiffness can be considered rigid compared to flexural stiffness. This is also the 

hypothesis of Euler beam in elasticity. However, some researchers intend to consider 

shear stiffness in RC element analysis to increase the total accuracy. In this case, the 

loading path can be either monotonic or cyclic. Because only 1-D stress-strain (or 

force-deformation) relationship is considered, it is uniaxial. The only parameter is shear 

stiffness. In general, this parameter is difficult to be relevantly decided. 

1.2.3 Multiaxial linear shear analysis 

The nature of shear is multiaxial. As can be seen in Mohr’s circle, 2 principle values are 

necessary to be calculated to decide shear in one point in 2-D analysis, while it is 3 in 

3-D analysis. This method is mostly adopted in linear finite element analysis. This can 

be done in monotonic or cyclic loading paths. But the accuracy is often doubtful. 
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1.2.4 Uniaxial nonlinear shear analysis 

The ideal method to analyze shear is to analyze it as flexural analysis. The development 

of nonlinear flexural analysis of an RC beam-column element is mature and accurate for 

applying in practice during these years. Even for a complex shaking table test as shown 

in Fig. 6, the flexural analysis using fiber element analysis gives accurate prediction. 

The result is shown in Fig. 7. The flexural stiffness of an RC beam-column element can 

be decided for each nonlinear steps in nonlinear analysis without difficulty. For each 

rotational angle of the RC column a corresponding flexural stiffness can be obtained to 

accomplish the nonlinear analysis step by step. But it is not true for shear. Because shear 

is decided from two principle values of axial forces, it can not be readily obtained from 

one given value of rotational angle in RC column analysis. Besides, RC column analysis 

is inhomogeneous and nonisotropic. Few researcher focus on this part. The proposed 

method UCTM dealt it. 

1.2.5 Multiaxial nonlinear shear analysis 

Multiaxial nonlinear shear analysis is to consider shear as nonlinear and in multiaxial 

directions of stress-strain (or force-deformation) relationships. It seems to be the most 

rigorous and reliable method to analyze shear in an RC column. Generally it is 

accomplished by nonlinear finite element method. Most researchers invented their life 

to develope shear analysis method in this type. Simulations of an RC column subjecting 

to monotonic or cyclic loading paths can be done by this kind of method. 

1.3 Research Significance 

Many of the existing methods for evaluate the response of an RC column under cyclic 

loading depend on the predetermination of the failure mode. Although some approaches 

did not meet this problem, but most among these involve a meshing procedure to 
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establish an analytical model. This study proposes an alternative way to predict the 

cyclic shear behavior of an RC column for given cross-sectional properties. The total 

cyclic response of an RC column can be determined using this method without a priori 

knowledge of failure mode. 
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Chapter 2 Uniaxial Cyclic Truss Model 

2.1 Analytical Method 

2.1.1 Brief introduction to truss model 

The truss model was introduced in 1899 [9, 10]. The flexural behavior was modeled 

primarily by the chord under tension on the top and the chord under compression at the 

bottom as shown in Fig. 8. The tensile chord represented main steel and the compressive 

chord represented concrete under compression. Transverse reinforcement provides 

vertical members and concrete between inclined cracks act as 45  compression 

diagonal members [12]. The shear force was calculated as a sum of contributions from 

concrete and transverse reinforcement. However, in the original truss model the analysis 

was in monotonic and the concrete was not under tension.  

Cyclic analysis has become essential recently, as the monotonic analysis can not satisfy 

practical requirements. Many literatures showed that the tension in concrete is important 

in shear [2, 4, 6]. Flexural analysis performed using the truss model was rather 

incomplete, so more accurate models such as the fiber element method [13] soon 

replace it. Based on the original concept of truss model, the UCTM proposed in this 

paper overcomes these shortcomings. 

2.1.2 Concept of uniaxial cyclic truss model (UCTM) 

Incremental deformation in a nonlinear numerical analysis of an RC column can be 

divided into a flexural part, which includes an axial part, and a shear part, as shown in 

Fig. 9, which plots the hysteretic loops of columns that are dominated by flexure and 

shear, respectively. In Fig. 9(a), saturated hysteretic loops are associated with flexural 

behavior. In contrast, columns that are dominated by shear exhibit severe pinching, as 

displayed in Fig. 9(b). In this paper, the shear part is simulated using the proposed 
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uniaxial cyclic truss model while the flexural part is simulated using fiber element 

method under the platform OpenSees [14]. 

2.2 Uniaxial Cyclic Truss Model 

Consider the RC column shown in Fig. 10 that is subjected to shear deformation in 

static equilibrium. The corresponding shear behavior was analyzed in an average sense 

under small shear deformations that results from lateral loadings on top and bottom of 

the column. Elements AG and BH represent vertical components of the RC column that 

are subjected to vertical axial loads and moments. These flexural components, 

comprising longitudinal steel bars and concrete, can be simulated using any methods in 

flexural analysis. Hence, elements AG and BH are assumed to be rigid in UCTM for 

shear analysis.  

Elements AB, CD, EF, and GH are transverse reinforcement elements while elements 

AD, CF, and EH are concrete elements under compressive forces, and BC, DE, and FG 

are concrete elements under tensile forces. With reference to the free body diagram of 

element CDFE in Fig. 11, shear deformation will cause vertical elements CE and DF to 

rotate rigidly without bearing horizontal shear forces. 

The external forces are applied at both ends of the column. Since no other lateral load 

acts upon the mid-portion of this column, the entire column is subjected to uniform 

shear force and deformation. So for the column considered, the behavior of all 

rectangular elements, such as ABDC, CDFE, and EFHG in Fig. 10, can be reasonably 

assumed to be identical. Therefore, a unique uniaxial shear hysteretic model can be 

derived from given cross-sectional parameters.  

Consider element CDFE in Fig. 11 subjected to internal axial forces exerted by adjacent 

elements immediately above and below it. Since elements ABDC, CDFE, and EFHG in 
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Fig. 10 are identical, 

 EHCFAD FFF ==  (1a) 

 FGDEBC FFF ==  (1b) 

where ADF CFF , EHF , BCF , DEF , and FGF  are internal axial force in element AD, CF, EH, 

BC, DE, and FG, respectively. 

Assume that the free body element CDFE subjected to FBC, FAD, FFG, and FEH, 

eventually deforms to the state as shown in Fig. 11Fig. 12 and rotates by an angle γ.  

The external forces shown in Fig. 12 are decomposed into horizontal and vertical 

components in local coordinate, as shown in Fig. 13. The component forces satisfy the 

following relationships. 

 αFVαFVαFV EHEHCFCFADAD coscoscos =====  (2a) 

 αFVαFVαFV FGFGDEDEBCBC coscoscos =====  (2b) 

 αFNαFNαFN EHEHCFCFADAD sinsinsin =====  (2c) 

 αFNαFNαFN FGFGDEDEBCBC sinsinsin =====  (2d) 

where 

α  = angle DEF, equals to angle CFE for small rotational angle γ, 

ADV , CFV , EHV , BCV , DEV , and FGV  are horizontal component of ADF , CFF , EHF , 

BCF , DEF , and FGF , respectively. 

ADN , CFN , EHN , BCN , DEN , and FGN  are vertical component of ADF , CFF , EHF , 

BCF , DEF , and FGF , respectively. 

In this model, vertical rigid elements CE and DF are assumed to sustain the axial and 

flexural forces.  

In the following section, the shear mechanism is simulated by treating element CDFE as 
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an internal structure that is subjected to shear deformation. In Fig. 11Fig. 14, the shear 

deformation in the uniaxial cyclic truss model causes a rotation by angle γ, determined 

by the components of shear force on four edges of element CDFE. The total shear force 

on section CD and EF are identical: 

  V-VV DECF +=  (3) 

Where V  denotes total shear force. 

V  can be determined for a given value of γ. It can be evaluated using nonlinear 

structural solving schemes. 

2.3 Solution Techniques 

Details of solution procedures of the UCTM to determine the shear force for any γ are 

presented below. 

2.3.1 Dimensions of elements 

First, the sizes of the concrete and steel elements in Fig. 15 is determined. The body of 

the UCTM comprises core concrete and transverse reinforcement. The cover concrete is 

generally too brittle to carry shear force and thus is not considered. With reference to 

Fig. 10 and Fig. 15, the undeformed length of CD and EF are cd . The undeformed 

length of CF and DE are αtancd , obtained geometrically. 

The areas of the cross-sections of the elements is also determined. The areas of the 

cross-section of the steel elements CD and EF are their actual areas of transverse 

reinforcement in the x-z plane within spacing s . 

 αdbρAA ccyEFCD tan==  (4) 

The areas of the cross-section of the concrete elements CF and DE are also calculated to 

formulate tangent stiffness equations. Fig. 16 displays the diagonal concrete struts, 

which are simulated as the diagonal element DE. The total projected area of the 
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concrete struts in the direction parallel to DE onto the transverse steel element CD is  

 ααααα
αα

sincostancoscos
tantan

cccc

dz

z c

dz

zDE dbdbdzbdAA cc ==== 
=

=

=

= 00
 (5a) 

where 

z  = distance along vertical axis from point E, shown in Fig. 16. 

Similarly,  

 αsinccDECF dbAA ==  (5b) 

2.3.2 Displacement field, degrees of freedom, strain field, and uniaxial 

strain/stress 

Throughout this paper, generalized degrees of freedom, known as generalized 

coordinates [15], Δ1 and0 Δ2 are used. The displacement field that is applied to UCTM 

is stated in terms of Δ1 and Δ2 by the equation 

 












 ++
=









0

212
21 z

d
Δy

d
-ΔΔ-ΔΔ

w
v

cc αtan  (6) 

where 

y , z  = rectangular Cartesian coordinates in the undeformed state shown in Fig. 15, 

and 

v , w  = components of displacement in the y , and z  directions, respectively. 

In Fig. 15, the UCTM is displayed in the deformed state which is shown in Fig. 11Fig. 

14. Edges C, D, and E are modeled as roll supports while edge F is hinge-supported. 

The displacement field of such a 2D structural problem has three degrees of freedom. 

However, as mentioned previously, element CE and DF are rigid. Accordantly, only two 

degrees of freedom remain. 1Δ  refers to lateral deformation, or expansion and 

contraction. 2Δ  is constrained to γ, which denotes the shear rotational angle,  
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 αγdΔ c tan=2  (7) 

Hence, the strain field that is associated with the displacement gradient components is 
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The uniaxial strain in a direction parallel to [ ]Tn θθ,sincos=  is 

 [ ] 
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For 0=θ , in the direction parallel to element CD, 

 
c

θ d
-ΔΔε 12=  (10a) 

For αθ = , in the direction parallel to element DE,0 

 α
d

-ΔΔε
c

θ
2122

cos=  (10b) 

For αθ -π= , in the direction parallel to element CF, 

 αs
d
-Δε

c
θ

2co1=  (10c) 

From Equation (10a, b, c), a change of the uniaxial stress caused by changes of 1Δ  and 

2Δ  of any truss member is given by 

 
c

CDCD d
-dΔdΔCdσ 12=  (11a) 

 α
d

-dΔdΔCdσ
c

DEDE
2122

cos=  (11b) 

 α
d

-dΔCdσ
c

CFCF
21 cos=  (11c) 
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where C  denotes the corresponding tangent modulus. Subscripts refer to elements CD, 

CF, and DE. Notably, the behavior of element EF is identical to element CD. 

2.3.3 Tangent stiffness 

The tangent stiffness in UCTM is the derivative of the total shear force V  with respect 

to the rotational angle γ. Since the total shear force is given by Equation (3), the change 

of V  equals the change of the horizontal projection of the axial forces of element CF 

and DE caused by changes of 1Δ  and 2Δ . According to Equation (3), 

  dVdVdV DECF += -  (12) 

where, from Equation (2a, b) 

 αdFdV CFCF cos=  (13a) 

 αdF dV DEDE cos=  (13b) 

Applying Equation (4, 5, 11) yields the axial force in truss members, as follows. 

 ( ) αb-dΔdΔCρAdσdF cCDyCDCDCD tan12==  (14) 

 ( ) ααb-dΔdΔCAdσdF cDEDEDEDE sincos ⋅== 2
122  (15) 

 ααbdΔ-CAdσdF cCFCFCFCF sincos ⋅== 2
1  (16) 

The horizontal equilibrium of any of the points C, D, E, or F yields the relationship 

between 1dΔ  and 2dΔ ,  

 0coscos =++ αdFαdFdF CFDECD  (17) 

 21 dΔ
Cρ

Cρ
dΔ

CDy

CDy

CF
4

DE
4

DE
4

CcosCcos

C2cos

αα
α
++

+
=  (18) 

Differentiating Equation (7) yields 

 αdγddΔ c tan=2  (19) 

Substituting these equations into Equation (12) and factorizing yields,  
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( )

Kdγ

dγdb
αCαCρC

ααCCρααCCααCC
dV cc

CFDEyCD

DECFyCFCDDECD

=

++
⋅+⋅+⋅

=
44

262222 4

coscos

sincossincossincos

 

  (20) 

where 

 
( )

cc
CFDEyCD

DECFyCFCDDECD db
αCαCρC

ααCCρααCCααCC
K

44

262222 4

coscos

sincossincossincos

++
⋅+⋅+⋅

=  

  (21) 

K  = tangent stiffness of UCTM. 

In case the concrete and steel remain elastic and the tension in the concrete is omitted, 

then 

 sCD EC =  (22a) 

 cCF EC =  (22b) 

 0=DEC  (22c) 

Substituting Equation (32) into Equation (20) yields  

 cc
y

y
cc

cys

ycs AE
βnρ
βnρ

db
αEρE
αραEE

K
4

2

4

22

1 csc

cot

cos

sincos

+
=

+
⋅

=  (23) 

where cs /EEn =  is the modular ratio, ccc dbA = and α-β 90= . Equation (23) is a 

special case of UCTM that is equivalent to the equation for shear stiffness of a 

differential truss element, derived from constant angle truss model [16]. 

The crack angle α  in the above equations must be determined. The shear crack angle 

varies somewhat between around 25  and 65  in a manner that depends on various 

factors [12]. However, an average of 45  was reasonably assumed for simplicity, 

consistent with the ACI code method [12]. It can be considered rotated in the future. 
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2.3.4 Shear Force 

Equation (12) yields the incremental shear strength dV . Thus, the total shear force is 

 dVVV += 0  (24) 

where 

0V  = total shear force in the previous step. 

