Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6789
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李瑩英(Yng-Ing Lee)
dc.contributor.authorYang-Kai Lueen
dc.contributor.author呂楊凱zh_TW
dc.date.accessioned2021-05-17T09:18:10Z-
dc.date.available2012-07-27
dc.date.available2021-05-17T09:18:10Z-
dc.date.copyright2012-07-27
dc.date.issued2012
dc.date.submitted2012-07-18
dc.identifier.citation[1] H. Anciaux, Construction of Lagrangian self-similar solutions to the mean curvature
flow in Cn. Geom. Dedicata 120 (2006), 37-48.
[2] S. Angenent, Shrinking doughnuts, Nonlinear diffusion equations and their equi-
librium states, Birkha‥user, Boston-Basel-Berlin, 3, 21-38, 1992.
[3] S. B. Angenent, D. L. Chopp, and T. Ilmanen. A computed example of
nonuniqueness of mean curvature flow in R3. Comm. Partial Differential Equa-
tions, 20 (1995), no. 11-12, 1937-1958.
[4] U. Abresch and J. Langer, The normalized curve shortening flow and homothetic
solutions. J. Differential Geom. 23 (1986), no. 2, 175-196.
[5] B. Andrews; H. Li; Y. wei, F-stability for self-shrinking solutions to mean curvature
flow, preprint, 2012, http://arxiv.org/abs/1204.5010.
[6] T.H. Colding and W.P. Minicozzi, Generic mean curvature flow I; generic singularities,
to appear in Ann. Math.
[7] G. Huisken, Flow by mean curvature of convex surfaces into spheres. J. Differ-
ential Geom. 20 (1984), no. 1, 237–266.
[8] G. Huisken, Asymptotic behavior for singulairites of the mean curvature flow. J.
Differential Geom. 31 (1990), no. 1, 285–299.
42
[9] G. Huisken, Local and global behaviour of hypersurfaces moving by mean curvature.
Differential geometry: partial differential equations on manifolds (Los
Angeles, CA, 1990), Proc. Sympos. Pure Math., 54, Part 1, Amer. Math. Soc.,
Providence, RI, (1993), 175-191.
[10] R. Harvey; H.B. Lawson, Calibrated geometries. Acta Math. 148 (1982), 47-157.
[11] T. Ilmanen, Singularities of mean curvature flow of surfaces, preprint, 1995,
http://www.math.ethz.ch/ ilmanen/papers/pub.html.
[12] D. Joyce; Y-I Lee; M-P Tsui, Self-similar solutions and translating solitions for
Lagrangian mean curvature flow. J Differential Geom. 84 (2010), no. 1, 127-161.
53C44 (53D12).
[13] Stephen Kleene and Niels Martin Moller, self-shrinkers with a rotational symmetry,
preprint, http://arxiv.org/abs/1008.1609.
[14] Y.-I. Lee and M.-T. Wang, Hamiltonian stationary cones and self-similar solutions
in higher dimension, Trans. Amer. Math. Soc. 362 (2010), 1491–1503.
[15] K. Smoczyk, A canonical way to deform a Lagrangian submanifold, preprint,
http://arxiv.org/pdf/dg-ga/9605005v2.pdf.
[16] K. Smoczyk, Self-shrinkers of the mean curvature flow in arbitrary codimension,
International Mathematics Research Notices, 48 (2005), 2983-3004.
[17] A. Stone, A density function and the structure of singularities of the mean curvature
flow. Calc. Var. Partial Differential Equations 2 (1994), no. 4, 443-480.
[18] B. White, A local regularity theorem for classical mean curvature flow. Ann. of
Math. (2) 161 (2005), no. 3, 1487-1519.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6789-
dc.description.abstractIn this thesis, we generalize Colding and
Minicozzi's work on the stability of self-shrinkers in the
hypersurface case to higher co-dimensional cases. The 1st and 2nd
variation formulae of the $F$-functional are derived and an equivalent
condition to the stability in general codimension is found. Using
the equivalent condition, we can classify $F$-stable product
self-shrinkers and show that the Lagrangian self-shrinkers given by
Anciaux are $F$- unstable.
en
dc.description.provenanceMade available in DSpace on 2021-05-17T09:18:10Z (GMT). No. of bitstreams: 1
ntu-101-D95221005-1.pdf: 432448 bytes, checksum: d41908a4f05e90526f822e15683f06fb (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsContents
Acknowledgements i
Abstract (in Chinese) ii
Abstract (in English) iii
Contents iv
1 Introduction 1
2 The 1st and 2nd variation formulae of F 6
2.1 Notation and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 The first variation formula of F . . . . . . . . . . . . . . . . . . . . . 8
2.3 The general second variation formula of F . . . . . . . . . . . . . . . 10
2.4 The second variation at a critical point . . . . . . . . . . . . . . . . . 12
3 An equivalent condition for F-stability 15
3.1 Vector-valued eigenfunctions and eigenvalues of L^⊥ . . . . . . . . . . 15
3.2 An equivalent condition . . . . . . . . . . . . . . . . . . . . . . . . . 17
4 Classification of stable product self-shrinkers 21
4.1 For compact case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 For noncompact case . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5 The unstability of Anciaux’s examples 24
5.1 Anciaux’s examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 The unstability for general variations . . . . . . . . . . . . . . . . . . 25
5.3 The unstability for Lagrangian variations . . . . . . . . . . . . . . . . 32
6 Self-similar Lagrangian graph 37
6.1 Expanding Lagrangian graph . . . . . . . . . . . . . . . . . . . . . . 37
6.2 Translating Lagrangian graph . . . . . . . . . . . . . . . . . . . . . . 39
dc.language.isoen
dc.title均曲率流的拉格拉奇自同構解zh_TW
dc.titleLagrangian Self-Similar Solutions for Mean Curvature Flowen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee王慕道,鄭日新,蔡東和,張樹城
dc.subject.keyword拉格拉奇,同構解,均曲率,zh_TW
dc.subject.keywordSelf-Similar solution,Lagrangian,mean curvature vector,en
dc.relation.page43
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-07-18
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf422.31 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved