Rz i % 828 iy |
AL~

Department of Mathematics
College of Science

National Taiwan University
Master Thesis

S A A S fE T R

Solvability of Singular Linear

Difference Equations

Ry E
Yu-Jen Lin

R mE L

F AR L
Advisor: Jung-Kai Chen, Ph.D.
Chee-Fai Yung, Ph.D.

PR K 101 & 6 °

June 2012



(M4 2)

B 28 KRFEHEEPAHI
DREEEELE

BEE ST RAT A

Solvability of Singular Linear Difference Equations
Fim XM EE (R99221009) AR X EBAFHER MR

MZBALRAHI - HREA 101 6 A 2 BRATHAAREAFER
HA THERAE  FHLEN

asit L L

L, (B3R
72 3 i

v
kﬁﬁl K
|

AriE- Ak (%)
(RERARERERAMAL)

(F4)




BB TR AR 0 F I S S A R R
F U %]’Elé,: *\‘I;‘b“'é‘? mgﬂ,jf%q\'é_%gﬁvo
FAERR I EA TR E o X7 c MEFF{og X fFamL o

L EP M SS AEF S 5 e b8 R AERE

At5
ETINS

ChArEEfE iR 3T 0

e

CEEE E I RS

mR =

PEE R A - Ao e B o B P A eiEAT 0 A F

VIO RS ATenA s Fler A g 0 - AT E R f AL
”;\‘4 o

BSARRBAPRA o FIZ G @ Pt e g A0
BFT R PR 0 BTGRP
hind & pE A *\‘[E\.',&TLFP %ﬁgéﬁa&mgﬂi_& N H;%;‘r}iﬁp

A IFB ’ /5"]’ -9:1"?,1 friB o



# &

<A

Ehimy hoi R LG HMATAR LA S AT R o 1 R A
1A e erpL B 4R MY (E, A, B)- k SLenfR e B o S s

Hn(E A fr 5052 R F I Bim g 50 0 8 jrenis

"+

?fr" & EAEY ;lés-j\)é’z;m—’ FA ,1'4;?54@5,\%}%5@‘ BE ch 2k JE

-

13

r_ﬁ(E’A) ,<‘l‘“i;(E,A,B)',:‘i. ;lf ];10'}“]&7‘%& ?]J'ﬂ_i—ﬁm

o Fit- HEFLH(E A B) kSRR o B ki

N

B oo

1))

i

B dndy it f2

b

[ Foeae 3’6’)?2#"]&‘\,“ l“}z}c“v\"ﬁ_‘?_\(E A) % “@L‘(E,A, B)'/J 55N

B e 4]



Abstract

In this thesis, we focus on the solvability of singular linear
difference equations. We use the geometric viewpoint to survey the
properties about the solutions of ( E, A, B)-system. First, we consider the
simple system—( E, A)-system. We try to use the geometric technique to
solve the properties about the solutions of ( E, A)-system. And we hope
that we can solve it by the way which is independent of the choice of the
basis.

And ( E, A)-system is a specia case of the ( E, A, B)-system. So,
we can use the conclusions which we got before to solve the solution of
the ( E, A, B)-system. Finally, we have described the solution space of

(E, A, B)-system.

Key words:. solvability, singular linear difference equations,
(E, A)-system, ( E, A, B)-system, geometric control
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Chapter 1

Introduction

In this thesis, we want to talk about the discrete-time singular systems. The funda-

mental discrete-time singular systems is described by the following equation:
Exp = Axy + Buy, forall k € N.

We usually use the triple (F, A, B) to represent the equation. This equation has been
studied in many years. In the literature, the matrices operation was usually used to solve
the equation with nonsingular F, but the results are not easy to extend to the general case
for singular ££. The purpose of the thesis is to study the solvability of the equation for
singular I case.

At the begining of this thesis, we will state some basic definitions and properties.
Those will give us some tools at the later chapter. Later, we will start from the solvability

of the ordered pair (£, A), and then extend it to (£, A, B) systems.



Chapter 2

Preliminaries

Notation. We denote the set of non-negative integers by N and the set of positive integers
by N*. Set J;, := {0,1,2,--- ,k}and J; := {1,2,--- ,k}.

Let X be an n-dimensional vector space over an algebraically closed field IF, and let
A and F be linear transformations on A'. Assume that rank &' = r < n. The ordered pair
(also called a pencil) (E, A) is said to be regular if there exists a scalar A € F such that
AE — A is non-singular. Clearly, (E, A) is regular if E' is non-singular. Also, if (E, A) is
regular, we have that imFE + imA = X [11].

Suppose that (E, A) is regular. A point (u : v) in the projective line P!(F) is called
an eigenvalue of (E, A) if uE + v A is singular; any non-zero vector x € ker(uE + vA)
is called an eigenvector of (E, A) corresponding to (u : v). By Bezout’s theorem, a
regular pencil has at most n eigenvalues. The set of all eigenvalues of (£, A), denoted by
o(E, A), is called the spectrum of (E, A).

Suppose that (E, A) is regular. An eigenvalue (u : v) of (E, A) is said to be infinite
if v = 0; otherwise (u : v) is said to be finite. By convention, we shall usually say that
A := —u/v is a finite eigenvalue of (E, A) if (u : v) is a finite eigenvalue of (F, A).
Sometimes we use the notation o;(E, A) for the set of all finite eigenvalues of (£, A).
We shall also say that (E, A) has an infinite eigenvalue or has an eigenvalue at infinity
(usually denoted A = o0) if (1 : 0) is an eigenvalue of (F, A).

Convention. Given a linear transformation F : V' — W, we always denote F~*(U)
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(resp. E~!(w)) to be the preimage of a subspace U C W (resp. a vector w € W) in this
article.

Let & :=ker E = E~(0), and &, := E~'AE; for all i € N. For convenience, we
set & := 0. It is easy to show that &_; C &; and EE; C AE; for all © € N*. Moreover, if
E = &1 forsome ¢ € N, then &, = &; forall m > ¢ [11].

We let £ = U;’io &;. Note that £, = &; for some j because our vector space is

always finite dimensional and indeed the equality holds if £; = &;4.

The index of (F, A), denoted by ind(FE, A), is defined as the smallest non-negative
integer j such that £ = &;,,. By definition, ind(E, A) = 0 if and only if £ is non-
singular. Let x := ind(E, A). Then (£, A) is regular if and only if kerANE, = 0
[10].

By symmetry, let Ay := 0, and A; := A~ EA;_; for all i € N*, where A~! denotes
the preimage under A. We have A; | C A; and AA; C E A, for all i € N*. Moreover, if
A; = A, for some [ € N, then A,, = A, forall m > .

Let A, := U2, Ai. Then A, = A for some [. The index of (A, E), denoted by
ind(A, E), is defined as ind(A, F) := min{l|4;, = A;;1}. Let ¢ := ind(A, E). Then
(E, A) is regular if and only if ker £ N.A, = 0. This follows from the fact that (£, A) is
regular if and only if (A, E) is regular.

Suppose that (£, A) isregular. Let A € 04(E, A). Let Vy o := 0, V1 := ker(AE—A),
and inductively, let Vy ;1 := (AE — A)"'EV,, for all £ € N*. Then it can be shown
by induction that V), C V, ;41 for all & € N. Since & has finite dimension, there is a
minimum index L such that V) ;, = V) 14, for all i € N*. Let V) o := [Uj—y Vax- Then
Voo = VaL- Vi 1s called the eigenspace of (E, A) associated with the finite eigenvalue
A Ifop(E,A) =0, set & := 0; otherwise, set & := D _rcop(B,A) Yaoor €y s called the
finite eigenspace of (F, A). In contrast, £ is called the infinite eigenspace of (E, A). Tt

can be shown that X = &y @ €.

A subspace V of X is said to be a deflating subspace of (E, A) or simply, deflating
for (E, A), or more simply, (E, A)-deflating, if there exists a subspace W of X, called a
codeflating subspace of V, such that £V C W, AY C W, and dimV = dim WW. When
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(E, A) is regular, WV is uniquely determined by W = EV + AV.

Clearly, V is (I, A)-deflating if and only if V is A-invariant, where I stands for the
identity transformation on X. Thus, the concept of a deflating subspace generalizes that
of an invariant subspace.

Two pencils (E’, A’) and (E, A) are called strictly equivalent if (E', A') = (PLEP,, P AP,)
for some non-singular linear transformations P, and P, on &X'. Clearly, two strictly equiv-

alent pencils have the same index.

A pencil (E, A) is regular if and only if it is strictly equivalent to a pencil with a matrix

pencil representation in Weierstrass canonical form:

Hilg A0
( , ), 2.1)
0 N 0 I,

where [} denotes the &£ x k identity matrix and NV is nilpotent [2, 1]. Without loss of
generality, we may assume that both N and A are Jordan matrices. Note that the block
corresponding to /V is void if £ is non-singular; in this case, the nilpotent index of NV is
defined to be zero. Moreover, it can be shown that the index of (E, A) is precisely the

nilpotent index of N [11].

Give a matrix A, there exist a unique matrix X satisfying the following equations (we

usually call these equations Penrose equations):

AXA=A (1)
XAX = X (2)
(AX)" = AX (3)
(XA) = XA (4)

where A* denote the conjugate transpose of A. The uniqueness of X generalizes the
the inverse matrix of A by Moore. So, we usually call the the unique matrix X Moore-

Penrose inverse (or {1,2, 3, 4}-inverse of A ) and is denoted it by A™.
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Then, we talk about another generalized inverse matrix. The Drazin inverse of A (or

called {1*,2, 5}-inverse of A) is the unique matrix X which has the following properties:

AFX A = AF (1%)
XAX =X (2)
AX = XA (5)

And we usually denote it by AP [14]. Notice that k will satisfy that k > ind(A, I).

These generalized inverse matrices will provide some useful result in this thesis.



Chapter 3

Solvability of (E, A)

Definition 3.1. Ler zq be given. We say that (F, A) is solvable for xq or that x is a
solvable state of (E, A) if there exists a sequence (xy)3>, satisfying Exy1 = Axy, for all
k € N. In this case, the sequence ()72, is called a fundamental sequence of (E, A) for

Zo.

Definition 3.2. We say that a subspace V of X is a solution space of (E, A) if (E, A) is

solvable for every xo € V with a fundamental sequence (xi)52, lying entirely in V.

It is clear that the sum of finitely many solution spaces of (E, A) is also a solution
space of (E, A). It follows that there exists a unique maximal solution space V* of (£, A)
in the sense that if ) is any solution space of (£, A) then V C V*.

By definition, we immediately have the following result.
Lemma 3.3. V is a solution space of (F, A) if and only if AV C EV.

Proof. Suppose that ) is a solution space of (£, A). Then for any =, € V), there exists
x1 € V such that Ezy = Axg € EV. This implies that AY C EV. On the other hand,
suppose that AV C EV. Let zy € V. Then there exists x; € V such that Fz; = Axg. By
induction, we can prove that given x;, € V, there exists xy,1 € V such that Ex; 1 = Axy

forall £ € N. O]

Proposition 3.4. Suppose that (E, A) is regular. If X € o¢(E, A), then V, , is a solution

space of (E, A) for all k € N. In particular, £ is a solution space of (E, A).
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Proof. For any x € V), there exists y € V) ;_1 such that (\E — A)z = —FEy. This
implies that Ax = AEx + Ey € EV)\;, + EVy,—1 = EVy;. Hence AV, C EV\,
thus proving that V, ;, is a solution space of (E, A). Since (E, A) has at most n distinct
eigenvalues by Bezout’s theorem, & is the sum of finitely many solution spaces of (£, A).

Hence & is a solution space of (£, A). O

Theorem 3.5. Suppose that (E, A) is regular. Then 'V is a solution space of (E, A) if and
only if V is (E, A)-deflating and V N ker E = 0.

Proof. Suppose that V) is a solution space of (E, A). Then AV C EV. Since (E, A)
is regular, there exists A such that A\F — A is non-singular. We have (AE — A)V C
EV+ AV C EV. This implies that dim(AE — A)Y < dimEV < dimV = dim(AE — A))V.
Hence, dimV = dimEV. As aresult, V Nker E = 0 and V is (F, A)-deflating with a
codeflating subspace E'V .

Since (E, A) is regular and V is (E, A)-deflating, the corresponding codeflating subspace
is uniquely determined as £V + AV. Thus dim) = dim(EV + AV). Since VNker £ = 0,
we also have dimV = dim£V. Thus dim(EV + AV) = dimEV. This implies that
AV C EV. Hence V is a solution space of (£, A). O

Corollary 3.6. Suppose that (E, A) is regular.

1. IV is a solution space of (E, A) contained in ker E, then V = 0.

2. If E is singular, then X cannot be a solution space of (E, A).

Proof. 1. Since AV C EV = 0, we have AV = 0. This implies that VV C ker £ N
ker A. Since (E, A) is regular, ker £ N ker A = 0. Therefore, V = 0.

2. If X is a solution space of (£, A), We have AX C EX. Since (E, A) is regular,
we have X = imFE +imA = EX + AX = EX. Hence ker £ = 0, that is, E is
non-singular, which is a contradiction.

]

Theorem 3.7. Suppose that (E, A) is regular. Then, if (E, A) is solvable for x,, the

Jundamental sequence for x is unique.



Proof. Let (xy)52; and (yx)52, be fundamental sequences for z,. For convenience we
let yo := xo. Then we have E(yxi1 — xry1) = A(yr — x) for all £ € N. In particular,
we have F(y; — x1) = 0, and hence y; — z1 € ker E. Let )V be the subspace generated
by the set {x;, y;}:2,. Clearly, V is a solution space of (F, A) and y; — z; € V. Since
YV Nker £ = 0 by Theorem 3.5, we find that yy; = x;. Inductively, we can prove that

yr = xp forall k € N*, ]

Corollary 3.8. Suppose that (E, A) is regular. Then the unique fundamental sequence

for xo = 0 is the zero sequence.

Theorem 3.9. Suppose that (E, A) is regular. Then the unique maximal solution space of

(E, A) equals &;.

Proof. Let V* be the maximal solution space of (F, A). Let m := ind(E, A) and let
rg € V* N E. Then there exists a sequence (zx)52, with z;, € V* for all £ € N*
satisfying Fxp,1 = Axg forall £ € N. Let y,,-1 := 29 € Ex = &,,. This implies that
there exist yx, & € {0,1,2,---,m — 2}, with y;, € E4q, such that Fy, = Ay, for
all k € {1,2,---,m — 1}. Let yy,45—1 = «; for all i € N*. It is clear that (y;);°, is a
fundamental sequence for y,. Now let V be the subspace generated by the set {y; }7° .
Clearly, V is a solution space of (£, A). Hence V Nker E = 0. Since yp € V Nker E, we
have yo = 0. This implies that (y; )7, is the zero sequence. In particular, z¢g = ¥,,,—1 = 0.
Hence V* N £, = 0. Because &; is a solution space of (E, A), £ is contained in V*. We
claim that in fact £ = V*. Suppose, by contradiction, that £ G V*. Since X = £ © &,
there exists nonzero = such that x € V* N &€,,, which is a contradiction. This completes

the proof. 0
Corollary 3.10. Suppose that (E, A) is regular. Then A EE; = &;.

Proof. Since Agf C ng, Ef C A_lng. Hence AA_Ing - ng - EA_IE(c;f. So
A~1EE; is also a solution space of (E, A). By Theorem 3.9, A~'FE; C &;. This shows
that A_lng = gf. [

The following theorem shows that if (E, A) is regular then the finite eigenspace of

(E, A) is precisely the set of all solvable states of (F, A).
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Theorem 3.11. Suppose that (E, A) is regular. Then (E, A) is solvable for xy if and only

if xg ng.

Proof. (E, A) is solvable for every zy € &; since &; is a solution space of (£, A). This
proves the sufficiency. On the other hand, suppose that (E, A) is solvable for z,. Let
(xr)52, be the fundamental sequence for z,. Let V be the subspace generated by the set

{z1}72,- Then V is a solution space of (E, A). Thus o € V C &;. O

The next theorem provides a numerical method to evaluate fundamental sequences for

solvable states.

Theorem 3.12. Let vy € &;. Then the unique fundamental sequence ()72, for xg is
given by
T ="V s €5 (3.1)

forall k € N, where Vy is any basis matrix for £, and Vf+ denotes the Moore-Penrose

inverse of V. In particular, vo = Vfo+a:0.

Proof. Let (xj)72, be the fundamental sequence for zy. Let V; and V,, be basis ma-
trices for £ and &, respectively. By Weierstrass theorem, there exist unique matri-

ces A and N such that EV;A = AVy and EV,, = AV, N, where N is nilpotent. Let

V.= ( Vi VOO),W:: ( EV; AVOO).Then,

. I 0 . A O
WEV = , WAV =
0 N 0 I
- T1k .
Let z;, := = V" x,. We have
Tok

I 0 Tiksr) | A O Tik
0 N i‘2(k+1) 0 I Tok

from which we obtain that for all £ € N, 71, = A¥Z1o, Zop = 0. With 2y = Vzy =

9



Vi1, we get 219 = Vf+:1:0. Hence for all £ € N, we have z;, = VI, = Vizy, =

VfAkflo = VfAka+ZE(). O
In the remaining content, we will state the properties of terminating sequence.

Definition 3.13. A sequence ()2, is said to be terminating if there exists N € N* such
that x, = 0 for all k > N. A solution space V of (E, A) is said to be terminating if the

fundamental sequences for every xo € V are terminating.

Proposition 3.14. Suppose that (E, A) is regular and that V is an (E, A)-deflating sub-
space contained in A; for some i € N. Then V is a terminating solution space of (E, A).
More explicitly, for any xo € V C A, for some i € N, the fundamental sequence (xy)3>,

for xg is terminating: x, = 0 for all k > 1.

Proof. The case of i = 0 is trivial. If V C A; for some i € N*, then V C A... Since
(E, A) is regular, A, Nker £ = 0. Thus we have V N ker £ = 0. Together with the
hypothesis that V is (E, A)-deflating, this implies that ) is a solution space of (£, A).
For any g € V C A, there exists z; € A;_; such that Exy = Axg, thanks to the fact
that AA; C EA; ;. By induction, we can find z, € A; x, k = 2,3,--- 4, such that
Exy = Axy_. In particular, x; = 0 since Ay = 0. Let z;, = 0 forall k£ > i+ 1. It is clear

that ()72, is the fundamental sequence for x¢ which is terminating. O

Corollary 3.15. Suppose that (E, A) is regular. Then A, is a terminating solution space
of (E,A). In fact, A is the maximal terminating solution space, that is, if V is any

terminating solution space of (E, A), thenV C A.

Proof. Since AA,, C EFA,, A is a solution space of (F, A). The assertion that A,
is terminating is an immediate application of Proposition 3.14. Let V be a terminating
solution space of (E, A) and let zp € V. Let (z1)52, be the corresponding terminating
fundamental sequence for xy, with z;, = 0 for all £ > 4. It follows from Ax; | = Fx; =0
that z;_; € ker A = A;. Similarly, by Ax; o = FEx; ; € EA;, we have x;_5 € As.
Repeating the arguments we eventually come to the conclusion that g € A; C A. This

proves that V C A. O
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Chapter 4

Complete Sequences of (E, A)

In the previous chapter, we have shown that if (£, A) is regular and solvable for z, then
the fundamental sequence for xy is unique. In particular, this implies that the unique
fundamental sequence for xy = 0 is the zero sequence. However, for any state x,, we
may in general find more than one finite sequence (z;)'_, satisfying Fx; = Ax;_, for
all 2 € J;. In this chapter, we shall investigate some important properties of these finite

sequences, especially we shall find the maximal length among all these finite sequences.

We first give a formal definition.

Definition 4.1. Let vy = 0. A finite sequence (x;)!_, is called a complete sequence of

(E, A) of length L if it satisfies Ex; = Ax;_y foralli € J;, withxy # 0and x; ¢ A~HmE.

The requirement of z; # 0 in the definition is intended to ensure that there is no zeros
in the initial terms of the sequence (z;)!_, other than zy = 0. This prevents the length of
a complete sequence from being mendacious.

Given z € X. y € X is called an immediate descendant of z if Ey = Ax. Similarly,
z € X is called an immediate ancestor of x if Ex = Az. Hence a complete sequence
(z;)l_, of (E,A) is a sequence which satisfies the difference equation Fx; = Awx;_;
starting from zero but cannot be extended to a sequence with longer length, i.e., x; has no
immediate descendant.

Notice that there is no complete sequence of (E, A) if F is non-singular. Hence we
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shall assume that E is singular, as well as (E, A) is regular, throughout this chapter.
For later use we define S; := & N A7'EE;, for each i € N. It is clear that for all
i € Nwehave S; C S, since &; C &;41. Define S := ;2 S; and let x := ind(E, A).

Note that x > 1 since E is assumed to be singular.
Lemma 4.2. We have S,.;; = S..—1 for all j € N. In particular, Soc = S,; = Si—1.

Proof. S, = E,NATEE 1 =&y NATEE 141 = Seyj forall j € N*. Notice that
ATYEE = ATYEE, € ATYAE, 1 = E.1 + ker A. Since (E, A) is regular, we find
that S, = E,NATEE 1 CEN(Eey +kerA) = (E.NkerA) + &1 = Exq. Tt
follows that S, = &, 1 NS = Ex 1 NENATEE 1 =E 1 NATEE, =81, O

Lemma 4.3. Let vg = 0. Let (1;)._, be a sequence satisfying Ex; = Ax;_, foralli € J;.
Then x; € &; for all i € J,. Moreover, if v1 # 0, then for all i € J/, x; € & \ &1, in

particular x; # 0.

Proof. We prove the first statement by induction. Clearly =, € &. Suppose that ;| €
&1 for some i € J;. We have Fr; = Ax; ., € AE;_;. This implies that x; €
E~1AE;,_, = &;. Now, suppose that 7y # 0 but 23 € £;. Then we have 0 = Exy = Ax;.
This means that x; € ker A N & = 0, which is a contradiction. Hence z5 € & \ &. In
particular, zo # 0. Inductively, assume that z; | & & _o. Then Fx; = Az, 1 € A& ».

This shows that z; € E~1AE 5 = &_;. O

Corollary 4.4. Let o = 0. Let (x;)!_, be a complete sequence of (E, A) of length l.

Then z; € & \ &1 for alli € J}. In particular, xj # xy forall j # k, j,k € J.

Proposition 4.5. Let o = 0. Suppose that (x;)'_, is a complete sequence of (E, A) of

lengthl. Then x; € S; \ S;_1 foralli € J} | but x; ¢ S,.

Proof. Since we have proved that x; € & \ & for all i € J, we need only to prove
that z; € A"'E&;, foralli € J' [ butx; ¢ A'EE . By Ar; = Ex;q € EE;, 1, we
obtain z; € A™'EE; . Finally, since x; ¢ A~'imFE, we find that 7; ¢ A~'E&, ;. This

completes the proof. 0
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Theorem 4.6. The maximal length among all complete sequences of (E, A) equals the

index of (E, A).

Proof. Let [,, be the maximal length among all complete sequences of (F, A) and let
k:=ind(E, A). Since k > 1, E, = &, # 0. Observe that forany y € £, \ E;_1, thereis a
finite sequence (x;)f_, satisfying Ex; = Ax;_; withzy = 0, z, = y, and z;; € &;\ &4 for
all+ € J;. This implies that [, > . We shall prove that there does not exist any complete
sequence of (£, A) of length larger than &, and thus we can conclude that /,,, = x. To see
this, we assume by contradiction that (z;)!_, is a complete sequence of (E, A) of length
[ > k > 1. Then, by Proposition 4.5, z;_; € &_1 = &,. It follows from Fx; = Ax; o
thatz;_o € A7'EE, C A7YAE, 1 = E._1+ker A. Thus ;5 = e+aforsomee € &,
and a € ker A. Also, by Proposition 4.5, ;5 € & o C &_1 = &,. Consequently,
T 9 —e=ua € &, Nker A = 0. Hence we obtain that x; > = ¢ € £,_;. By induction, it
is easy to see that x;_; € &,_; 41 for eachi € J; ;. In particular, ;_,,_; € & = 0, that
is, r;_,_1 = 0. By Corollary 4.4, this is a contradiction if [ > x 4 1. On the other hand,
if |l = k+ 1, then we have z; 1 € §; 1 = S, = S._1 C &1, provided by Lemma 4.2

and Proposition 4.5. It can be shown with similar arguments as above that z; ; € £,_;. In

particular, z;_, = x; = 0. Again, this is a contradiction. This completes the proof. ]
1 00 00 000O0©O
01 000 01 000

Example47. Let E=| 0 0 01 0 |, A=10 010 0 |. Wewantto
00001 00010
00 00O 00001

find all complete sequences of (E,A). Let e;, i € JZ, be the column vector with 1 in
the i-th component and 0 elsewhere. It is straightforward to compute that £, = ker E =
span{es} = A&, & = span{es, ey} = A&y, and E5 = E4 = E, = span{es, ey, e5}. Thus
ind(E, A) = 3. It is also straightforward to compute that S; = span{es}, So = S3 =
S.o = span{es, e4}. Now, let xy = 0. Solving Ex; = Axq for x1 gets x1 = aes € £ = Sy
for any a # 0. Then solve Exy = Axy for xs to get x4 = bes + aey € E = S, for any b.

We continue to solve Ex3 = Ax, for x3 to find that x3 = ces+ bey + aes. Since a # 0, we

13



find that 3 ¢ Ss. Hence there does not exist x4 such that Exy = Axs. We thus conclude

that the maximal length among all complete sequences is equal to 3, the index of (E, A).
Now we generalize the above results to any non-zero initial state x.

Definition 4.8. Let vy # 0 and vy € A“HmE. A finite sequence (x;)!_, is called a
generalized complete sequence of (F, A) for z( of length [ if it satisfies Ex; = Ax;_, for
alli € Jf, withzy ¢ & and x; ¢ A~'imE. The maximal length among all generalized
complete sequences of (E, A) for xy is denoted by p(x¢). For convenience, we define

p(xo) = 0ifxg ¢ A~HmE, i.e. kg has no immediate descendant.
We first consider the case for z € &;.

Proposition 4.9. Let vy € & and let (y;)2, be the fundamental sequence for x,. Then
(:pi)ézl is a generalized complete sequence for xq of length | if and only if x; = y; + z; for

alli € J7, where (z;)'_; is a complete sequence of length l.

Proof. Suppose that (z;)!_, is a generalized complete sequence for z, of length /. For

convenience, let yo := xg and zg := 0. It is easy to see that F(x; — v;) = A(x;—1 — yi—1)
foralli € J;. In particular. we have F/(z1—1;) = 0,1.e. 21 := z1—y; € &. Similarly, we
have E(xo — yp) = A(xy — 1) = Azy € Ay ie. 20 := 15 — yp € ELAE = &,. Tt can
be shown by induction that for all ; € J we have z; := x; —y; € & and Ez; = Az;_4.
Note that z; # 0 since 1 ¢ Ey buty; € & If 2 € A~'imE, then we have Az, =
Az — Ay, = Ew for some w, i.e. Az; = Ay, + Ew = E(y;41 +w) € imE. This implies
that z; € A~'imFE, which is a contradiction. Hence we have z; ¢ A~'imFE. This shows
that (z;)!_, is a complete sequence of length [. Conversely, suppose that z; = y; + 2; for
alli € J;, where (z;)}_, is a complete sequence of length /. Then for all i € J;* we have
FEx;, = Fy,+ Ez = Ay;_1 + Az;_1 = Ax;_1, where 3y := x¢ and 2y := 0. Also we have
x1 ¢ & since z; ¢ £;. Moreover, 2; ¢ A~'imFE since z; ¢ A~'imFE. This shows that

(z;)!_, is a generalized complete sequence for x of length [. 0

Combining Theorem 4.6 and Proposition 4.9, we immediately obtain the following

result.

14



Corollary 4.10. p(z() = ind(E, A) for all xy € &;.
Next, we consider the case for z¢ € E.

Proposition 4.11. Let x := ind(E, A) and let xo € £;\ ;1,1 < j < k. Then

plwo) < K — ji 4.1)

In particular, if vo € &, \ Ex_1, then p(zo) = 0, i.e. zg ¢ A~ 'imE.

Proof. If zy € &, \ E._1, then it follows immediately from Corollary 4.4 and Theorem
4.6 that p(z) = 0. Now, let 2y € &; \ £;_1 for some j € N*,1 < j < k. The case that
zo ¢ A HmE is trivial. So in what follows we let zyp € A~'imE. Let (z;)!_; be any
generalized complete sequence of (£, A) for xq of length [ > 1. Since xzy € &; \ €j_1,
there is a finite sequence (yi)gzo satisfying Fy; = Ay, with yo = 0, y; = ¢, and
yi € &\ &y forall i € J7. Let yjy,, 1= 2y, for all m € J. It is easy to see that the
finite sequence (yz)fii is a complete sequence of length j + [. By Theorem 4.6 we have

j + 1 < k. This implies that | < Kk — 7. U

Remark 4.12. The bound provided by inequality (4.1) cannot, in general, be improved
upon. For example, let k > 1 and (x;)f_, be a complete sequence of maximal length
K. Then x; € & \ &1 and (x;)i_;,, is a generalized complete sequence for x; with

px;) =k —J.

The following theorem is the main result of this chapter. Recall that (F, A) is assumed

to be regular, hence we have X = &; @ E...

Theorem 4.13. Let o # 0 and vy € A~YimE. Let xq be decomposed as xy = fo + e,

where fy € E; and ey € Ex with ey # 0. Let k = ind(E, A). Then p(xq) = p(eo).

Proof. Let (z;)!_, be a generalized complete sequence for z of possibly maximal length
[ > 1,and let z; = f; +¢; with f; € £, and e; € E forall ¢ € J. Now, since
fo is solvable, there is a unique fundamental sequence {y;}°, for fo, with y; € & for

all ¢ € N*. In particular, we have that E(f; + e; — y1) = Aeo. This implies that
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fiter—y1 € Ex. So, fi —y1 € EcNEf = 0,1.e. fi = y;. It can be shown by induction
that f; = y; forall ¢ € J;*. This in turn implies that Fe; = Ae;_; for all ¢ € J*. Moreover,
e; ¢ A~YimFE since z; ¢ A~limE. Thus (e;)!_, is a generalized complete sequence of eg.
Therefore p(zy) < p(ep).

On the other hand, since 0 # ¢y, € &, it can be shown with a similar argument
as used in the proof of Proposition 4.11 that there exists a complete sequence (h;)!_; of
length j + [ for some j € N*, 1 < j < k with ey = hj, p(eyg) = [ — j. Hence we can find
a partial complete sequence (iz)i;{ such that Z; = y; + h;;; for 1 <7 <[ — j. So the

inequality p(x¢) > p(ep) is true. So we can conclude that p(xy) = p(eo). O

Theorem 4.14. The maximal length among all generalized complete sequences of (E, A)

for any x is equal to or less than the index of (E, A).
Now, let us consider some examples.

Example 4.15. Let

10000 00000
01000 01000
E=foo0001|,A=[00100
00000 00010
00000 00001

As in Example 4.7, we let e;, © € JZ, be the column vector with 1 in the i-th component
and 0 elsewhere. It is easy to see that ind(E, A) = 2. Thus, &, ; Ey = Ex. It is straight-
forward to compute that £ = ker E = span{es, es}, and AE; = span{es, es} Now,

T T

Yy )
2 € & = EilAgl ~ U € AE & x = y = 0 So, E = span{eg,e4,e5},
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A&y = span{es, eq,e5}, and EE;, = span{es} = | » | €& =E1A6 < | o | €

w 0
U 0
span{es,e4,e5} & v =y = 0= E 1AL = E~1AE = span{es, ey, e5} Moreover,
T 0
Yy Yy

if z GA_1E82<:> z GEé‘Q@y:w:U:():}A_IE(S'QZ

w w

u u
span{e;,e3} = AT'EE; Hence, S| = & N A'EE, = span{es}, and Sy = & N

ATIEE; = span{es} = S3 = -+ - = 8, Let, 19 = 0,21 = aesz + bey, € £,a> +b* # 0
Ifb #0 = Hry € Exg = Axy. So, 315 D Exs = Ax; < b = 0 and in the case
Ty = aes,a # 0. Note: 15,°¢ Sy = B3 > Exg = Axy = {2, = aes, x5 = aes + bes}
is a complete sequence of (E, A) of maximal length 2 = ind(F, A), and {x1 = be,} is a

complete sequence of (E, A) of length 1 with b # 0.

Example 4.16. We can do more for above example. Consider vy = ey + es, then all
possible x1 have the type u + e5 for u € ker E. Then A(u + e5) = u + e5 ¢ imFE, as the

same for which we said before.
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Chapter 5

Solvability of (£, A, B)

Definition 5.1. Let an initial state x, and a control input (control sequence) u = (ux)5,
be given. (E, A, B) is said to be solvable for (xo,w) if there exists a sequence (xy)5,
satisfying Exy1 = Axy+ Buy, for all k € N; in this case, the sequence ()52, is called

a solution sequence of (E, A) for (zo, u).

Proposition 5.2. Suppose that (E, A) is regular. If (E, A) is solvable for (xq, u), then the

solution sequence for (o, u) is uniquely determined by

k—1 p—1
= ViV zo + Y VAT Biuy — Y Vi N' By (5.1)
=0 1=0

forall k € N*, where V; and V., are basis matrices for £ and E, respectively, A and N
are matrices satisfying EV;\N = AV; and EV,, = AV, N, N is nilpotent of index p, Ver
B

-1
denotes the Moore-Penrose inverse of V;, and = ( EV; AV, ) B.
By

Proof. Let (x1)%2, and ()52, be solution sequences for (g, u). Set yo := . Then we
have F(yx+1 — xr41) = A(yr — x) for all & € N. By Corollary 3.8, y, = z, for all
k € N*. This proves the uniqueness of solution sequence. It is straightforward to verify

that (xy)%2, given in (5.1) satisfies Fxy1 = Axy + Buy. O

Definition 5.3. We say that a subspace V of X is a solution space of (E, A) modulo imB
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if for every xy € V, there exists a control sequence u = (uy)y>, such that (E, A, B) is

solvable for (zy,u) with a solution sequence (xy)72, in V.

A solution space of (£, A) modulo imB will also be called an (E, A, B) controlled
solution space or a controlled solution space of (E, A, B), or more simply a controlled
solution space when the triple (F, A, B) is understood. Clearly, a solution space of (E, A)
is a solution space of (E£, A) modulo imB. Also, the sum of finitely many solution spaces

of (E, A) modulo im£B is still a solution space of (£, A) modulo imB.
Lemma 5.4. V is a solution space of (E, A) modulo imB if and only if AV C EV+imB.

Proof. Suppose that V is a solution space of (£, A) modulo imB. Then for any zy € V,
there exists x; € V and ug € U such that Axqg = Exy — Buy € EV + imB. This implies
that AV C EV +imB.

On the other hand, suppose that AV C EV +imB. Let xy € V. Then there exist z; € V
and uy € U such that Azy = Exy — Bugy. By induction, we can prove that for z; € V),

there exist z,.1 € V and u;, € U such that Ax, = Exj 1 — Buy forall k € N. O

Theorem 5.5. Let IC be a subspace of X. Then there exists a unique maximal solution

space of (E, A) modulo imB contained in K.

Proof. Let S be the set of all solution spaces of (£, A) modulo imB contained in /C. S is
non-empty since it contains the zero subspace. Partially order S by set theoretic inclusion.
Let C = {V,|i € I} be any chain in S of solution spaces of (£, A) modulo imB contained
in K and let V' := |J,.,; Vi. Forany zy € V', 2y € V; for some i € I. Since V; € S,
there exist a control sequence (ug)°,, and a sequence (xj)%>,, with x, € V; C V,
satisfying Exy1 = Azy + Buy for all £ € N. This shows that V' € S. Clearly V'
is an upper bound of the chain C. By Zorn’s lemma, S contains a maximal element V*.
We claim that V C V* for every V € &S, thus showing that V* is the unique maximal
element in S. Suppose, by contradiction, that there exists V € S not contained in V*.

Then V* ;Cé V 4+ V* € §, contradicting that )* is a maximal element in S. O

The maximal solution space of (£, A) modulo imB contained in a subspace K will
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be denoted by K. (E, A, B) or simply K, if E, A, B are understood. The following

theorem suggests a recursive algorithm to obtain K.

Theorem 5.6. Let KC be a subspace of X. Define a sequence of subspaces KC; recursively
by Ko := K, and K; := KN A7 (EK;_1 + imB) for all i € N*. Then for each i € N
we have K; D K;.1, and there exists a smallest integer r, with r < dim/C, such that

K,1j = K, for all j € N*. Moreover, Koo = iy Ki = K.

Proof. We prove K; O K,.; by induction. It is clear that Ky D ;. Suppose that

K;,_1 D IC; for some ¢ € N*. Then

Kisi=KNAYEK; +imB) C KN A (EK;_; +imB) = K.

By the finiteness of dimension of X, there exists a smallest integer r such that IC, = K, ;.

If K,+; = K, for some j € N*, we have

Krijo1n =KNAYEK,; +imB) =KNAYEK, +imB) = K, = K,.

By induction, this proves that K, ; = K, for all j € N*. Clearly, K, = ﬂfio ;. In
addition, /C, is a solution space of (£, A) modulo imB contained in K because I, C K

and

AK, = AK,;1 = A(KN A™YEK, +imB)) ¢ AA™Y(EK, +imB) C EK, +imB.

Moreover, let V be any solution space of (E, A) modulo imB contained in &. We have
YV C K = Ky. Assume that V C I;_; for some i € N*. Since AV C EV + imB, we
have V C A™'(EV +imB). Therefore V C KN A EV +imB) C KN A (EK;_1 +
imB) = K;. By induction again, we thus prove that V C K; for all : € N. In particular,
Y C K,. Hence K, = K,. Finally, since dim/C > dimK; > --- > dimK, > 0, we have

r < dimX. ]

Now, we can use Theorem 5.6 to compute X, the maximal solution space of (F, A)

modulo imB
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Corollary 5.7. Define Xy := X, and X; := A~ (EX,_, + imB) for all i € N*. Then for
each i € N we have X; O X;.1, and there exists a smallest integer r, with r < n, such

that X,,; = X, for all j € N*. Moreover, Xoo = (\iop X; = X, = A1 (EXy +imB).

Proof. Let L = X in Theorem 5.6. The last equation hold since X, = ﬂ;ﬁo X=X, =
X,.1 =AY EX, +imB) = A~ (EX,, + imB). O

Remark 5.8. If we define Cy := A~'imB and C; := A7 EC;_, + A~HmB for all i € N*,
then we have C; C C;11 for all i € N. Since X has finite dimension, C,, = C,,.1 for some
m € N. It can be easily shown that C,,y; = Cp, for all j € N*. Set C, := ;= Ci.
Then Co, = C,y = AT'EC + A7MmB and C, is a solution space of (E, A) modulo
imB since AC,, = A(A'EC,, + A7'imB) = AA~'FC,, + AA~"imB C EC,, + imB.
Hence ¢ + C is also a solution space of (E,A) modulo imB. As a result, we have

5f+COO C X

Corollary 5.9. If detA # 0, then the maximal solution space of (E, A) modulo imB is

Ef + Coo.

Proof. Since (E, A) is regular, X = £ + &;. Note that £, = & for some [. With EE; C
A& 1, wehave ATEE; C ATTAE 1 = &1 +ker A. Since Xy = (A7) (E(Ex +&f) +
imB) C (A" ((E€x + EEf) +imB) C A 'EE + (A Y)EE; + (A Y)imB =: M.
If we define M, := (A'E)"Ex + (A1E)"E; + C,., we want to claim that X, C M, by
induction. Thus, we have shown that it’s true for r = 1. Assume it true forr = n — 1.
Now when r = n, X, = (A"Y)(E(X,_1) + imB) C (A"H)(E(M,_1) +imB) C
(ANE(ATE)Y" Y+ (AT E)" 1 +Cy1)+imB) C (AT E)"Ex+ (ATE)"Es+
C,. So, we have shown the claim. By Remark 3.10, X, C M, = (A7'E) &, +
(AT'EYE +C. C &+ & +C. Andforr =1, AT'EE, = A 'Eker E = ker A C
Ao C &; by Theorem 3.9 and Corollary3.15. Hence, X} C ker A+ &, +C = &, +C.
So, as r approaches to infinity, we can get X, C &5 + Co. But notice that we have shown

that £¢ + Coo C Xoo. Hence X = E¢ + Coo O

Remark 5.10. [fdetA # 0 and B = O. Then the maximal solution subspace of (E, A)

module imB is the same as the maximal solution subspace of (E,A). But notice that
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when B = O, Coo = Ax C &f. Hence X, = E5. So the conclusion is the same as before.

Example 5.11. If we consider A for det A # 0, we may assume A = 1. Let

o O

o o o O

It can be easy to check that X; = span{ey, e, e3,e4}, Xo = span{ey, 9,63 + €4} =
Xs. On the other hand, Cy = span{e;} = Cx. &; = span{ey, ey, e3 + e4}. Hence
X = (c/'f + Coo.

Now, we want to use the Drazin inverse to describe the maximal solvability space

more clearly.

Lemma 5.12. If (E, A) is regular, and E, == (cE — A)"'E, A, := (cE — A)7'A,
fo(k) == (cE — A) "' Buy, for c ¢ o¢(E, A). Then

E, (5.2)

foru, N ¢ os(E,A).
Proof. See [12], Theorem 9.2.2. O

Remark 5.13. Assume (E, A) is regular. And let E, = (cE — A)"'E, A, := (cE —
A)'A, B, := (¢cE — A)"'Bforc ¢ o;(E, A). Then E. and A, commute, and (E,, A.)
is also regular. Let f.(k) := (cE — A)~'Buy, we may replace the system Exp,, =

Azy, + Buy, by E.xper = Aoz, + fe(k).
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: S S
From now, we may drop the subscript ¢ for the terms E. FE., E.

A" By and E.” £.(k) (or E.”B.).

Proposition 5.14. [f (E, A) is regular, and the system Exj, = Axy + Buy is solvable

for xo with some (uy,)ren, then the solution sequence x is uniquely determined by

k—1
vy = (EPAPEPExg+ > (EP A EP f(i)
=0 (5.3)

p—1
—(I—EPE)) (EAPY AP f(k + 1)
i=0
forall k € N* withp = ind(E, I).
In particular, The initial state xq is solvable if and only if o, € imEP + im(/ —
EPE)I(EAP) ... (EAPYP=V]AP B. More generally, x is solvable if and only if z, €
imEP +im[[(EAP) ... (EAP)*-D]AP B, Notice that imEP = imEPE.

Proof. See [12], theorem 9.3.2. ]

Proposition 5.15. Let Dy := &, D;y1 := A"Y{ED; + imB}. Then D;y1 D D, for

i < ind(E). And the maximal solvability space is X, = D, where p = ind(E, I).

Proof. Let A # 0,and A ¢ o;(E, A). By equation 5.3, we have the fact that z is solvable
for the system Ewkﬂ = fl,\xk + BAuk if and only if
p—1
vo = E{Exy — > (E\AY)' A Byu (5.4)
i=0

for some {ui}izl‘,,p_l and for some y.
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Then, since APA,(I — EPE,) = (I — EPE,), we have

—_

.
A\(I — EPEN)xo = (I — EPE\) Y (E\APY Byuy

(2

I
=)

p—1
= Azo — Y (EAAY)' Byuy, € ker(I — E{Ey) = R(EY)

=0

= fl,\xo € imE/{D +im[/ (EAA?) o (E/\A?)(p—l)]g/\

Notice that imEf = &;.(This is independent of choice of A by using lemma 5.12)
And we have known that AE; C EEy.

Hence

= Azy € E{& +im[l (AP E,) - (AL E\)?~2])APB,} +imB

= 10 € ATHE{& +im[I (APE,) -+ (APE,)*2]AP B} +imB}

Now, letU; := & +im[I (AREy) - -- (AP E,)»~* D] AP B,. Similarly as before, we
have that

U, = A {EU, +imB} i€ J, (5.5)

In particular, U, = &;. Then we can find that if; = D,,_, fori = 0,...,p. Hence we
can conclude that D; ;1 D D;, and X, € D, where p = ind(E).
Conversely, if xy € D,, then x is solvable for Ex;; = Axj + Buy, by definition of D,

and & is a solution space of (E, A). Thus, 2y € X.

Remark 5.16. We can also find that D; = D, for all | > p where p = ind(E). Hence we

can set Dy, := U;’io D;. So, Xy, = D4 by Proposition 5.15.
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310 0 1 0 1 112 5 1

0O 1 0 -3 1 0 4 4 ) 1
Example5.17. LetE=| 0 2 3 0 2 ,A=10 2 8 4 2

0O -1 0 3 -1 0O -1 —4 -2 -1

0o 2 0 6 -1 0O -1 —-10 -5 -1
Then, ind(E,A) = 2 = & fct Ey = E, We can easy to check that fl = ker B = .
span{<1 12 -1 —4) }andﬁzzspan{(l 12 -1 —4) ,(o 1.0 0 2) =

T

Eor and E; = span{ey, < ~2 9 1 92 92 ) ,es} where vT is denoted the trans-

port vector of v. Now, assume that

T
So, imB = span{e;}. Hence Cyp = A-MmB = span{el,( —92 —92 -1 2 2 ) 1,

T
C, = AT'ECy + A7'imB = span{ey, < )N 0 9 ) } = Co. ie. Co = Cx

T
Now, if we assume that Xy = X, X, := A~'(EX+imB) = span{ey, ( -2 -2 -1 2 2 ) ,

T T
(1 1 2 —1 —4) ,e5}, Xo :=A1(EX1+imB)=span{el,<—2 2 -1 2 2) ,€e5},

T
and X5 = X,. Hence, X, = span{e;, ( —92 92 1 2 2 ) sest =&y

On the other hand, if X = 2 we can easy to check that A # 0, and \ ¢ o¢(E, A). We

can find that
1/2 1/3 —5/24 5/12 0 1/2 0 —5/24 1/12 0
0 1/3 -1/3 —-1/3 0 0 0 -1/3 —2/3 0
Ex=| 0o 2/3 -1/6 1/3 0|, E2=| 0o o —1/6 -1/3 0 |,
0 —1/3 1/3 1/3 0 0 0 1/3 2/3 0
0 2/3 7/3 4/3 1 0 2 7/3 83 1

25



0 2/3 —5/12 5/6 0 00 —5/12 1/6 0
0 —1/3 —2/3 —2/3 0 01 —2/3 —4/3 0
Av=1|0 43 -4/3 2/3 o |, A=]00 -4/3 —2/3 0
0 —2/3 4/3 —1/3 0 00 2/3 1/3 0
0 4/3 14/3 8/3 1 04 14/3 5 1

So, we can check that imEY +im[[(EyAR) - - - (EyAR)YP—D)APB, = £ = X.. And we

also can find that Dy, = Dy = &;.
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Chapter 6

Conclusion

In this thesis, we have used the geometric concepts to characterize the solvable space
of the triple (E, A, B). And most of the proofs and results are independant of the choice of
the basis for the state space. This may bring some benefits in studying geometric control.
We have also drawn many conclusions about the (E, A) system under regular assumption,
and have combined the geometric properties and numerical solutions. We have also given
some examples to illustrate the results. The more exploration of geometric control for

(E, A, B) system is left for future study.
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