Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68269
Title: 用於直接從二維魚眼影像估計三維人體姿勢的一種深度學習方法
A Deep Learning Based Method For 3D Human Pose Estimation From 2D Fisheye Images
Authors: Ching-Chun Chen
陳靖淳
Advisor: 陳炳宇(Bing-Yu Chen)
Keyword: 魚眼影像,三維人體姿勢估計,使用者自身為中心的視角,卷積類神經網路,Inception網路架構,長短期記憶,SELU激發函式,擬人論的權重,
Fisheye Image,3D Human Pose Estimation,Egocentric View,Convolutional Neural Networks,Inception,LSTM,SELU,Anthropomorphic Weights,
Publication Year : 2017
Degree: 碩士
Abstract: 在這份研究當中我們提出了一套基於深度學習的方法用來直接從二維魚眼影像估計人體關節在三維空間中的位置,這裡的二維魚眼影像是用一種以使用者自身為中心的視角去拍攝的。我們提出的方法之核心是一個基於Inception-v3所新設計的卷積類神經網路,特色是為魚眼影像調整而較大的卷積過濾器、訓練參數減量、長短期記憶、以及將擬人論的權重引入訓練網路時的損失函數。我們也進行了四類實驗來研究在該方法上使用不同訓練設定對測試結果的影響。這份研究的內容可以為發展出有著合理的資源使用量且更為複雜的電腦視覺深度學習網路提供經驗。
In this study, we propose a deep learning based method to directly estimate the human joint positions in 3D space from 2D fisheye images captured in an egocentric manner. The core of our method is a new design based on Inception-v3 convolutional neural network featuring the larger convolutional filter size, the reduction of parameters, the long short-term memory module, and the anthropomorphic weights on the training loss. We also conduct four groups of experiments to study the different effects upon the testing results when using different training settings of our work. The experience of our study can be helpful to develop more complicated deep learning network in a reasonable resource requirement to deal with the computer vision problems.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68269
DOI: 10.6342/NTU201704263
Fulltext Rights: 有償授權
Appears in Collections:資訊網路與多媒體研究所

Files in This Item:
File SizeFormat 
ntu-106-1.pdf
  Restricted Access
3.95 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved