Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6825
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張志中
dc.contributor.authorChao-Hsiung Hsuen
dc.contributor.author許朝雄zh_TW
dc.date.accessioned2021-05-17T09:18:55Z-
dc.date.available2012-07-18
dc.date.available2021-05-17T09:18:55Z-
dc.date.copyright2012-07-18
dc.date.issued2012
dc.date.submitted2012-07-10
dc.identifier.citation[1] A. Lytova and L.Pastur.(2009). Central limit theorem for linear eigenvalue statistics of random
matrices with independent entries. The Annals of Probability 2009, Vol.37, No.5 1778-1840.
[2] La ́szlo ́ Erdo ̈s,Horng-Tzer Yau,and Jun Yin.(2010). Rigidity of eigenvalues of generalized
Wigner matrices. Advances in Mathematics, Volume 229, Issue 3, 15 February 2012, Pages
1435-1515
[3] Arharov, L. V.(1971). Limit theorems for the characteristic roots of a sample covariance
matrix.Dokl. Akad. Nauk. SSSR 199 994-997.
[4] Greg W. Anderson, Alice Guionnet, and Ofer Zeitouni.(2009). An Introduction to random
matrices. Cambridge Studies in Advanced Mathematics, 118, Cambridge University Press
[5] L.Pastur.(2005). A simple approach to the global regime of Gaussian ensembles of random
matrices. Ukrainian Math. J. 57, no. 6, 936-966
[6] Rick Durrett.(2005). Probability: Theory and Examples. 3rd edition. Duxbury advanced series.
[7] S.R.S. Varadhan.(2001). Probability Theory. American Mathematical society.
[8] Herman Chernoff.(1981). A note on an inequality involving the normal distribution. The
Annals of Probability 1981, Vol.9, No.3 533-535.
[9] Z. D. Bai and J. W. Silverstein.(2009). Spectral analysis of large dimensional random matrices.
2nd edition. Springer
[10] Percy Deift.(2000). Orthogonal polynomials and random matrices: A Riemann-Hilbert
approach. Courant Lecture Notes. AMS, 2000.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6825-
dc.description.abstractIn this paper, we consider n×n real symmetric Wigner matrices W with independent (modulo symmetry condition), but not necessarily identically distributed, entries {W_jk }_(j,k=1)^n and prove central limit theorem for linear eigenvalue statistics of such matrices.en
dc.description.provenanceMade available in DSpace on 2021-05-17T09:18:55Z (GMT). No. of bitstreams: 1
ntu-101-R98221002-1.pdf: 336209 bytes, checksum: 6a8bea52e15602df9819252e86ab9cae (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書………………………………………………………………….i
Acknowledgement…………………………………………………………………ii
中文摘要…………………………………………………………………………vi
Abstract………………………………………………………………………………..v
1 Introduction to generalized Wigner matrices and other generalities……..………1
1.1 Introduction………………………………………………………….……1
1.2 Preliminaries…………………………………………………………………1
1.3 Lemmas…...……...………………..…………………………………………2
2 Central Limit Theorem for linear eigenvalue statistics in the case of
Gaussian entries………….……………………………………………………11
2.1 Bound of Variance…………………………….…………………………….11
2.2 Central Limit Theorem………………………….………………………… .12
3 Central Limit Theorem for linear eigenvalue statistics in general cases…..26
3.1Generalities…………………………….…………………………….26
3.2 Central Limit Theorem in general cases..……….………………………… .28
References………………………………………………………………………32
dc.language.isozh-TW
dc.title廣義隨機矩陣特徵值之中央極限定理zh_TW
dc.titleCentral Limit Theorem for Linear Eigenvalue Statistics of Generalized Wigner Matricesen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許順吉,姜祖恕
dc.subject.keyword隨機矩陣,特徵值,中央極限定理,zh_TW
dc.subject.keywordRandom matrices,,Eigenvalues,Central limit theorem,en
dc.relation.page32
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-07-10
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf328.33 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved