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摘要 
 

這篇論文最主要是在探討關於線性差分方程的可解性。主要是

以幾何的觀點去探討關於( E, A, B)-系統的解的性質。我們先以較簡

單的( E, A)-系統入手，並且嘗試著利用幾何的觀點去探討出其解的性

質。並且希望可以將求解的方式，以與所選取基底無關的方法來獲得

相關結論。 

而( E, A)-系統為( E, A, B)-系統的特例。因此之後可利用之前的

結論，再進一步地研究關於( E, A, B)-系統解的特性。而在最後，也

得以完整的描述解空間。 

 
 
 
 
 

關鍵字：可解性、線性差分方程、( E, A)-系統、( E, A, B)-系統、 

 幾何控制 
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Abstract 

 
In this thesis, we focus on the solvability of singular linear 

difference equations. We use the geometric viewpoint to survey the 
properties about the solutions of ( E, A, B)-system. First, we consider the 
simple system—( E, A)-system. We try to use the geometric technique to 
solve the properties about the solutions of ( E, A)-system. And we hope 
that we can solve it by the way which is independent of the choice of the  
basis. 

 
And ( E, A)-system is a special case of the ( E, A, B)-system. So, 

we can use the conclusions which we got before to solve the solution of 
the ( E, A, B)-system. Finally, we have described the solution space of 
 ( E, A, B)-system. 

 
 

 
 
Key words: solvability, singular linear difference equations,  
 ( E, A)-system , ( E, A, B)-system, geometric control 
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Chapter 1

Introduction

In this thesis, we want to talk about the discrete-time singular systems. The funda-

mental discrete-time singular systems is described by the following equation:

Exk+1 = Axk +Buk, for all k ∈ N.

We usually use the triple (E,A,B) to represent the equation. This equation has been

studied in many years. In the literature, the matrices operation was usually used to solve

the equation with nonsingular E, but the results are not easy to extend to the general case

for singular E. The purpose of the thesis is to study the solvability of the equation for

singular E case.

At the begining of this thesis, we will state some basic definitions and properties.

Those will give us some tools at the later chapter. Later, we will start from the solvability

of the ordered pair (E,A), and then extend it to (E,A,B) systems.
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Chapter 2

Preliminaries

Notation. We denote the set of non-negative integers by N and the set of positive integers

by N∗. Set Jk := {0, 1, 2, · · · , k} and J∗k := {1, 2, · · · , k}.

Let X be an n-dimensional vector space over an algebraically closed field F, and let

A and E be linear transformations on X . Assume that rankE = r ≤ n. The ordered pair

(also called a pencil) (E,A) is said to be regular if there exists a scalar λ ∈ F such that

λE −A is non-singular. Clearly, (E,A) is regular if E is non-singular. Also, if (E,A) is

regular, we have that imE + imA = X [11].

Suppose that (E,A) is regular. A point (u : v) in the projective line P1(F) is called

an eigenvalue of (E,A) if uE + vA is singular; any non-zero vector x ∈ ker(uE + vA)

is called an eigenvector of (E,A) corresponding to (u : v). By Bezout’s theorem, a

regular pencil has at most n eigenvalues. The set of all eigenvalues of (E,A), denoted by

σ(E,A), is called the spectrum of (E,A).

Suppose that (E,A) is regular. An eigenvalue (u : v) of (E,A) is said to be infinite

if v = 0; otherwise (u : v) is said to be finite. By convention, we shall usually say that

λ := −u/v is a finite eigenvalue of (E,A) if (u : v) is a finite eigenvalue of (E,A).

Sometimes we use the notation σf (E,A) for the set of all finite eigenvalues of (E,A).

We shall also say that (E,A) has an infinite eigenvalue or has an eigenvalue at infinity

(usually denoted λ =∞) if (1 : 0) is an eigenvalue of (E,A).

Convention. Given a linear transformation E : V → W , we always denote E−1(U)
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(resp. E−1(w)) to be the preimage of a subspace U ⊂ W (resp. a vector w ∈ W ) in this

article.

Let E1 := kerE = E−1(0), and Ei+1 := E−1AEi for all i ∈ N. For convenience, we

set E0 := 0. It is easy to show that Ei−1 ⊂ Ei and EEi ⊂ AEi for all i ∈ N∗. Moreover, if

Ei = Ei+1 for some i ∈ N, then Em = Ei for all m ≥ i [11].

We let E∞ :=
⋃∞
i=0 Ei. Note that E∞ = Ej for some j because our vector space is

always finite dimensional and indeed the equality holds if Ej = Ej+1.

The index of (E,A), denoted by ind(E,A), is defined as the smallest non-negative

integer j such that Ej = Ej+1. By definition, ind(E,A) = 0 if and only if E is non-

singular. Let κ := ind(E,A). Then (E,A) is regular if and only if kerA ∩ Eκ = 0

[10].

By symmetry, let A0 := 0, and Ai := A−1EAi−1 for all i ∈ N∗, where A−1 denotes

the preimage under A. We have Ai−1 ⊂ Ai and AAi ⊂ EAi for all i ∈ N∗. Moreover, if

Al = Al+1 for some l ∈ N, then Am = Al for all m ≥ l.

Let A∞ :=
⋃∞
i=0Ai. Then A∞ = Al for some l. The index of (A,E), denoted by

ind(A,E), is defined as ind(A,E) := min{l|Al = Al+1}. Let ι := ind(A,E). Then

(E,A) is regular if and only if kerE ∩ Aι = 0. This follows from the fact that (E,A) is

regular if and only if (A,E) is regular.

Suppose that (E,A) is regular. Let λ ∈ σf (E,A). Let Vλ,0 := 0, Vλ,1 := ker(λE−A),

and inductively, let Vλ,k+1 := (λE − A)−1EVλ,k for all k ∈ N∗. Then it can be shown

by induction that Vλ,k ⊂ Vλ,k+1 for all k ∈ N. Since X has finite dimension, there is a

minimum index L such that Vλ,L = Vλ,L+i for all i ∈ N∗. Let Vλ,∞ :=
⋃∞
k=0 Vλ,k. Then

Vλ,∞ = Vλ,L. Vλ,∞ is called the eigenspace of (E,A) associated with the finite eigenvalue

λ. If σf (E,A) = ∅, set Ef := 0; otherwise, set Ef :=
∑

λ∈σf (E,A) Vλ,∞. Ef is called the

finite eigenspace of (E,A). In contrast, E∞ is called the infinite eigenspace of (E,A). It

can be shown that X = Ef ⊕ E∞.

A subspace V of X is said to be a deflating subspace of (E,A) or simply, deflating

for (E,A), or more simply, (E,A)-deflating, if there exists a subspaceW of X , called a

codeflating subspace of V , such that EV ⊂ W , AV ⊂ W , and dimV = dimW . When
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(E,A) is regular,W is uniquely determined byW = EV + AV .

Clearly, V is (I, A)-deflating if and only if V is A-invariant, where I stands for the

identity transformation on X . Thus, the concept of a deflating subspace generalizes that

of an invariant subspace.

Two pencils (E ′, A′) and (E,A) are called strictly equivalent if (E ′, A′) = (P1EP2, P1AP2)

for some non-singular linear transformations P1 and P2 on X . Clearly, two strictly equiv-

alent pencils have the same index.

A pencil (E,A) is regular if and only if it is strictly equivalent to a pencil with a matrix

pencil representation in Weierstrass canonical form:

(

 Iq 0

0 N

 ,

 Λ 0

0 In−q

), (2.1)

where Ik denotes the k × k identity matrix and N is nilpotent [2, 1]. Without loss of

generality, we may assume that both N and Λ are Jordan matrices. Note that the block

corresponding to N is void if E is non-singular; in this case, the nilpotent index of N is

defined to be zero. Moreover, it can be shown that the index of (E,A) is precisely the

nilpotent index of N [11].

Give a matrix A, there exist a unique matrix X satisfying the following equations (we

usually call these equations Penrose equations):

AXA = A (1)

XAX = X (2)

(AX)∗ = AX (3)

(XA)∗ = XA (4)

where A∗ denote the conjugate transpose of A. The uniqueness of X generalizes the

the inverse matrix of A by Moore. So, we usually call the the unique matrix X Moore-

Penrose inverse (or {1, 2, 3, 4}-inverse of A ) and is denoted it by A+.
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Then, we talk about another generalized inverse matrix. The Drazin inverse of A (or

called {1k, 2, 5}-inverse of A) is the unique matrix X which has the following properties:

AkXA = Ak (1k)

XAX = X (2)

AX = XA (5)

And we usually denote it by AD [14]. Notice that k will satisfy that k ≥ ind(A, I).

These generalized inverse matrices will provide some useful result in this thesis.
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Chapter 3

Solvability of (E,A)

Definition 3.1. Let x0 be given. We say that (E,A) is solvable for x0 or that x0 is a

solvable state of (E,A) if there exists a sequence (xk)
∞
k=1 satisfying Exk+1 = Axk for all

k ∈ N. In this case, the sequence (xk)
∞
k=1 is called a fundamental sequence of (E,A) for

x0.

Definition 3.2. We say that a subspace V of X is a solution space of (E,A) if (E,A) is

solvable for every x0 ∈ V with a fundamental sequence (xk)
∞
k=1 lying entirely in V .

It is clear that the sum of finitely many solution spaces of (E,A) is also a solution

space of (E,A). It follows that there exists a unique maximal solution space V∗ of (E,A)

in the sense that if V is any solution space of (E,A) then V ⊂ V∗.

By definition, we immediately have the following result.

Lemma 3.3. V is a solution space of (E,A) if and only if AV ⊂ EV .

Proof. Suppose that V is a solution space of (E,A). Then for any x0 ∈ V , there exists

x1 ∈ V such that Ex1 = Ax0 ∈ EV . This implies that AV ⊂ EV . On the other hand,

suppose that AV ⊂ EV . Let x0 ∈ V . Then there exists x1 ∈ V such that Ex1 = Ax0. By

induction, we can prove that given xk ∈ V , there exists xk+1 ∈ V such that Exk+1 = Axk

for all k ∈ N.

Proposition 3.4. Suppose that (E,A) is regular. If λ ∈ σf (E,A), then Vλ,k is a solution

space of (E,A) for all k ∈ N. In particular, Ef is a solution space of (E,A).
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Proof. For any x ∈ Vλ,k, there exists y ∈ Vλ,k−1 such that (λE − A)x = −Ey. This

implies that Ax = λEx + Ey ∈ EVλ,k + EVλ,k−1 = EVλ,k. Hence AVλ,k ⊂ EVλ,k,

thus proving that Vλ,k is a solution space of (E,A). Since (E,A) has at most n distinct

eigenvalues by Bezout’s theorem, Ef is the sum of finitely many solution spaces of (E,A).

Hence Ef is a solution space of (E,A).

Theorem 3.5. Suppose that (E,A) is regular. Then V is a solution space of (E,A) if and

only if V is (E,A)-deflating and V ∩ kerE = 0.

Proof. Suppose that V is a solution space of (E,A). Then AV ⊂ EV . Since (E,A)

is regular, there exists λ such that λE − A is non-singular. We have (λE − A)V ⊂

EV+AV ⊂ EV . This implies that dim(λE−A)V ≤ dimEV ≤ dimV = dim(λE−A)V .

Hence, dimV = dimEV . As a result, V ∩ kerE = 0 and V is (E,A)-deflating with a

codeflating subspace EV .

Since (E,A) is regular and V is (E,A)-deflating, the corresponding codeflating subspace

is uniquely determined asEV+AV . Thus dimV = dim(EV+AV). Since V∩kerE = 0,

we also have dimV = dimEV . Thus dim(EV + AV) = dimEV . This implies that

AV ⊂ EV . Hence V is a solution space of (E,A).

Corollary 3.6. Suppose that (E,A) is regular.

1. If V is a solution space of (E,A) contained in kerE, then V = 0.

2. If E is singular, then X cannot be a solution space of (E,A).

Proof. 1. Since AV ⊂ EV = 0, we have AV = 0. This implies that V ⊂ kerE ∩

kerA. Since (E,A) is regular, kerE ∩ kerA = 0. Therefore, V = 0.

2. If X is a solution space of (E,A), We have AX ⊂ EX . Since (E,A) is regular,

we have X = imE + imA = EX + AX = EX . Hence kerE = 0, that is, E is

non-singular, which is a contradiction.

Theorem 3.7. Suppose that (E,A) is regular. Then, if (E,A) is solvable for x0, the

fundamental sequence for x0 is unique.
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Proof. Let (xk)
∞
k=1 and (yk)

∞
k=1 be fundamental sequences for x0. For convenience we

let y0 := x0. Then we have E(yk+1 − xk+1) = A(yk − xk) for all k ∈ N. In particular,

we have E(y1 − x1) = 0, and hence y1 − x1 ∈ kerE. Let V be the subspace generated

by the set {xi, yi}∞i=0. Clearly, V is a solution space of (E,A) and y1 − x1 ∈ V . Since

V ∩ kerE = 0 by Theorem 3.5, we find that y1 = x1. Inductively, we can prove that

yk = xk for all k ∈ N∗.

Corollary 3.8. Suppose that (E,A) is regular. Then the unique fundamental sequence

for x0 = 0 is the zero sequence.

Theorem 3.9. Suppose that (E,A) is regular. Then the unique maximal solution space of

(E,A) equals Ef .

Proof. Let V∗ be the maximal solution space of (E,A). Let m := ind(E,A) and let

x0 ∈ V∗ ∩ E∞. Then there exists a sequence (xk)
∞
k=1 with xk ∈ V∗ for all k ∈ N∗

satisfying Exk+1 = Axk for all k ∈ N. Let ym−1 := x0 ∈ E∞ = Em. This implies that

there exist yk, k ∈ {0, 1, 2, · · · ,m − 2}, with yk ∈ Ek+1, such that Eyk = Ayk−1 for

all k ∈ {1, 2, · · · ,m − 1}. Let ym+i−1 = xi for all i ∈ N∗. It is clear that (yk)
∞
k=1 is a

fundamental sequence for y0. Now let V be the subspace generated by the set {yk}∞k=0.

Clearly, V is a solution space of (E,A). Hence V ∩ kerE = 0. Since y0 ∈ V ∩ kerE, we

have y0 = 0. This implies that (yk)
∞
k=1 is the zero sequence. In particular, x0 = ym−1 = 0.

Hence V∗ ∩ E∞ = 0. Because Ef is a solution space of (E,A), Ef is contained in V∗. We

claim that in fact Ef = V∗. Suppose, by contradiction, that Ef $ V∗. Since X = Ef ⊕E∞,

there exists nonzero x such that x ∈ V∗ ∩ E∞, which is a contradiction. This completes

the proof.

Corollary 3.10. Suppose that (E,A) is regular. Then A−1EEf = Ef .

Proof. Since AEf ⊂ EEf , Ef ⊂ A−1EEf . Hence AA−1EEf ⊂ EEf ⊂ EA−1EEf . So

A−1EEf is also a solution space of (E,A). By Theorem 3.9, A−1EEf ⊂ Ef . This shows

that A−1EEf = Ef .

The following theorem shows that if (E,A) is regular then the finite eigenspace of

(E,A) is precisely the set of all solvable states of (E,A).
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Theorem 3.11. Suppose that (E,A) is regular. Then (E,A) is solvable for x0 if and only

if x0 ∈ Ef .

Proof. (E,A) is solvable for every x0 ∈ Ef since Ef is a solution space of (E,A). This

proves the sufficiency. On the other hand, suppose that (E,A) is solvable for x0. Let

(xk)
∞
k=1 be the fundamental sequence for x0. Let V be the subspace generated by the set

{xk}∞k=0. Then V is a solution space of (E,A). Thus x0 ∈ V ⊂ Ef .

The next theorem provides a numerical method to evaluate fundamental sequences for

solvable states.

Theorem 3.12. Let x0 ∈ Ef . Then the unique fundamental sequence (xk)
∞
k=1 for x0 is

given by

xk = VfΛ
kV +

f x0 ∈ Ef , (3.1)

for all k ∈ N, where Vf is any basis matrix for Ef , and V +
f denotes the Moore-Penrose

inverse of Vf . In particular, x0 = VfV
+
f x0.

Proof. Let (xk)
∞
k=1 be the fundamental sequence for x0. Let Vf and V∞ be basis ma-

trices for Ef and E∞, respectively. By Weierstrass theorem, there exist unique matri-

ces Λ and N such that EVfΛ = AVf and EV∞ = AV∞N , where N is nilpotent. Let

V :=

(
Vf V∞

)
,W :=

(
EVf AV∞

)
. Then,

W−1EV =

 I 0

0 N

 , W−1AV =

 Λ 0

0 I

 .

Let x̄k :=

 x̄1k

x̄2k

 := V −1xk. We have

 I 0

0 N


 x̄1(k+1)

x̄2(k+1)

 =

 Λ 0

0 I


 x̄1k

x̄2k

 ,

from which we obtain that for all k ∈ N, x̄1k = Λkx̄10, x̄2k = 0. With x0 = V x̄0 =
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Vf x̄10, we get x̄10 = V +
f x0. Hence for all k ∈ N, we have xk = V x̄k = Vf x̄1k =

VfΛ
kx̄10 = VfΛ

kV +
f x0.

In the remaining content, we will state the properties of terminating sequence.

Definition 3.13. A sequence (xk)
∞
k=1 is said to be terminating if there exists N ∈ N∗ such

that xk = 0 for all k ≥ N . A solution space V of (E,A) is said to be terminating if the

fundamental sequences for every x0 ∈ V are terminating.

Proposition 3.14. Suppose that (E,A) is regular and that V is an (E,A)-deflating sub-

space contained in Ai for some i ∈ N. Then V is a terminating solution space of (E,A).

More explicitly, for any x0 ∈ V ⊂ Ai for some i ∈ N, the fundamental sequence (xk)
∞
k=1

for x0 is terminating: xk = 0 for all k ≥ i.

Proof. The case of i = 0 is trivial. If V ⊂ Ai for some i ∈ N∗, then V ⊂ A∞. Since

(E,A) is regular, A∞ ∩ kerE = 0. Thus we have V ∩ kerE = 0. Together with the

hypothesis that V is (E,A)-deflating, this implies that V is a solution space of (E,A).

For any x0 ∈ V ⊂ Ai, there exists x1 ∈ Ai−1 such that Ex1 = Ax0, thanks to the fact

that AAi ⊂ EAi−1. By induction, we can find xk ∈ Ai−k, k = 2, 3, · · · , i, such that

Exk = Axk−1. In particular, xi = 0 sinceA0 = 0. Let xk = 0 for all k ≥ i+ 1. It is clear

that (xk)
∞
k=1 is the fundamental sequence for x0 which is terminating.

Corollary 3.15. Suppose that (E,A) is regular. ThenA∞ is a terminating solution space

of (E,A). In fact, A∞ is the maximal terminating solution space, that is, if V is any

terminating solution space of (E,A), then V ⊂ A∞.

Proof. Since AA∞ ⊂ EA∞, A∞ is a solution space of (E,A). The assertion that A∞

is terminating is an immediate application of Proposition 3.14. Let V be a terminating

solution space of (E,A) and let x0 ∈ V . Let (xk)
∞
k=1 be the corresponding terminating

fundamental sequence for x0, with xk = 0 for all k ≥ i. It follows fromAxi−1 = Exi = 0

that xi−1 ∈ kerA = A1. Similarly, by Axi−2 = Exi−1 ∈ EA1, we have xi−2 ∈ A2.

Repeating the arguments we eventually come to the conclusion that x0 ∈ Ai ⊂ A∞. This

proves that V ⊂ A∞.
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Chapter 4

Complete Sequences of (E,A)

In the previous chapter, we have shown that if (E,A) is regular and solvable for x0, then

the fundamental sequence for x0 is unique. In particular, this implies that the unique

fundamental sequence for x0 = 0 is the zero sequence. However, for any state x0, we

may in general find more than one finite sequence (xi)
l
i=1 satisfying Exi = Axi−1 for

all i ∈ J∗l . In this chapter, we shall investigate some important properties of these finite

sequences, especially we shall find the maximal length among all these finite sequences.

We first give a formal definition.

Definition 4.1. Let x0 = 0. A finite sequence (xi)
l
i=1 is called a complete sequence of

(E,A) of length l if it satisfiesExi = Axi−1 for all i ∈ J∗l , with x1 6= 0 and xl /∈ A−1imE.

The requirement of x1 6= 0 in the definition is intended to ensure that there is no zeros

in the initial terms of the sequence (xi)
l
i=0 other than x0 = 0. This prevents the length of

a complete sequence from being mendacious.

Given x ∈ X . y ∈ X is called an immediate descendant of x if Ey = Ax. Similarly,

z ∈ X is called an immediate ancestor of x if Ex = Az. Hence a complete sequence

(xi)
l
i=1 of (E,A) is a sequence which satisfies the difference equation Exi = Axi−1

starting from zero but cannot be extended to a sequence with longer length, i.e., xl has no

immediate descendant.

Notice that there is no complete sequence of (E,A) if E is non-singular. Hence we
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shall assume that E is singular, as well as (E,A) is regular, throughout this chapter.

For later use we define Si := Ei ∩ A−1EEi+1 for each i ∈ N. It is clear that for all

i ∈ N we have Si ⊂ Si+1 since Ei ⊂ Ei+1. Define S∞ :=
⋃∞
i=0 Si and let κ := ind(E,A).

Note that κ ≥ 1 since E is assumed to be singular.

Lemma 4.2. We have Sκ+j = Sκ−1 for all j ∈ N. In particular, S∞ = Sκ = Sκ−1.

Proof. Sκ = Eκ ∩ A−1EEκ+1 = Eκ+j ∩ A−1EEκ+j+1 = Sκ+j for all j ∈ N∗. Notice that

A−1EEκ+1 = A−1EEκ ⊂ A−1AEκ−1 = Eκ−1 + kerA. Since (E,A) is regular, we find

that Sκ = Eκ ∩ A−1EEκ+1 ⊂ Eκ ∩ (Eκ−1 + kerA) = (Eκ ∩ kerA) + Eκ−1 = Eκ−1. It

follows that Sκ = Eκ−1 ∩ Sκ = Eκ−1 ∩ Eκ ∩ A−1EEκ+1 = Eκ−1 ∩ A−1EEκ = Sκ−1.

Lemma 4.3. Let x0 = 0. Let (xi)
l
i=1 be a sequence satisfyingExi = Axi−1 for all i ∈ J∗l .

Then xi ∈ Ei for all i ∈ Jl. Moreover, if x1 6= 0, then for all i ∈ J∗l , xi ∈ Ei \ Ei−1, in

particular xi 6= 0.

Proof. We prove the first statement by induction. Clearly x0 ∈ E0. Suppose that xi−1 ∈

Ei−1 for some i ∈ Jl. We have Exi = Axi−1 ∈ AEi−1. This implies that xi ∈

E−1AEi−1 = Ei. Now, suppose that x1 6= 0 but x2 ∈ E1. Then we have 0 = Ex2 = Ax1.

This means that x1 ∈ kerA ∩ E1 = 0, which is a contradiction. Hence x2 ∈ E2 \ E1. In

particular, x2 6= 0. Inductively, assume that xi−1 6∈ Ei−2. Then Exi = Axi−1 6∈ AEi−2.

This shows that xi 6∈ E−1AEi−2 = Ei−1.

Corollary 4.4. Let x0 = 0. Let (xi)
l
i=1 be a complete sequence of (E,A) of length l.

Then xi ∈ Ei \ Ei−1 for all i ∈ J∗l . In particular, xj 6= xk for all j 6= k, j, k ∈ Jl.

Proposition 4.5. Let x0 = 0. Suppose that (xi)
l
i=1 is a complete sequence of (E,A) of

length l. Then xi ∈ Si \ Si−1 for all i ∈ J∗l−1 but xl /∈ Sl.

Proof. Since we have proved that xi ∈ Ei \ Ei−1 for all i ∈ J∗l , we need only to prove

that xi ∈ A−1EEi+1 for all i ∈ J∗l−1 but xl /∈ A−1EEl+1. By Axi = Exi+1 ∈ EEi+1, we

obtain xi ∈ A−1EEi+1. Finally, since xl /∈ A−1imE, we find that xl /∈ A−1EEl+1. This

completes the proof.
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Theorem 4.6. The maximal length among all complete sequences of (E,A) equals the

index of (E,A).

Proof. Let lm be the maximal length among all complete sequences of (E,A) and let

κ := ind(E,A). Since κ ≥ 1, E∞ = Eκ 6= 0. Observe that for any y ∈ Eκ \Eκ−1, there is a

finite sequence (xi)
κ
i=0 satisfyingExi = Axi−1 with x0 = 0, xκ = y, and xi ∈ Ei\Ei−1 for

all i ∈ J∗κ . This implies that lm ≥ κ. We shall prove that there does not exist any complete

sequence of (E,A) of length larger than κ, and thus we can conclude that lm = κ. To see

this, we assume by contradiction that (xi)
l
i=1 is a complete sequence of (E,A) of length

l > κ ≥ 1. Then, by Proposition 4.5, xl−1 ∈ El−1 = Eκ. It follows from Exl−1 = Axl−2

that xl−2 ∈ A−1EEκ ⊂ A−1AEκ−1 = Eκ−1 + kerA. Thus xl−2 = e+a for some e ∈ Eκ−1

and a ∈ kerA. Also, by Proposition 4.5, xl−2 ∈ El−2 ⊂ El−1 = Eκ. Consequently,

xl−2 − e = a ∈ Eκ ∩ kerA = 0. Hence we obtain that xl−2 = e ∈ Eκ−1. By induction, it

is easy to see that xl−i ∈ Eκ−i+1 for each i ∈ J∗κ+1. In particular, xl−κ−1 ∈ E0 = 0, that

is, xl−κ−1 = 0. By Corollary 4.4, this is a contradiction if l > κ + 1. On the other hand,

if l = κ + 1, then we have xl−1 ∈ Sl−1 = Sκ = Sκ−1 ⊂ Eκ−1, provided by Lemma 4.2

and Proposition 4.5. It can be shown with similar arguments as above that xl−i ∈ Eκ−i. In

particular, xl−κ = x1 = 0. Again, this is a contradiction. This completes the proof.

Example 4.7. Let E =



1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0


, A =



0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


. We want to

find all complete sequences of (E,A). Let ei, i ∈ J∗5 , be the column vector with 1 in

the i-th component and 0 elsewhere. It is straightforward to compute that E1 = kerE =

span{e3} = AE1, E2 = span{e3, e4} = AE2, and E3 = E4 = E∞ = span{e3, e4, e5}. Thus

ind(E,A) = 3. It is also straightforward to compute that S1 = span{e3}, S2 = S3 =

S∞ = span{e3, e4}. Now, let x0 = 0. SolvingEx1 = Ax0 for x1 gets x1 = ae3 ∈ E1 = S1

for any a 6= 0. Then solve Ex2 = Ax1 for x2 to get x2 = be3 + ae4 ∈ E2 = S2 for any b.

We continue to solve Ex3 = Ax2 for x3 to find that x3 = ce3 + be4 +ae5. Since a 6= 0, we
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find that x3 /∈ S3. Hence there does not exist x4 such that Ex4 = Ax3. We thus conclude

that the maximal length among all complete sequences is equal to 3, the index of (E,A).

Now we generalize the above results to any non-zero initial state x0.

Definition 4.8. Let x0 6= 0 and x0 ∈ A−1imE. A finite sequence (xi)
l
i=1 is called a

generalized complete sequence of (E,A) for x0 of length l if it satisfies Exi = Axi−1 for

all i ∈ J∗l , with x1 /∈ Ef and xl /∈ A−1imE. The maximal length among all generalized

complete sequences of (E,A) for x0 is denoted by ρ(x0). For convenience, we define

ρ(x0) = 0 if x0 /∈ A−1imE, i.e. x0 has no immediate descendant.

We first consider the case for x0 ∈ Ef .

Proposition 4.9. Let x0 ∈ Ef and let (yi)
∞
i=1 be the fundamental sequence for x0. Then

(xi)
l
i=1 is a generalized complete sequence for x0 of length l if and only if xi = yi + zi for

all i ∈ J∗l , where (zi)
l
i=1 is a complete sequence of length l.

Proof. Suppose that (xi)
l
i=1 is a generalized complete sequence for x0 of length l. For

convenience, let y0 := x0 and z0 := 0. It is easy to see that E(xi − yi) = A(xi−1 − yi−1)

for all i ∈ J∗l . In particular. we haveE(x1−y1) = 0, i.e. z1 := x1−y1 ∈ E1. Similarly, we

have E(x2 − y2) = A(x1 − y1) = Az1 ∈ AE1, i.e. z2 := x2 − y2 ∈ E−1AE1 = E2. It can

be shown by induction that for all i ∈ J∗l we have zi := xi − yi ∈ Ei and Ezi = Azi−1.

Note that z1 6= 0 since x1 /∈ Ef but y1 ∈ Ef . If zl ∈ A−1imE, then we have Azl =

Axl−Ayl = Ew for some w, i.e. Axl = Ayl +Ew = E(yl+1 +w) ∈ imE. This implies

that xl ∈ A−1imE, which is a contradiction. Hence we have zl /∈ A−1imE. This shows

that (zi)
l
i=1 is a complete sequence of length l. Conversely, suppose that xi = yi + zi for

all i ∈ J∗l , where (zi)
l
i=1 is a complete sequence of length l. Then for all i ∈ J∗l we have

Exi = Eyi +Ezi = Ayi−1 +Azi−1 = Axi−1, where y0 := x0 and z0 := 0. Also we have

x1 /∈ Ef since z1 /∈ Ef . Moreover, xl /∈ A−1imE since zl /∈ A−1imE. This shows that

(xi)
l
i=1 is a generalized complete sequence for x0 of length l.

Combining Theorem 4.6 and Proposition 4.9, we immediately obtain the following

result.
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Corollary 4.10. ρ(x0) = ind(E,A) for all x0 ∈ Ef .

Next, we consider the case for x0 ∈ E∞.

Proposition 4.11. Let κ := ind(E,A) and let x0 ∈ Ej \ Ej−1, 1 ≤ j ≤ κ. Then

ρ(x0) ≤ κ− j. (4.1)

In particular, if x0 ∈ Eκ \ Eκ−1, then ρ(x0) = 0, i.e. x0 /∈ A−1imE.

Proof. If x0 ∈ Eκ \ Eκ−1, then it follows immediately from Corollary 4.4 and Theorem

4.6 that ρ(x0) = 0. Now, let x0 ∈ Ej \ Ej−1 for some j ∈ N∗, 1 ≤ j < κ. The case that

x0 /∈ A−1imE is trivial. So in what follows we let x0 ∈ A−1imE. Let (xi)
l
i=1 be any

generalized complete sequence of (E,A) for x0 of length l ≥ 1. Since x0 ∈ Ej \ Ej−1,

there is a finite sequence (yi)
j
i=0 satisfying Eyi = Ayi−1 with y0 = 0, yj = x0, and

yi ∈ Ei \ Ei−1 for all i ∈ J∗j . Let yj+m := xm for all m ∈ J∗l . It is easy to see that the

finite sequence (yi)
j+l
i=1 is a complete sequence of length j + l. By Theorem 4.6 we have

j + l ≤ κ. This implies that l ≤ κ− j.

Remark 4.12. The bound provided by inequality (4.1) cannot, in general, be improved

upon. For example, let κ > 1 and (xi)
κ
i=1 be a complete sequence of maximal length

κ. Then xj ∈ Ej \ Ej−1 and (xi)
κ
i=j+1 is a generalized complete sequence for xj with

ρ(xj) = κ− j.

The following theorem is the main result of this chapter. Recall that (E,A) is assumed

to be regular, hence we have X = Ef ⊕ E∞.

Theorem 4.13. Let x0 6= 0 and x0 ∈ A−1imE. Let x0 be decomposed as x0 = f0 + e0,

where f0 ∈ Ef and e0 ∈ E∞ with e0 6= 0. Let κ = ind(E,A). Then ρ(x0) = ρ(e0).

Proof. Let (xi)
l
i=1 be a generalized complete sequence for x0 of possibly maximal length

l ≥ 1, and let xi = fi + ei with fi ∈ Ef , and ei ∈ E∞ for all i ∈ J∗l . Now, since

f0 is solvable, there is a unique fundamental sequence {yi}∞i=1 for f0, with yi ∈ Ef for

all i ∈ N∗. In particular, we have that E(f1 + e1 − y1) = Ae0. This implies that
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f1 + e1− y1 ∈ E∞. So, f1− y1 ∈ E∞∩Ef = 0, i.e. f1 = y1. It can be shown by induction

that fi = yi for all i ∈ J∗l . This in turn implies that Eei = Aei−1 for all i ∈ J∗l . Moreover,

el /∈ A−1imE since xl /∈ A−1imE. Thus (ei)
l
i=1 is a generalized complete sequence of e0.

Therefore ρ(x0) ≤ ρ(e0).

On the other hand, since 0 6= e0 ∈ E∞, it can be shown with a similar argument

as used in the proof of Proposition 4.11 that there exists a complete sequence (hi)
l
i=1 of

length j + l for some j ∈ N∗, 1 ≤ j ≤ κ with e0 = hj , ρ(e0) = l − j. Hence we can find

a partial complete sequence (x̃i)
l−j
i=1 such that x̃i = yi + hi+j for 1 ≤ i ≤ l − j. So the

inequality ρ(x0) ≥ ρ(e0) is true. So we can conclude that ρ(x0) = ρ(e0).

Theorem 4.14. The maximal length among all generalized complete sequences of (E,A)

for any x0 is equal to or less than the index of (E,A).

Now, let us consider some examples.

Example 4.15. Let

E =



1 0 0 0 0

0 1 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0


, A =



0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


.

As in Example 4.7, we let ei, i ∈ J∗5 , be the column vector with 1 in the i-th component

and 0 elsewhere. It is easy to see that ind(E,A) = 2. Thus, E1 $ E2 = E∞. It is straight-

forward to compute that E1 = kerE = span{e3, e4}, and AE1 = span{e3, e4} Now,

x

y

z

w

u


∈ E2 = E−1AE1 ⇔



x

y

u

0

0


∈ AE1 ⇔ x = y = 0 So, E2 = span{e3, e4, e5},
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AE2 = span{e3, e4, e5}, and EE2 = span{e3} ⇒



x

y

z

w

u


∈ E3 = E−1AE2 ⇔



x

y

u

0

0


∈

span{e3, e4, e5} ⇔ x = y = 0 ⇒ E−1AE2 = E−1AE3 = span{e3, e4, e5} Moreover,

if



x

y

z

w

u


∈ A−1EE2 ⇔



0

y

z

w

u


∈ EE2 ⇔ y = w = u = 0 ⇒ A−1EE2 =

span{e1, e3} = A−1EE3 Hence, S1 = E1 ∩ A−1EE2 = span{e3}, and S2 = E2 ∩

A−1EE3 = span{e3} = S3 = · · · = S∞ Let, x0 = 0, x1 = ae3 + be4 ∈ E1, a2 + b2 6= 0

If b 6= 0 ⇒ @x2 ∈ Ex2 = Ax1. So, ∃x2 3 Ex2 = Ax1 ⇔ b = 0 and in the case

x2 = ae5, a 6= 0. Note: x2 /∈ S2 ⇒ @x3 3 Ex3 = Ax2 ⇒ {x1 = ae3, x2 = ae5 + be3}

is a complete sequence of (E,A) of maximal length 2 = ind(E,A), and {x1 = be4} is a

complete sequence of (E,A) of length 1 with b 6= 0.

Example 4.16. We can do more for above example. Consider x0 = e1 + e3, then all

possible x1 have the type u + e5 for u ∈ kerE. Then A(u + e5) = u + e5 /∈ imE, as the

same for which we said before.
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Chapter 5

Solvability of (E,A,B)

Definition 5.1. Let an initial state x0 and a control input (control sequence) u = (uk)
∞
k=0

be given. (E,A,B) is said to be solvable for (x0, u) if there exists a sequence (xk)
∞
k=1

satisfying Exk+1 = Axk +Buk for all k ∈ N; in this case, the sequence (xk)
∞
k=1 is called

a solution sequence of (E,A) for (x0, u).

Proposition 5.2. Suppose that (E,A) is regular. If (E,A) is solvable for (x0, u), then the

solution sequence for (x0, u) is uniquely determined by

xk = VfΛ
kV +

f x0 +
k−1∑
i=0

VfΛ
k−i−1B1ui −

p−1∑
i=0

V∞N
iB2uk+i (5.1)

for all k ∈ N∗, where Vf and V∞ are basis matrices for Ef and E∞, respectively, Λ and N

are matrices satisfying EVfΛ = AVf and EV∞ = AV∞N , N is nilpotent of index p, V +
f

denotes the Moore-Penrose inverse of Vf , and

 B1

B2

 :=

(
EVf AV∞

)−1
B.

Proof. Let (xk)
∞
k=1 and (yk)

∞
k=1 be solution sequences for (x0, u). Set y0 := x0. Then we

have E(yk+1 − xk+1) = A(yk − xk) for all k ∈ N. By Corollary 3.8, yk = xk for all

k ∈ N∗. This proves the uniqueness of solution sequence. It is straightforward to verify

that (xk)
∞
k=1 given in (5.1) satisfies Exk+1 = Axk +Buk.

Definition 5.3. We say that a subspace V of X is a solution space of (E,A) modulo imB
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if for every x0 ∈ V , there exists a control sequence u = (uk)
∞
k=0 such that (E,A,B) is

solvable for (x0, u) with a solution sequence (xk)
∞
k=1 in V .

A solution space of (E,A) modulo imB will also be called an (E,A,B) controlled

solution space or a controlled solution space of (E,A,B), or more simply a controlled

solution space when the triple (E,A,B) is understood. Clearly, a solution space of (E,A)

is a solution space of (E,A) modulo imB. Also, the sum of finitely many solution spaces

of (E,A) modulo imB is still a solution space of (E,A) modulo imB.

Lemma 5.4. V is a solution space of (E,A) modulo imB if and only ifAV ⊂ EV+ imB.

Proof. Suppose that V is a solution space of (E,A) modulo imB. Then for any x0 ∈ V ,

there exists x1 ∈ V and u0 ∈ U such that Ax0 = Ex1 −Bu0 ∈ EV + imB. This implies

that AV ⊂ EV + imB.

On the other hand, suppose that AV ⊂ EV + imB. Let x0 ∈ V . Then there exist x1 ∈ V

and u0 ∈ U such that Ax0 = Ex1 − Bu0. By induction, we can prove that for xk ∈ V ,

there exist xk+1 ∈ V and uk ∈ U such that Axk = Exk+1 −Buk for all k ∈ N.

Theorem 5.5. Let K be a subspace of X . Then there exists a unique maximal solution

space of (E,A) modulo imB contained in K.

Proof. Let S be the set of all solution spaces of (E,A) modulo imB contained in K. S is

non-empty since it contains the zero subspace. Partially order S by set theoretic inclusion.

Let C = {Vi|i ∈ I} be any chain in S of solution spaces of (E,A) modulo imB contained

in K and let V ′ :=
⋃
i∈I Vi. For any x0 ∈ V ′, x0 ∈ Vi for some i ∈ I . Since Vi ∈ S ,

there exist a control sequence (uk)
∞
k=0, and a sequence (xk)

∞
k=1, with xk ∈ Vi ⊂ V ′,

satisfying Exk+1 = Axk + Buk for all k ∈ N. This shows that V ′ ∈ S . Clearly V ′

is an upper bound of the chain C. By Zorn’s lemma, S contains a maximal element V∗.

We claim that V ⊂ V∗ for every V ∈ S, thus showing that V∗ is the unique maximal

element in S . Suppose, by contradiction, that there exists V ∈ S not contained in V∗.

Then V∗ $ V + V∗ ∈ S, contradicting that V∗ is a maximal element in S.

The maximal solution space of (E,A) modulo imB contained in a subspace K will
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be denoted by K∞(E,A,B) or simply K∞ if E,A,B are understood. The following

theorem suggests a recursive algorithm to obtain K∞.

Theorem 5.6. Let K be a subspace of X . Define a sequence of subspaces Ki recursively

by K0 := K, and Ki := K ∩ A−1(EKi−1 + imB) for all i ∈ N∗. Then for each i ∈ N

we have Ki ⊃ Ki+1, and there exists a smallest integer r, with r ≤ dimK, such that

Kr+j = Kr for all j ∈ N∗. Moreover, K∞ =
⋂∞
i=0Ki = Kr.

Proof. We prove Ki ⊃ Ki+1 by induction. It is clear that K0 ⊃ K1. Suppose that

Ki−1 ⊃ Ki for some i ∈ N∗. Then

Ki+1 = K ∩ A−1(EKi + imB) ⊂ K ∩ A−1(EKi−1 + imB) = Ki.

By the finiteness of dimension ofX , there exists a smallest integer r such thatKr = Kr+1.

If Kr+j = Kr for some j ∈ N∗, we have

Kr+j+1 = K ∩ A−1(EKr+j + imB) = K ∩ A−1(EKr + imB) = Kr+1 = Kr.

By induction, this proves that Kr+j = Kr for all j ∈ N∗. Clearly, Kr =
⋂∞
i=0Ki. In

addition, Kr is a solution space of (E,A) modulo imB contained in K because Kr ⊂ K

and

AKr = AKr+1 = A(K ∩ A−1(EKr + imB)) ⊂ AA−1(EKr + imB) ⊂ EKr + imB.

Moreover, let V be any solution space of (E,A) modulo imB contained in K. We have

V ⊂ K = K0. Assume that V ⊂ Ki−1 for some i ∈ N∗. Since AV ⊂ EV + imB, we

have V ⊂ A−1(EV + imB). Therefore V ⊂ K ∩A−1(EV + imB) ⊂ K ∩A−1(EKi−1 +

imB) = Ki. By induction again, we thus prove that V ⊂ Ki for all i ∈ N. In particular,

V ⊂ Kr. Hence K∞ = Kr. Finally, since dimK > dimK1 > · · · > dimKr ≥ 0, we have

r ≤ dimK.

Now, we can use Theorem 5.6 to compute X∞, the maximal solution space of (E,A)

modulo imB
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Corollary 5.7. Define X0 := X , and Xi := A−1(EXi−1 + imB) for all i ∈ N∗. Then for

each i ∈ N we have Xi ⊃ Xi+1, and there exists a smallest integer r, with r ≤ n, such

that Xr+j = Xr for all j ∈ N∗. Moreover, X∞ =
⋂∞
i=0Xi = Xr = A−1(EX∞ + imB).

Proof. Let K = X in Theorem 5.6. The last equation hold since X∞ =
⋂∞
i=0Xi = Xr =

Xr+1 = A−1(EXr + imB) = A−1(EX∞ + imB).

Remark 5.8. If we define C0 := A−1imB and Ci := A−1ECi−1 +A−1imB for all i ∈ N∗,

then we have Ci ⊂ Ci+1 for all i ∈ N. Since X has finite dimension, Cm = Cm+1 for some

m ∈ N. It can be easily shown that Cm+j = Cm for all j ∈ N∗. Set C∞ :=
⋃∞
i=0 Ci.

Then C∞ = Cm = A−1EC∞ + A−1imB and C∞ is a solution space of (E,A) modulo

imB since AC∞ = A(A−1EC∞ +A−1imB) = AA−1EC∞ +AA−1imB ⊂ EC∞ + imB.

Hence Ef + C∞ is also a solution space of (E,A) modulo imB. As a result, we have

Ef + C∞ ⊂ X∞.

Corollary 5.9. If detA 6= 0, then the maximal solution space of (E,A) modulo imB is

Ef + C∞.

Proof. Since (E,A) is regular, X = E∞+Ef . Note that E∞ = El for some l. With EEi ⊂

AEi−1, we have A−1EEi ⊂ A−1AEi−1 = Ei−1 + kerA. Since X1 = (A−1)(E(E∞+ Ef ) +

imB) ⊂ (A−1)((EE∞ + EEf ) + imB) ⊂ A−1EE∞ + (A−1)EEf + (A−1)imB =:M1.

If we defineMr := (A−1E)rE∞ + (A−1E)rEf + Cr, we want to claim that Xr ⊂Mr by

induction. Thus, we have shown that it’s true for r = 1. Assume it true for r = n − 1.

Now when r = n, Xn = (A−1)(E(Xn−1) + imB) ⊂ (A−1)(E(Mn−1) + imB) ⊂

(A−1)(E((A−1E)n−1E∞+(A−1E)n−1Ef +Cn−1)+imB) ⊂ (A−1E)nE∞+(A−1E)nEf +

Cn. So, we have shown the claim. By Remark 3.10, Xr ⊂ Mr = (A−1E)rE∞ +

(A−1E)rEf + Cr ⊂ El−r + Ef + Cr. And for r = l, A−1EE1 = A−1E kerE = kerA ⊂

A∞ ⊂ Ef by Theorem 3.9 and Corollary3.15. Hence, Xl ⊂ kerA + Ef + Cl = Ef + Cl.

So, as r approaches to infinity, we can get X∞ ⊂ Ef +C∞. But notice that we have shown

that Ef + C∞ ⊂ X∞. Hence X∞ = Ef + C∞

Remark 5.10. If detA 6= 0 and B = O. Then the maximal solution subspace of (E,A)

module imB is the same as the maximal solution subspace of (E,A). But notice that
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when B = O, C∞ = A∞ ⊂ Ef . Hence X∞ = Ef . So the conclusion is the same as before.

Example 5.11. If we consider A for detA 6= 0, we may assume A = I . Let

E =



1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0


, B =



1

0

0

0

0


.

It can be easy to check that X1 = span{e1, e2, e3, e4}, X2 = span{e1, e2, e3 + e4} =

X∞. On the other hand, C0 = span{e1} = C∞. Ef = span{e1, e2, e3 + e4}. Hence

X∞ = Ef + C∞.

Now, we want to use the Drazin inverse to describe the maximal solvability space

more clearly.

Lemma 5.12. If (E,A) is regular, and Ẽc := (cE − A)−1E, Ãc := (cE − A)−1A,

fc(k) := (cE − A)−1Buk for c /∈ σf (E,A). Then

Ẽµ
D
Ẽµ = Ẽλ

D
Ẽλ

Ẽµ
D
Ãµ = Ẽλ

D
Ãλ

Ãµ
D
Ẽµ = Ãλ

D
Ẽλ

Ãµ
D
fµ(k) = Ãλ

D
fλ(k)

Ẽµ
D
fµ(k) = Ẽλ

D
fλ(k)

(5.2)

for µ, λ /∈ σf (E,A).

Proof. See [12], Theorem 9.2.2.

Remark 5.13. Assume (E,A) is regular. And let Ẽc := (cE − A)−1E, Ãc := (cE −

A)−1A, B̃c := (cE − A)−1B for c /∈ σf (E,A). Then Ẽc and Ãc commute, and (Ẽc, Ãc)

is also regular. Let fc(k) := (cE − A)−1Buk, we may replace the system Exk+1 =

Axk +Buk by Ẽcxk+1 = Ãcxk + fc(k).
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From now, we may drop the subscript c for the terms Ẽc
D
Ẽc, Ẽc

D
Ãc, Ãc

D
fc(k) (or

Ãc
D
B̃c)) and Ẽc

D
fc(k) (or Ẽc

D
B̃c).

Proposition 5.14. If (E,A) is regular, and the system Exk+1 = Axk + Buk is solvable

for x0 with some (uk)k∈N, then the solution sequence x0 is uniquely determined by

xk = (ẼDÃ)kẼDẼx0 +
k−1∑
i=0

(ẼDÃ)k−i−1ẼDf(i)

−(I − ẼDẼ)

p−1∑
i=0

(ẼÃD)iÃDf(k + i)

(5.3)

for all k ∈ N∗ with p = ind(E, I).

In particular, The initial state x0 is solvable if and only if x0 ∈ imẼD + im(I −

ẼDẼ)[I(ẼÃD) · · · (ẼÃD)(p−1)]ÃDB̃. More generally, x0 is solvable if and only if x0 ∈

imẼD + im[I(ẼÃD) · · · (ẼÃD)(p−1)]ÃDB̃. Notice that imẼD = imẼDẼ.

Proof. See [12], theorem 9.3.2.

Proposition 5.15. Let D0 := Ef , Di+1 := A−1{EDi + imB}. Then Di+1 ⊃ Di, for

i 6 ind(E). And the maximal solvability space is X∞ = Dp where p = ind(E, I).

Proof. Let λ 6= 0, and λ /∈ σf (E,A). By equation 5.3, we have the fact that x0 is solvable

for the system Ẽλxk+1 = Ãλxk + B̃λuk if and only if

x0 = ẼD
λ Ẽλy −

p−1∑
i=0

(ẼλÃ
D
λ )iÃDλ B̃λui (5.4)

for some {ui}i=1...p−1 and for some y.

23



Then, since ÃDλ Ãλ(I − ẼD
λ Ẽλ) = (I − ẼD

λ Ẽλ), we have

Ãλ(I − ẼD
λ Ẽλ)x0 = (I − ẼD

λ Ẽλ)

p−1∑
i=0

(ẼλÃ
D
λ )iB̃λuk

⇒ Ãλx0 −
p−1∑
i=0

(ẼλÃ
D
λ )iB̃λuk ∈ ker(I − ẼD

λ Ẽλ) = R(ẼD
λ )

⇒ Ãλx0 ∈ imẼD
λ + im[I (ẼλÃ

D
λ ) · · · (ẼλÃDλ )(p−1)]B̃λ

Notice that imẼD
λ = Ef .(This is independent of choice of λ by using lemma 5.12)

And we have known that AEf ⊂ EEf .

Hence

Ax0 ∈ (λE − A)Ef + imB + im[E E(ÃDλ Ẽλ) · · ·E(ÃDλ Ẽλ)
(p−2)]ÃDλ B̃λ

⇒ Ax0 ∈ E{Ef + im[I (ÃDλ Ẽλ) · · · (ÃDλ Ẽλ)(p−2)]ÃDλ B̃λ}+ imB

⇒ x0 ∈ A−1{E{Ef + im[I (ÃDλ Ẽλ) · · · (ÃDλ Ẽλ)(p−2)]ÃDλ B̃λ}+ imB}

Now, let Ui := Ef + im[I (ÃDλ Ẽλ) · · · (ÃDλ Ẽλ)(p−i−1)]ÃDλ B̃λ. Similarly as before, we

have that

Ui = A−1{EUi+1 + imB} i ∈ Jp−1 (5.5)

In particular, Up = Ef . Then we can find that Ui = Dp−i for i = 0, . . . , p. Hence we

can conclude that Di+1 ⊃ Di, and X∞ j Dp where p = ind(E).

Conversely, if x0 ∈ Dp, then x0 is solvable for Exk+1 = Axk + Buk by definition of Dp

and Ef is a solution space of (E,A). Thus, x0 ∈ X∞.

Remark 5.16. We can also find that Dl = Dp for all l > p where p = ind(E). Hence we

can set D∞ :=
⋃∞
i=0Di. So, X∞ = D∞ by Proposition 5.15.
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Example 5.17. LetE =



3 1 0 0 1

0 1 0 −3 1

0 2 3 0 2

0 −1 0 3 −1

0 2 0 6 −1


, A =



0 1 11/2 5 1

0 4 4 5 1

0 2 8 4 2

0 −1 −4 −2 −1

0 −1 −10 −5 −1


.

Then, ind(E,A) = 2 ⇒ E1 $ E2 = E∞ We can easy to check that E1 = kerE =

span{
(

1 1 2 −1 −4

)T
} and E2 = span{

(
1 1 2 −1 −4

)T
,

(
0 −1 0 0 2

)T
} =

E∞, and Ef = span{e1,
(
−2 −2 −1 2 2

)T
, e5} where vT is denoted the trans-

port vector of v. Now, assume that

B =



1

0

0

0

0



So, imB = span{e1}. Hence C0 = A−1imB = span{e1,
(
−2 −2 −1 2 2

)T
},

C1 = A−1EC0 + A−1imB = span{e1,
(
−2 −2 −1 2 2

)T
} = C0. i.e. C0 = C∞

Now, if we assume thatX0 = X ,X1 := A−1(EX+imB) = span{e1,
(
−2 −2 −1 2 2

)T
,(

1 1 2 −1 −4

)T
, e5},X2 := A−1(EX1+imB) = span{e1,

(
−2 −2 −1 2 2

)T
, e5},

and X3 = X2. Hence, X∞ = span{e1,
(
−2 −2 −1 2 2

)T
, e5} = Ef .

On the other hand, if λ = 2 we can easy to check that λ 6= 0, and λ /∈ σf (E,A). We

can find that

Ẽλ =



1/2 1/3 −5/24 5/12 0

0 1/3 −1/3 −1/3 0

0 2/3 −1/6 1/3 0

0 −1/3 1/3 1/3 0

0 2/3 7/3 4/3 1


, ẼD

λ =



1/2 0 −5/24 1/12 0

0 0 −1/3 −2/3 0

0 0 −1/6 −1/3 0

0 0 1/3 2/3 0

0 2 7/3 8/3 1


,
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Ãλ =



0 2/3 −5/12 5/6 0

0 −1/3 −2/3 −2/3 0

0 4/3 −4/3 2/3 0

0 −2/3 4/3 −1/3 0

0 4/3 14/3 8/3 1


, ÃDλ =



0 0 −5/12 1/6 0

0 1 −2/3 −4/3 0

0 0 −4/3 −2/3 0

0 0 2/3 1/3 0

0 4 14/3 5 1


.

So, we can check that imẼD
λ + im[I(ẼλÃ

D
λ ) · · · (ẼλÃDλ )(p−1)]ÃDλ B̃λ = Ef = X∞. And we

also can find that D∞ = D0 = Ef .
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Chapter 6

Conclusion

In this thesis, we have used the geometric concepts to characterize the solvable space

of the triple (E,A,B). And most of the proofs and results are independant of the choice of

the basis for the state space. This may bring some benefits in studying geometric control.

We have also drawn many conclusions about the (E,A) system under regular assumption,

and have combined the geometric properties and numerical solutions. We have also given

some examples to illustrate the results. The more exploration of geometric control for

(E,A,B) system is left for future study.
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