2.3.5 Defining column section using UCTM 

In this paper the UCTM was incorporated into OpenSees platform. OpenSees utilizes a 

class that is called “Section Aggregator”, which adds another one degree of freedom 

associated with shear to a single section force-deformation model to allow shear 

behavior to be simulated, as shown in Fig. 17. The hysteretic behaviors of the 

cross-section of a beam-column element under flexure and axial loading can be 

computed using an independently developed method preferred. Fig. 18 presents 

procedures for applying UCTM in a cross-section in the analysis of a reinforced concrete 

column analysis. The implementation of UCTM on the OpenSees platform herein 

required only 5 parameters - cf ′ , yf , cd , cb ,.and yρ . UCTM can also be applied to 

non-prismatic RC columns. The cross-sectional dimensions and other properties can be 

varied along the longitudinal direction of a RC column.  
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Chapter 3 Objective-Oriented Programming 

Methods 

 

3.1 Open System for Earthquake Engineering Simulation 

(OpenSees) 

This paper develops various classes and objects to build UCTM class under the platform 

OpenSees [17]. OpenSees is an object-oriented framework for finite element analysis. 

OpenSees' intended users are in the research community. A key feature of OpenSees is 

the interchangeability of components and the ability to integrate existing libraries and 

new components into the framework (not just new element classes) without the need to 

change the existing code as shown in Fig. 27. Core components, that is the abstract base 

classes, define the minimal interface (minimal to make adding new component classes 

easier but large enough to ensure all that is required can be accommodated). 

3.2 Introduction to the Tcl command language 

The Tcl scripting language [17, 18] was chosen to support the OpenSees commands, 

which are used to define the problem geometry, loading, formulation and solution. 

These commands are one-line commands which have specific tasks, as described in this 

manual. The Tcl language provides useful programming tools, such as variables 

manipulation, mathematical-expression evaluation and control structures. 

Tcl is a string-based scripting language which allows the following: 

 Variables and variable substitution 

 Mathematical-expression evaluation 

 Basic control structures (if , while, for, foreach) 
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 Procedures 

 File manipulation 

3.3 OpenSees Interpreter 

The main abstractions of OpenSees will be explained using the OpenSees interpreter. 

The interpreter is an extension of the Tcl scripting language. The OpenSees interpreter 

adds commands to Tcl for finite element analysis. Each of these commands is associated 

(bound) with a C++ procedure that is provided. It is this procedure that is called upon by 

the interpreter to parse the command. In this document we outline only those commands 

which have been added to Tcl by OpenSees [17]. 

3.4 Applying UCTM using OpenSees [14] 

Object-oriented programming methods are employed to establish the analytical model, 

UTCM. With object-oriented programming methods, UCTM can be constructed from 

various concrete and steel materials. The UTCM can also be made to be incorporated 

into various beam-column elements conveniently. The UCTM class is a derived class of 

“Material” class built in OpenSees.  

3.4.1 Introducing a new material into OpenSees 

The hierarchical nature of the OpenSees software architecture allows new material 

models to be seamlessly added to the framework. By keeping element and material 

implementations separate, a new material model can be used in an existing element 

without modifying the element implementation, and vice versa. The programming 

language C++ directly supports the data encapsulation and run-time binding necessary 

to achieve this complete separation of material from element. [14] 

3.4.2 Material Abstractions 

Currently, there are three Material abstractions in OpenSees, each of which can be used 
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across a wide range of element implementations: 

1. UniaxialMaterial - Provides the interface for all one-dimensional material models, 

either stress-strain or force-deformation. UniaxialMaterial models define the 

stress-strain response of a truss element, uniaxial fiber behavior in a beam-column 

section, or the force-deformation response of a beam section or zero-length element. 

2. NDMaterial - The multi-dimensional generalization of UniaxialMaterial; provides 

the stress-strain response at a point in a solid element, or multi-dimensional fiber 

behavior in a plate or beam-column section. 

3. SectionForceDeformation - Defines the interface for stress resultant models which 

are used to describe both plate and beam-column force-deformation response as well 

as the constitutive response of more general zero-length elements, e.g., for isolator 

bearings. 

Each interface listed above is essentially the same with minor differences. The 

NDMaterial and SectionForceDeformation abstractions both represent 

multi-dimensional constitutive response. However, a distinction is made between stress 

and stress resultant response to allow for safer element implementations. Furthermore, 

the stress-strain equations for continuum material models can be written in terms of 

tensors. This is not the case for stress resultant models. Lastly, to avoid returning 

matrices and vectors or tensors of size one, the Uniaxial-Material abstraction is made 

distinct for reasons of efficiency, as scalar values describe the behavior of a 

one-dimensional model. UCTM is inherited from class UniaxialMaterial modeling the 

force-deformation response of a RC column section. 

As indicated in Fig. 28, each material abstraction is a subclass of Material. The Material 

class is a subclass of both the TaggedObject and MovableObject classes, and therefore 

inherits the functionality of these two classes. As a result, it can be said that a Material 
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“is a” TaggedObject as well as a MovableObject. Furthermore, since each of 

UniaxialMaterial, NDMaterial, and SectionForceDeformation “is a” Material, each is 

also a TaggedObject and a MovableObject. The TaggedObject class provides 

functionality for identifying materials, through a tag, during model building; and the 

MovableObject class provides functionality for parallel processing and database 

programming. 

Rather than show examples of implementing a material model under each interface, 

only the UniaxialMaterial interface is covered herein. The basic concepts of adding a 

material model to OpenSees carry directly over from UniaxialMaterial to NDMaterial 

and Section-ForceDeformation. The remainder of this document is laid out as follows. 

First, the UniaxialMaterial interface is listed and explained. Along with the C++ 

implementation, it is shown how to 

1. add the new model to the OpenSees Tcl model builder, and  

2. make the new model “movable” for parallel processing and database programming. 

[14] 

3.4.3 UniaxialMaterial Interface 

Implementations of the UniaxialMaterial interface are used in several contexts within 

the OpenSees modeling framework. Due to their simplicity, these models can define 

both stress-strain and force-deformation relationships. It is up to the calling object, be it 

an element object or another material object, to interpret the meaning appropriately. 

Listed below is the UniaxialMaterial class interface. All methods in the 

UniaxialMaterial interface are public, there are no protected or private data or methods. 

Following the UniaxialMaterial class interface listing, each method in the interface is 

described. 

#include <Material.h> 
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class Response; 

class Information; 

class UniaxialMaterial : public Material 

{ 

public: 

UniaxialMaterial(int tag, int classTag); 

virtual ~UniaxialMaterial(void); 

virtual int setTrialStrain(double strain, double strainRate = 0.0) = 0; 

virtual double getStrain(void) = 0; 

virtual double getStrainRate(void); 

virtual double getStress(void) = 0; 

virtual double getTangent(void) = 0; 

virtual double getDampTangent(void); 

virtual double getSecant(void); 

virtual int commitState(void) = 0; 

virtual int revertToLastCommit(void) = 0; 

virtual int revertToStart(void) = 0; 

virtual UniaxialMaterial *getCopy(void) = 0; 

virtual Response *setResponse(char **argv, int argc, Information &matInfo); 

virtual int getResponse(int responseID, Information &matInfo); 

protected: 

private: 

}; 

A note about the C++ syntax seen in the UniaxialMaterial interface. The keyword “vir- 

tual” at the start of a method declaration indicates this method may be overridden by a 
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subclass of UniaxialMaterial. The UniaxialMaterial base class provides default 

implementations for its virtual methods. The notation “= 0” at the end of the method 

declaration indicates the method is pure virtual, meaning it must be defined by 

subclasses because theUniaxialMaterial base class does not provide a default 

implementation. 

The UniaxialMaterial base class constructor takes a tag and classTag as its arguments. 

The tag passed to the constructor identifies this UniaxialMaterial as unique among all 

other UniaxialMaterial objects, and the classTag is used primarily for parallel 

processing and database programming. Class tags are defined in the file classTags.h. The 

tag and classTag arguments are passed to the Material class constructor, where they are 

in turn passed to the TaggedObject and MovableObject class constructors, respectively. 

The UniaxialMaterial destructor is declared, but does not do anything as the 

UniaxialMaterial base class containsno data. 

The method setTrialStrain() takes one or two arguments, an updated strain and strain 

rate. The strain rate is an optional argument, with default value 0.0. This method is pure 

virtual, so it must be implemented in all subclasses of UniaxialMaterial. The next two 

methods, getStrain() and getStrainRate(), are to return the current strain and strain rate 

of this UniaxialMaterial. The method getStrain() is pure virtual, while getStrainRate() is 

only virtual; by default it returns 0.0, but may be overridden in subclasses if needed. 

double 

UniaxialMaterial::getStrainRate(void) 

{ 

return 0.0; 

} 

The next method is getStress(), which is to return the current stress of this UniaxialMa- 
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terial. The current stress is a function of the current strain, ε, and the current strain rate, 

ε , 

 

 ( )εεσσ ,=  (25) 

The getStress() method is pure virtual and must be implemented by subclasses of 

UniaxialMaterial. 

The current material tangent is returned by the next method, getTangent(). The material 

tangent is the partial derivative of the material stress with respect to the current strain, 

 
ε
σ

∂
∂=tD  (26) 

The getTangent() is also pure virtual and must be implemented in all UniaxialMaterial 

subclasses. 

The getDampTangent() method is next, and is to return the current damping tangent, 

which is the partial derivative of the current stress with respect to the current strain rate, 

 
ε
ση
∂

∂=  (27) 

By default, this method returns 0.0, and it may be overridden in subclasses of 

UniaxialMaterial where there is strain rate dependence. 

double 

UniaxialMaterial::getDampTangent(void) 

{ 

return 0.0; 

} 

Finally, the getSecant() method is provided to return the material secant, which is the 

current stress divided by the current strain, 
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ε
σ=sD  (28) 

By default, this method returns the result of dividing the current stress by the current 

strain. If the current strain is zero, the current tangent is returned instead. 

double 

UniaxialMaterial::getSecant(void) 

{ 

double strain = this->getStrain(); 

double stress = this->getStress(); 

if (strain != 0.0) 

return stress/strain; 

else 

return this->getTangent(); 

} 

The next set of methods deal with possible path dependent behavior of UniaxialMaterial 

models. All Material objects in OpenSees are responsible for keeping track of and 

updating their own history variables. First, the method commitState() is invoked to 

inform a UniaxialMaterial object that its current state is on the converged solution path 

and its internal history variables should be updated accordingly. Next, the method 

revertToLastCommit() is provided to let a UniaxialMaterial object know that it should 

return to its last committed state at. Finally, revertToStart() informs the UniaxialMaterial 

object to revert to its initial state, i.e., at the start of the analysis. All three of these 

methods are pure virtual, and thus must be implemented in all subclasses of 

UniaxialMaterial. The getCopy() method is declared so a calling object, be it an 

Element, Fiber, or another Material object, can obtain an exact copy of this 
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UniaxialMaterial object. A pointer to the new object is returned by this function, and the 

calling object is responsible for deleting this dynamically allocated memory. This 

method is pure virtual because only a subclass of UniaxialMaterial knows the internal 

representation of its data. 

The final two methods, setResponse() and getResponse(), are declared for recording 

UniaxialMaterial state information. These methods have default implementations to 

record the material stress, strain, and tangent. These methods may be overridden, but 

their implementations are not shown in this thesis. 

3.5 Combining UCTM with Fiber Element Method 

The flexural response of an RC column is simulated using fiber element method while 

the shear response is simulated using UCTM in this paper. For fiber element analysis, a 

cross-section of an RC column can be divided into three parts – the concrete part, the 

cover concrete part, and the longitudinal steel part. The enhancement of the compressive 

strength and strain at ultimate compressive strength of core concrete by the confinement 

of transverse reinforcement is estimated using a theoretical stress-strain model for 

confined concrete [19]. The core concrete fiber is thus simulated as the “Concrete02” 

material implemented in OpenSees with tension. Since the cover concrete fiber is not 

confined by transverse reinforcement, it is simulated as the normal concrete material 

“Concrete01” in OpenSees [14] without tension for simplicity. The longitudinal steel 

fibers were simulated as the “ReinforcingSteel” material in OpenSees. To incorporate 

UCTM into fiber element, the object called “Section Aggregator” in OpenSees is used 

to add a degree of freedom associated with shear. UCTM is then used to determine the 

relationship between the shear force and rotational angle associated with this additional 

degree of freedom. This command is used to construct a SectionAggregator object 
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which aggregates groups previously-defined UniaxialMaterial objects into a single 

section force-deformation model. Each UniaxialMaterial object represents the section 

force-deformation response for a particular section degree-of-freedom (dof). There is no 

interaction between responses in different dof directions. The aggregation can include 

one previously defined section. The basic concept used in an aggregator is superposition. 

The flexural model and shear model can be treat connected in series as shown in  

3.6 Materials For Building UCTM 

UTCM can be fabricated from various concrete and steel uniaxial materials. In this 

study, two materials “Concrete02” and “ReinforcingSteel” were adopted in OpenSees 

[17] as the materials of the elements in UCTM. The corresponding hysteretic behaviors 

are displayed in Fig. 19 and Fig. 20 These material models can be changed to others if 

required. 

3.6.1 Steel 

Transverse steel bar elements comprise the “Reinforcing” uniaxial steel material in the 

OpenSees platform. Table 1 lists the necessary input parameters [17]. In case ties are 

present, the properties of the tie material are assumed to be the same as those of the 

hoop material for conservation and for convenience. The other parameters can be 

estimated using the equations that are presented in Table 1. 

3.6.2 Concrete 

Various uniaxial concrete models have been developed in recent years. However, this 

paper adopts uniaxial concrete material “Concrete02” from OpenSees platform. Table 2 

presents material parameters that are required to establish a Concrete02 object [17].  

The concrete in reinforced concrete columns can be classified as cover concrete and 

core concrete as displayed in Fig. 21. The core concrete, which is confined by hoop 
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steels, has a substantially higher strength and toughness of concrete. Different methods 

had been proposed to take into account the effects of confinement. However, the 

theoretical stress-strain model for confined concrete with the application of the 

multiaxial failure criterion [19] was found to be particularly effective to conduct any 

type of confining steels. Therefore, the considerable increase in both cf ′  and coε  

owing to confinement of concrete must be accounted for by this method. For brevity, the 

relevant details are not presented here.  

The crushing strength cuf ′  is set to zero since the residual strength of concrete after 

crushing is negligible. The strain at the crushing strength of concrete, cuε , listed in 

Table 2, is calculated using fracture energy balance [20]:  

 
c

smyhs
ucu f

εfρ.
-εε

′
=

41
 (29) 

where 

yhf  = yield strength of transverse bar, and 

uε  = minimum crushing strain in the cover concrete of confined concrete column. 

uε  is chosed as 0050.− , as was recommended in other literature [21] that found the 

traditionally used value of 0030.−  seems to be underestimated. 

sρ  = ratio of volume of transverse confining steel to that of confined concrete core: 

 yxs ρρρ +=  (30) 

in which 

xρ , and yρ  are ratio of volume of transverse confining steel to that of confined 

concrete core in the x , and y directions, respectively, as shown in Fig. 21. The y  

direction is the loading direction. 
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 csxx /sdAρ =  (31) 

 csyy /sbAρ =  (32) 

where 

s  = the center to center spacing of transverse reinforcement, 

sxA  and syA  are total area of transverse reinforcement within the spacing s  in x , 

and y  directions, respectively, as shown in Fig. 21. 

cb  and cd  are core dimensions to centerlines of perimeter hoop in x , and y directions, 

respectively, as shown in Fig. 21. 

 14016 .εε ysm +=  (33) 

in which 

smε  = steel strain at ultimate steel stress [22], and 

yε  = yielding strain of steel. 

Reasonably assuming the following: 

 
s

yh
y E

f
ε =  (34) 

Where sE  is the elastic modulus of steel. 

sE  is assumed here to be 22040000 kgf/cm  (  ksi29000 ). The parameter λ  in Table 2 

was estimated to be 10.  and is set to be fixed throughout this paper. The tensile 

strength of concrete is important role in the shear analysis. The peak tensile strength of 

concrete is given by 

  MPaf.Eεf cccrt ′== 3760  (  psifEεf cccrt ′== 564. ) (35) 

where 

crε  = cracking tensile strain of concrete = 000080.  [4]. 
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  MPafE cc ′= 0470  (  psifE cc ′= 05700 ) (36) 

in which 

cE  = elastic modulus of concrete in accordance with ACI code [23]. 

Another parameter tsE , listed in Table 2, controls the tension softening stiffness. The 

material model Concrete02 in OpenSees performed linear tension softening. Therefore 

the parameter tsE  is approximated by assuming 

 
cr

ccr
ts -ε

EεE
1

=  (37) 

3.7 Hysteretic Characteristics Of Uniaxial Cyclic Truss 

Model 

Fig. 22 presents a very brief example to introduce the characteristics of UCTM. Herein, 

a reinforced concrete column specimen subjected to reverse cyclic loading [24] is 

adopted to perform the analysis. The height of the column is  cm300  ( ..  in1118 ). The 

material tests provide the average compressive strength of concrete 2265 kg/cmfc =′  

(  psifc 3765=′ ) and the average tensile yield strength of hoop steels 25  kg/cmf y 000=  

(  psifc 71053=′ ).  

Table 3 presents the four types of cross-section. First, with the sectional properties 

defined, the established UCTM objects were cyclically deformed using a numerical 

simulation, with an increasing angle of rotation, to investigate the shear capacities of the 

sections. It should be clarify the calculations here is to investigate the shear behavior 

associated with different positions of cross sections. It is not intended to calculated the 

total response of the RC column. 

Fig. 23 to Fig. 26 shows the relationship between the shear force and the rotational 
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angle that was simulated by UCTM. The results reveal severe pinching because the 

concrete elements were under alternating tensile and compressive strain. This 

phenomenon explained the pinching effect in an average global sense. Fig. 23 also 

shows the peak values of shear. Sections A1 and B2 shown in Fig. 23 and Fig. 26 have 

greater shear carrying capacities than A2 and B1 shown in Fig. 24 and Fig. 25, because 

they were associated with smaller transverse reinforcement spacings. 

The results in Fig. 23 to Fig. 26 represent the sectional shear cyclic capacities, too. The 

column may or may not fail by shear fracture will depend on the corresponding flexural 

capacity. 
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Chapter 4 Comparisons Of UCTM With 

Experiments 

To verify the proposed method, the results obtained from UCTM were compared with 

experimental results from seven specimens presented elsewhere [24-30] as listed in 

Table 4. The hysteretic loops in the experiments show that all failure involved shear 

showed severe pinching, except for that of specimen BMR2, which failed in flexure 

with saturated hysteretic loops. 

4.1 SY AND LY 

The notable feature of the experiments that were performed on specimens SY and LY 

[28-30] was that the displacements in the cyclic loading tests were smaller than those 

revealed by the other test data. The transverse steels are steel rounded bars while the 

longitudinal steels are not. Fig. 30 and Fig. 31 shows the cross-sections and the 

corresponding comparison between the analytical and experimental results. It can be 

seen that the analytical results obtained by UCTM agree closely with the experimental 

results. Both the failure mode and the hysteretic path are accurately predicted. The 

UCTM automatically decided the failure mode as shear failure. Thus the total response 

calculated is governed by shear with severe pinching effect rather than flexure. If it is 

controlled by flexure, the analytical result will show saturated hysteretic loops. The 

traditional methods can not perform the judgment as UCTM. 

4.2 N18C 

Specimen N18C [26] was used to elucidate the importance of UCTM. Fig. 32 shows its 

cross-section and compares the experimental data to the analytical results calculated 

with or without UCTM incorporated into fiber element method. The results obtained 
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using the fiber element method without UCTM reveal a flexural response with saturated 

hysteretic loops. This result clearly disagrees with the observed experimental results, 

which revealed shear failure with severe pinching. When UCTM is applied, the 

analytical results are greatly improved, and are much more consistent with the 

experimental data. 

4.3 H-19 AND F-19 

Longitudinal and transverse steel bars were steel rounded bars. Fig. 33 to Fig. 34 

present cross-sections of specimens H-19 and F-19 [27] and a comparison of the 

corresponding simulation results with the experiment. It is shown that analytical results 

by the combined UCTM and fiber element method match the test results very well. The 

most important failure mode is accurately predicted. 

4.4 BMRS 

The BMRS specimen was tested in NCREE [25]. Fig. 35 to Fig. 41 show the 

cross-section and elevation of the RC column specimen and compare each hysteretic 

loop from UCTM simulations with that from experiment. It is shown that the shear 

failure mode is accurately predicted. The analytical results reveal severe pinching that 

was caused by the shear-dominated fracture. Shear forces were precisely predicted and 

their peaks were identified. The values of stiffness determined by the analysis are also 

sufficiently close to the experimental values. 

4.5 BMR2 (FLEXURAL FRACTURE DOMINATED) 

UCTM can be employed to analyze RC columns with variable cross-sectional properties 

and can predict whether failure is by the shear or flexural mode. Numerical analysis of 

the BMR2 specimen tested in NCREE [24] will demonstrate these functions.  

Among the specimens considered in this paper, BMR2 is the most complex one, as it 
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has four designed cross-sections, as shown in Fig. 42. The RC column is thus divided 

into four elements in the simulation. Each individual part may exhibit its own failure 

mode. However, the analytical results show that all elements failed in flexure. In Fig. 42, 

the hysteretic loops revealed a flexural response. Although the response of the column 

was dominated by flexure, which was simulated by the fiber element method, UCTM 

automatically simulated the elastic shear response.  
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Chapter 5 Predicting Failure Behavior of Reinforced 

Concrete Columns Subjected to Cyclic 

Loading 

A procedure derived from UCTM was established to predict rapidly the failure mode of 

a reinforced concrete column in the design stage. Failure mode of an RC column can be 

classified as either shear or flexural failure. In general, an RC column can be assumed to 

be a beam-column member subjected to combined axial, flexural, and shear forces. It is 

difficulty to predict its overall failure behavior without a priori knowledge. Thus in this 

paper, the shear capacity is isolated independently from the complex behavior of a 

column based on the concept of well known truss model. The shear capacity can be 

viewed as the contribution of diagonal truss of a truss model while the longitudinal truss 

modeled the combined axial-flexural behavior. The obtained shear capacity using the 

proposed method can be compared with flexural capacity obtained from pushover 

analysis to predict whether shear failure or flexural failure will occur during cyclic test 

of an RC column. Five cyclic test results were compared to the predicted analytical 

results. All five failure modes are successfully predicted using the proposed procedure. 

5.1 Shear Capacity of an RC Column 

The shear capacity of an RC column is evaluated by the total shear force in a uniaxial 

cyclic truss model (UCTM), as shown in Fig. 15. It can be determined from the 

predefined displacement field under shear using Equation (3). For a positive value of 

shear deformation γ, CFV  is the contribution of the compressive force in the concrete 

element CF to the total shear force, and DEV  is the contribution of the tensile force in 

the concrete element DE to the total shear force. 
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The UCTM comprises three types of elements, which are concrete element under 

compression, concrete element under tension, and transverse reinforcement. For positive 

γ, these are corresponding to element CF, DE, CD (EF is identical to CD and is thus 

omitted from the following in discussion). In general, of these elements, only elements 

CD or DE can reach their ultimate strength when the total shear force reaches its 

ultimate value during shear deformation, unless the transverse reinforcements are 

designed to be unreasonably strong relative to the concrete, because of either their 

amount or strength. The compression strut CF remains below its ultimate strength. 

Notably, in practice, element CF may in fact reach its ultimate strength, and the 

crushing of element CF is often observed - but normally at the time of collapse of the 

RC column. When collapse occurs, elements CD and DE have already far exceeded 

their ultimate strengths. Thus, the ultimate state of element CF can be ignored, and 

element CF simply serves to balance force. To eliminate the need for a cyclic analysis, 

the strengths of elements CD and DE are assumed to be the yield strength of hoops yhf  

and the peak tensile strength of concrete tcf , respectively. If ties are present, their 

ultimate strength is also assumed to be yhf  for convenience. tcf  can be evaluated as 

  MPaf.Eεf cccccrtc ′== 3760  (  psifEεf cccccrtc ′== 564. ) (38) 

where 

crε  = cracking tensile strain of concrete = 000080.  [4], and 

  MPafE cccc ′= 4700  (  psifE cccc ′= 57000 ) (39)

  

where 

ccE  = elastic modulus of core concrete in accordance with ACI code [23], and 
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ccf ′  = strength of core concrete [19]. 

The original concrete strength cf ′  is replaced by the strength of the core concrete ccf ′ , 

which was evaluated using a theoretical stress-strain model for confined concrete [19]. 

The model considers the confinement effects of surrounding longitudinal and transverse 

reinforcement. The horizontal force equilibrium at point C in Fig. 15 gives 

 CDDECF VV-V +=  (40) 

where 

CDV  = horizontal component of internal axial force in element CD. 

Substituting Equation (40) into Equation (3) yields, 

 CDDE VVV += 2  (41) 

Equation (41) eliminates the unknown value CFV . The remaining values, DEV  and 

CDV , are easily calculated. The calculation of DEV  is intuitive. DEV  equals to the shear 

component of the internal axial force in element DE, which is the product of the 

concrete tensile stress and the area for element DE. The area is the total projected area 

of concrete element DE, as discussed earlier, in the direction parallel to transverse steel 

element CD. 

 ααdbfV cctcDE cossin=  (42) 

where 

cb  and cd are core dimensions to centerlines of perimeter hoop in x  and y  direction, 

respectively, as shown in Fig. 15, and 

Similarly, CDV  equals to the product of the yielding stress and the area of element CD. 

 αtanccyyhCD dbρfV =  (43) 

where 
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yρ = ratio of volume of transverse confining steel to volume of confined concrete core 

in the y  direction as shown in Fig. 15. 

Notably, the y  direction is the loading direction. For 45=α ,  

  (MPa)dbf./dbfV cccccctcDE ′== 18802  (44a) 

  (psi)dbf/dbfV cccccctcDE ′== 2822 .   (44b) 

 
s

dAf
dbρfV csyyh

ccyyhCD ==  (45) 

where syA  denotes the total area of the transverse reinforcement within the spacing s  

in the y  direction.  

Substituting Equations (44, 45) into Equation (41) yields the total shear force, 

  (MPa)VVdbf.
s

dAf
V cscccc

csyyh +=′+= 3760  (46) 

  (psi)VVdbf.
s

dAf
V cscccc

csyyh +=′+= 564  (46) 

where  

  (MPa)dbf.V ccccc ′= 3760  (47a) 

  (psi)dbf.V ccccc ′= 564  (47a) 

and  

 
s

dAf
V csyyh

s =  (47b) 

Vc and Vs are the shear force contributed by the concrete and the transverse 

reinforcement, respectively. Equation (46) can be used to estimate nominal shear 

strength, which is similar to those recommended in ACI 318-05 [1]: 
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s

dAf
V syyh

s =  (48a) 

and 

 bd (MPa)f.V cc ′= 1670  (48b) 

 bd (psi)fV cc ′= 2  (48b) 

except that in which b  and d  in ACI 318-05 denote width and depth of the column.  

The major difference between Equation (11) and Equation (12) is that cf ′  has been 

adjusted to ccf ′  herein. The coefficient 0.376 (4.56 in psi), derived from the tensile 

strength of concrete, is larger than 0.167 (2 in psi) proposed in ACI 318-05 [1]. 

Research [11] also indicated that the equation of nominal shear strength that was 

proposed in ACI 318-05 [1] severely underestimated the shear capacities of RC 

columns.  

5.2 Flexural Capacity 

The peak lateral force determined from a pushover curve generated using fiber element 

method without UCTM is taken to estimate the flexural resistance. Sectional properties 

are listed in Table 5. ccf ′   are accordingly calculated. 

5.3 Failure Mode Prediction 

The nominal shear strengths and peak lateral forces of all specimens in this study are 

calculated using the proposed method. Table 6 and Table 7 lists the results. Conceptually, 

shear and flexural models can be considered as springs that are connected in series to 

determine the relationship between lateral force and deformation. Since the simplified 

method was derived using this method, the smaller one between the nominal shear 

strength and peak lateral force will reasonably determine the failure mode. Table 6 and 
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Table 7 compared the predicted failure modes with those revealed by experiments. Even 

for specimens SY and LY, the nominal shear strength and peak lateral force were very 

close to each other, all of the predicted failure modes are consistent with the test results. 
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Chapter 6 Conclusions 

Based on the results of this paper, the following conclusions are drawn: 

1. The proposed UCTM (Uniaxial Cyclic Truss Model) is a vessel to produce a 

uniaxial shear model. The complex multiaxial shear behavior is condensed into 

uniaxial model in our research. 

2. UCTM provides a method to determine the uniaxial hysteretic relationship 

between the shear forces and shear rotational angle. Sectional and material 

properties are reduced to five realistic parameters with simple physical meanings. 

From these basic parameters, UCTM determines shear force and shear stiffness for 

given shear deformation. No additional regression technique is required to perform 

the analysis.  

3. Comparing with experimental results, the overall results based on UCTM are quite 

well. If the cross-section of an RC column is given, the total response of the 

column can be determined, regardless of whether it fails in flexural or shear mode.  

4. Most literatures could not clearly identify the difference between shear failure 

mode and flexural failure mode. Most of the shear model in literatures could not 

possess the trend of cyclic shear response of an RC column. The model we 

established can identify clearly the difference without basing on any assumption 

which many other models in other literatures have to. 

5. Most analytical methods simulating the shear response of an RC column require 

the a priori assumption that the RC columns will fail in shear. If the failure mode 

cannot be known in prior, then such methods fail. UCTM, combining with flexural 

analysis method, does not suffer from this problem. Since UCTM and the flexural 

analysis method are connected as springs in series to determine the relationship 
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between lateral force and deformation, the overall model can identify the failure 

mode and simulate it.  

6. The method for simulating the flexural response can be easily changed by 

object-oriented programming if required. The concrete and steel material models in 

UCTM can be replaced with preferred material models. So that one of the merit of 

UCTM is its flexibility. 

7. The proposed simplified method combining with pushover method can identify the 

failure mode easily. The complex shear behavior of an RC column is simplified 

into an elegant procedure. The shear capacity can be calculated even without a 

computer. Failure modes of specimens from different laboratories in different 

locations are all successfully predicted using the proposed method.  

8. UCTM uses ReinforcingSteel object as transverse steel model as shown in Fig. 20. 

This steel model is designed to be used as longitudinal steels. It sustained no 

strength degradation. So is the UCTM. The envelope of the hysteretic model 

associated with UCTM is determined by the steel model. It can be considered to 

develop a more realistic transverse steel model in the future. It means the hoops 

and ties should sustained to strength and stiffness degradation seriously. Once such 

model was used in UCTM, the associated hysteretic model should sustained to 

severe strength and stiffness degradation. 
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TABLES AND FIGURES 

Table 1–Assumed input parameters of “ReinforcingSteel” material 

Label Description Assumed value 

yhf  yield stress in tension* Test value 

uf  ultimate stress in tension yhf1.5  

sE  initial elastic tangent 

22040000 kgf/cm  

(  ksi29000 ) 

shE  tangent at initial strain hardening sE.020  

shε  strain corresponding to initial strain hardening yε8  

uε  strain at peak stress ( ) syhuy E./-ffε 010+  

* This is the only one material parameter that must be determined by testing: 

the rest can be calculated or estimated. 
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Table 2–Assumed input parameters of “Concrete02” material 

Label Description Assumed value 

cf ′  compressive strength* 

Cover concrete: 

Test value 

Core concrete: 

Adjusted value [19] 

coε  strain at compressive strength Calculated value [19] 

cuf ′  crushing strength 0 

cuε  strain at crushing strength Equation (29) 

λ  
ratio between unloading slope at uε  and initial 

slope 
0.1 

tf  tensile strength Equation (35) 

tsE  tension softening stiffness Equation (37) 

* This is the only one material parameter that must be determined by testing: 

the rest can be calculated or estimated. 
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Table 3–Properties of cross-sections of the RC column 

Number Location, cm (in.) Section Transverse reinforcement spacing, cm (in.) 

A1 0-78 (0-30.7) A 13 (5.1) 

A2 78-180 (30.7-70.9) A 24 (9.4) 

B1 180-222 (70.9-87.4) B 24 (9.4) 

B2 222-300 (87.4-118.1) B 13 (5.1) 
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Table 4–Material properties of all specimens 

Specimen 

Column 

height, 

cm (in.) 

Axial 

force, 

kN 

(kips) 

Boundary 

condition 

on top of 

the 

column 

Compressive 

strength of 

concrete, 

kg/cm2 (psi)

Yield 

strength of 

longitudinal 

steel bars, 

kg/cm2 

(psi) 

Yield 

strength 

of 

hoops, 

kg/cm2 

(psi) 

Yield 

strength 

of ties, 

kg/cm2 

(psi) 

Reference

         

 BMRS 
150 

(59.1) 

1391 

(312) 
Free 

170 

(2416) 

4300 

(61105) 

4200 

(59684) 
－ [25] 

         

 BMR2 
300 

(118.1) 

927 

(208) 
Free 

265 

(3766) 

3500 

(49737) 

5000 

(71053) 

5000 

(71053) 
[24] 

         

 N18C 
90 

(35.4) 

429 

(96) 
Fixed 

270 

(3837) 

3874 

(55052) 

3823 

(54327) 
－ [26] 

         

 H-19 
75 

(29.5) 

243 

(55) 
Fixed 

248 

(3524) 

3303 

(46938) 

3293 

(46795) 
－ [27] 

         

 F-19 
150 

(59.1) 

976 

(219) 
Fixed 

249 

(3538) 

3028 

(43030) 

3354 

(47662) 
－ [27] 

         

 SY 
40 

(15.7) 

273 

(61) 
Free 

300 

(4263) 

4077* 

(57937*) 

5498 

(78130) 
－ [28-30] 

         

 LY 
80 

(31.4) 

913 

(205) 
Free 

272 

(3865) 

4076 

(57922) 

4515 

(64161) 
－ [28-30] 

         

         

* In specimen SY [28], with reference to a related study [29], the yield strength of the longitudinal steel bars 

was estimated to be 400 N/mm2 (4077 kN, 57937 psi), owing to absence of the test data in the original 

study [28]. This value results in minor changes of the cyclic response of an RC column under shear failure, 

simulated by UCTM. 
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Table 5–Sectional properties and calculated strength of core concrete 

Specimen 

sxA , 

cm2 

(in.2) 

cd , 

cm 

(in.) 

cb , 

cm 

(in.) 

s , 

cm 

(in.) 

ccf ′ , 

kg/cm2 

(psi) 

BMRS 
1.43 

(0.22) 

55.95 

(8.67) 

70.95 

(11.00)

30 

(4.65) 

182 

(2586) 

BMR2 

0-78 cm 

(0-30.7 in.) 

2.85 

(0.44) 

55.95 

(8.67) 

70.95 

(11.00)

13 

(2.02) 

352 

(5002) 

78-180 cm 

(30.7-70.9 in.) 

2.85 

(0.44) 

55.95 

(8.67) 

70.95 

(11.00)

24 

(3.72) 

321 

(4562) 

180-222 cm 

(70.9-87.4 in.) 

2.85 

(0.44) 

55.95 

(8.67) 

70.95 

(11.00)

24 

(3.72) 

310 

(4405) 

222-300 cm 

(87.4-118.1 in.) 

2.85 

(0.44) 

55.95 

(8.67) 

70.95 

(11.00)

13 

(2.02) 

350 

(4974) 

N18C 
0.63 

(0.10) 

23.23 

(3.60) 

23.23 

(3.60) 

10 

(1.55) 

311 

(4419) 

H-19 
0.57 

(0.09) 

15.50 

(2.4) 

20.50 

(3.18) 

15 

(2.33) 

260 

(3695) 

F-19 
2.26 

(0.35) 

31.11 

(4.82) 

41.11 

(6.37) 

30 

(4.65) 

261 

(3709) 

SY 
0.25 

(0.04) 

21.9 

(3.39) 

21.9 

(3.39) 

4 

(0.62) 

369 

(5244) 

LY 
1.00 

(0.16) 

43.8 

(6.79) 

43.8 

(6.79) 

6.6 

(1.02) 

340 

(4832) 
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Table 6–Failure predicted by simplified UCTM 

Specimen 

sV , 

kN 

(kips) 

cV ,

kN 

(kips)

Nominal 

Shear 

Strength, 

kN 

(kips) 

Peak 

Lateral 

Force, 

kN 

(kips) 

Predicted 

Failure 

Mode 

Experimental 

Failure 

Mode 

BMRS 
139 

(31) 

631 

(142)

770 

(173) 

940 

(211) 
Shear 

Shear 

BMR2 

0-78 cm 
763 

(171) 

878 

(197)

1641 

(368) 

354 

(79) 

Flexure 

Flexure 

78-180 cm 
413 

(93) 

837 

(188)

1251 

(281) 

Flexure 

180-222 cm 
413 

(93) 

823 

(185)

1236 

(278) 

Flexure 

222-300 cm 
763 

(171) 

874 

(196)

1637 

(368) 

Flexure 
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Table 7–Failure predicted by simplified UCTM 

Specimen 

sV , 

kN 

(kips) 

cV ,

kN 

(kips)

Nominal 

Shear 

Strength, 

kN 

(kips) 

Peak 

Lateral 

Force, 

kN 

(kips) 

Predicted 

Failure 

Mode 

Experimental 

Failure 

Mode 

N18C 
55 

(12) 

112 

(25) 

167 

(37) 

340 

(76) 
Shear Shear 

H-19 
25 

(6) 

60 

(13) 

85 

(19) 

132 

(30) 
Shear Shear 

F-19 
102 

(23) 

243 

(55) 

345 

(77) 

541 

(121) 
Shear Shear 

SY 
74 

(17) 

109 

(24) 

183 

(41) 

195 

(44) 
Shear Shear 

LY 
295 

(66) 

417 

(94) 

712 

(160) 

754 

(169) 
Shear Shear 
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Fig. 1–A parametric model simulating failure behavior of an RC column 
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Fig. 2–The truss mechanism of strut and tie model 
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Fig. 3–D zone and B zone of strut and tie model 
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Fig. 4–Comparison of analytical and experimental shear strength 
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Fig. 5–Comparison of normalized analytical and experimental shear strength 
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Fig. 6–Lateral View of experimental configuration of a shaking table test 

specimen. 
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Fig. 7–Analytical prediction of relationship between lateral force and 

displacement of a shaking table test specimen 
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Fig. 8–Truss model of a cantilever beam subjected to lateral force. 
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Fig. 9–Typical fracture mode of RC column in cyclic test:  

(a) Flexural failure (b) Shear failure. 
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Fig. 10–RC column subjected to lateral force on top and bottom. 
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Fig. 11–Equilibrium diagrams of internal forces in UCTM (undeformed). 
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Fig. 12–Equilibrium diagrams of internal forces in UCTM (deformed). 
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Fig. 13–Components of internal forces in UCTM. 
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Fig. 14–Equilibrium diagrams of shear forces in UCTM. 
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Fig. 15–Uniaxial cyclic truss model (UCTM). 
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Fig. 16–Projected area of the concrete struts in the direction parallel to DE 

onto the transverse steel element CD. 
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Fig. 17–Schematic drawing of “Section Aggregator”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moment 

Curvature 

Shear 

Rotational 



 

 68

 

Fig. 18–Application of UCTM to a RC column. 
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Fig. 19–Concrete02 [17] 
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Fig. 20–ReinforcingSteel [17] 
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Fig. 21–Core and cover concrete. 
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Fig. 22–Lateral view of experimental configuration. 
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Fig. 23–Analytical prediction of relationship between shear force and 

rotational angle- Section A1 
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Fig. 24–Analytical prediction of relationship between shear force and 

rotational angle- Section A2
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Fig. 25–Analytical prediction of relationship between shear force and 

rotational angle- Section B1 
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Fig. 26–Analytical prediction of relationship between shear force and 

rotational angle- Section B2 
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Fig. 27–Framework of OpenSees. 
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Fig. 28–Material class hierarchy. [14] 
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Fig. 29–Flexural and shear models connected in series. 
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Fig. 30–Comparison of analytical and test results for specimen SY. 
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Fig. 31–Comparison of analytical and test results for specimen LY. 
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Fig. 32–Comparison of analytical and test results for specimen N18C. 
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Fig. 33–Comparison of analytical and test results for specimen H-19. 
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Fig. 34–Comparison of analytical and test results for specimen F-19.

70 
(2.8) 

60 
(2.4) 

60 
(2.4) 

190
(7.5)

190
(7.5)

60
(2.4)

500 (19.7)

70 
(2.8) 

70 
(2.8) 

60 
(2.4) 

70 
(2.8) 

400 (15.7) 

12D@300 
0.5D@11.8 

12-19D 
12-0.7D 

Unit: mm (in.) 



 

 85

 

Fig. 35–Lateral View of experimental configuration of specimen BMRS. 

(a) 
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Fig. 36–Comparison of analytical and experimental hysteretic loops associated 

with lateral force-displacement relationship of specimen BMRS for cycles 1-2: 

(a) cycle 1 (b) cycle 2. 
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Fig. 37–Comparison of analytical and experimental hysteretic loops associated 

with lateral force-displacement relationship of specimen BMRS for cycles 3-4: 

(a) cycle 3 (b) cycle 4. 
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Fig. 38–Comparison of analytical and experimental hysteretic loops associated 

with lateral force-displacement relationship of specimen BMRS for cycles 5-6: 

(a) cycle 5 (b) cycle 6. 
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Fig. 39–Comparison of analytical and experimental hysteretic loops associated 

with lateral force-displacement relationship of specimen BMRS for cycles 7-8: 

(a) cycle 7 (b) cycle 8. 
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Fig. 40–Comparison of analytical and experimental hysteretic loops associated 

with lateral force-displacement relationship of specimen BMRS for cycles 9-10: 

(a) cycle 9 (b) cycle 10. 
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Fig. 41–Comparison of analytical and experimental hysteretic loops associated 

with lateral force-displacement relationship of specimen BMRS for cycle 11. 
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Fig. 42–Comparison of analytical and experimental lateral force-displacement 

hysteretic loops for specimen BMR2. 


