請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6790完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳榮凱(Jung-Kai Chen) | |
| dc.contributor.author | Yu-Jen Lin | en |
| dc.contributor.author | 林育任 | zh_TW |
| dc.date.accessioned | 2021-05-17T09:18:11Z | - |
| dc.date.available | 2015-07-27 | |
| dc.date.available | 2021-05-17T09:18:11Z | - |
| dc.date.copyright | 2012-07-27 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-18 | |
| dc.identifier.citation | [1] L. Dai, Singular Control Systems, Lecture Notes in Control and Information Sciences, 118, Springer-Verlag, Berlin, Heidelberg, 1989.
[2] F. R. Gantmacher, The Theory of Matrices, Vol. I and II, Chelsea, New York, 1959. [3] M. Kuijper, First-Order Representations of Linear Systems. Birkhäuser, Boston, 1994. [4] F. L. Lewis, A Survey of Linear Singular Systems, Circuits Systems Signal Process., 5 (1986), 3--36. [5] F. L. Lewis, A Tutorial on the Geometric Analysis of Linear Time-invariant Implicit Systems, Automatica, 28 (1992), 119--137. [6] D. G. Luenberger, Singular Dynamic Leontieff Systems, Econometrica, 45 (1977), 991--995. [7] D. G. Luenberger, Dynamic Equations in Descriptor Form, IEEE Trans. Automat. Control, 22 (1977), 312--321. [8]R. W. Newcomb and B. Dziurla, Some Circuits and Systems Applications of Semistate Theory, Circuits Systems Signal Process., 8 (1989), 235--260. [9]G. Verghese, B. C. Levy, and T. Kailath, A Generalized State-Space for Singular Systems, IEEE Trans. Automat. Control, 26 (1981), 811--831. [10]E. L. Yip, and R. F. Sincovec, Solvability, Controllability and Observability of Continuous Descriptor Systems, IEEE Trans. Automat. Control, 26 (1981), 702--706. [11] C. F. Yung, Geometry of Matrix Pencils with Applications to Linear Discrete-Time Descriptor Systems, Master Thesis, Department of Mathematics, National Taiwan University, 2010. [12] S.L. Campbell and C.D. Mayer, Jr, Generalized Inverses ofLinear Transformations, Pitman, Great Britain, 1979. [13] S.L. Campbell, Singular systems of differential equations II, Pitman Advanced Publishing Program, Great Britain, 1982. [14] A. Ben-Israel and T.N.E. Greville, Generalized Inverses: Theory and Applications, Wiley, New York, 1974. [15] T.L. Boullion and P.L. Odell, Generalized Inverse Matrices, Wiley-Interscience, New York, 1971. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6790 | - |
| dc.description.abstract | 這篇論文最主要是在探討關於線性差分方程的可解性。主要是以幾何的觀點去探討關於(E, A, B)-系統的解的性質。我們先以較簡單的(E, A)-系統入手,並且嘗試著利用幾何的觀點去探討出其解的性質。並且希望可以將求解的方式,以與所選取基底無關的方法來獲得相關結論。
而(E, A)-系統為(E, A, B)-系統的特例。因此之後可利用之前的結論,再進一步地研究關於(E, A, B)-系統解的特性。而在最後,也得以完整的描述解空間。 | zh_TW |
| dc.description.abstract | In this thesis, we focus on the solvability of singular linear difference equations. We use the geometric viewpoint to survey the properties about the solutions of (E, A, B)-system. First, we consider the simple system—(E, A)-system. We try to use the geometric technique to solve the properties about the solutions of (E, A)-system. And we hope that we can solve it by the way which is independent of the choice of the basis.
And (E, A)-system is a special case of the (E, A, B)-system. So, we can use the conclusions which we got before to solve the solution of the (E, A, B)-system. Finally, we have described the solution space of (E, A, B)-system. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-17T09:18:11Z (GMT). No. of bitstreams: 1 ntu-101-R99221009-1.pdf: 507026 bytes, checksum: 4a7888af1184b6be2c899cc4075462a2 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 目 錄
口試委員會審定書……………………………………………… i 誌謝……………………………………………………………. ii 中文摘要…………………………………………………………. iii 英文摘要…………………………………………………………. iv Chapter 1 Introduction………………….………………….. 1 Chapter 2 Preliminaries……………………………………….2 Chapter 3 Solvability of (E, A)……………………….. 6 Chapter 4 Complete Sequences of (E, A)…………………11 Chapter 5 Solvability of (E, A, B)………………………18 Chapter 6 Conclusion………….……………….. …………27 參考文獻…………………………………….………………..….28 | |
| dc.language.iso | en | |
| dc.title | 線性差分方程的可解性 | zh_TW |
| dc.title | Solvability of Singular Linear Difference Equations | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 容志輝(Chee-Fai Yung) | |
| dc.contributor.oralexamcommittee | 江謝宏任,蔡炎龍 | |
| dc.subject.keyword | 可解性,線性差分方程,( E, A)-系統,( E, A, B)-系統,幾何控制, | zh_TW |
| dc.subject.keyword | solvability,singular linear difference equations,( E, A)-system,( E, A, B)-system,geometric control, | en |
| dc.relation.page | 29 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2012-07-18 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf | 495.14 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
