Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
  • Help
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68161
Title: 利用深度攝影機進行自動化的豬隻體重量測
Automatically Measuring Pig Weights by Using Depth Camera
Authors: Chen-Ting Liao
廖宸廷
Advisor: 黃乾綱(Chien-Kang Huang)
Keyword: 深度攝影機,深度學習,物件辨識,豬,
Depth Camera,Deep Learning,Object Detection,Pig,
Publication Year : 2020
Degree: 碩士
Abstract: 豬隻體型量測是豬隻養殖戶重要的工作之一,在育種、檢視飼料效率、豬隻健康控管上皆扮演重要角色,其中體重也是決定豬隻是否達到出貨標準的條件。目前豬隻體型量測以人工為主,逐一量測體型是十分耗費體力的工作,豬隻在受到控制的時候會用力的掙脫,過程中常常導致量測人員受傷,也容易使豬隻產生壓力,對其健康造成不良的影響。
本研究提出一套非接觸式的豬隻體重量測系統,使用單一RealSense深度攝影機拍攝欄位中豬隻的彩色影像與深度影像,藉由Yolo物件辨識模型在彩色影像中偵測出豬隻所在位置,再使用RCF邊緣偵測模型擷取出範圍內豬隻身體的封閉輪廓。使用深度影像所提供的距離資訊,以針孔成像原理將輪廓內面積還原成現實尺度的可視面積,以影像實現簡單又有效率的豬隻體重量測。
本系統減少需要人為決定的參數,使系統在不同光源及環境下都可以正常使用,豬隻不同的位置與站立方式之下也能進行可視面積的修正,增加系統的強健性。在研究中我們對同樣的豬隻進行前後兩次的體型量測,觀察到投影面積及立體模型的表面積在豬隻生長過程中有顯著的成長,豬隻體重也與投影面積有一定的關係。

Measuring pig size is one of the import tasks for the farmers. It plays an important role in breeding, check feed efficiency and health control. Among all the body features, weight is used to determine whether a pig is reaching the shipping standard. These days, pig body measurement is mainly manual. It is a labor-intensive job. When a pig is under control, it will struggle to escape, which often causes farmers to be injured. It also put stress on pigs, which has a negative impact on pig’s health.
This research proposes a non-contact pig weight measurement system that uses a RealSense depth camera to capture color images and depth images. We use Yolo object detection model to find the location of the pig in color image, and use RCF edge detection model to extract the close contour of the pig. We use pinhole imaging principle to calculate the realistic scale area of the contour by the depth information from depth image. A simple and efficient pig body weight measurement can be achieved with images.
The system reduces the parameters that need to be determined manually, so that the system can be used normally under different environments, and the pig contour area can be corrected under different positions and postures of the pigs, which increases the robustness of the system. In the study, we took two measurements on the same pigs before and after, observed the contour area of pigs and the surface area of the pigs model. We found that contour area and surface area had significant growth during the growth of the pigs, and the weight of the pigs also had a certain relationship with the projected area.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68161
DOI: 10.6342/NTU202003788
Fulltext Rights: 有償授權
Appears in Collections:工程科學及海洋工程學系

Files in This Item:
File SizeFormat 
U0001-1708202016090500.pdf
  Restricted Access
4.67 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved