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摘 要

在這篇論文裡, 我們推廣Colding 和 Minicozzi 的工作, 將收縮超曲面的F -穩定性推

廣到高餘維。我們推導了F -泛函的一次變分和二次變分。對於一般高餘維, 我們發現了一個

關於F -穩定性的等價條件。 使用這等價條件, 我們能對F -穩定的乘積收縮解做分類以及證

明 Anciaux 所造的拉格拉奇收縮解是 F -不穩定。
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Abstract

In this thesis, we generalize Colding and Minicozzi’s work on the stability of

self-shrinkers in the hypersurface case to higher co-dimensional cases. The 1st and

2nd variation formulae of the F-functional are derived and an equivalent condition to

the stability in general codimension is found. Using the equivalent condition, we can

classify F -stable product self-shrinkers and show that the Lagrangian self-shrinkers

given by Anciaux are F - unstable.
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Chapter 1

Introduction

Let Σ be an n-dimensional manifold and X be an isometric immersion of Σ in

Rm. Mean curvature flow of X is a family of immersions Xt : Σ → Rm which satisfies{ (
∂
∂t
Xt(x)

)⊥
= H(x, t)

X0 = X
,

where H(x, t) is the mean curvature vector of Xt(Σ) at Xt(x) and ⊥ denotes the

projection of a vector into the normal space of Xt(Σ). Mean curvature flow of a

submanifold in a Riemannian manifold can also be defined similarly. Because the

mean curvature vector points in the direction in which the area decreases most rapidly,

mean curvature flow is thus a canonical way to construct minimal submanifolds. It

also improves the geometric properties of an object along the flow (e.g., see [7]).

A submanifold Σ in Rm is called a self-shrinker if its position vectorX : Σ → Rm

satisfies

H = −1

2
X⊥.

The terminology comes from the fact that
√
1− tX(Σ) is a solution of mean curva-

ture flow, i.e., a self-shrinker evolves homothetically along mean curvature flow in a

shrinking way. Moreover, self-shrinkers describe all possible central blow-up limits

of a finite-time singularity of the mean curvature flow. This follows from Huisken’s

monotonicity formula [8], and its generalization to type II singularity by Ilmanen [11]

and White [18]. Singularities will occur in general along mean curvature flow and

1



are obstacles to continue the flow. It is therefore an important issue to understand

singularities and the candidates of their blow-up limits, self-shrinkers.

Standard sphere Sn(
√
2n) and cylinder Sk(

√
2k)×Rn−k are simple examples of

self-shrinkers in Rm. Abresch and Langer [4] found all immersed closed self-shrinkers

in the plane. For higher dimensional complete hypersurface case, Huisken [9] classi-

fied all self-shrinkers with nonnegative mean curvature and bounded geometry. The

bounded geometry condition is later weakened to polynomial volume growth by Cold-

ing and Minicozzi in [6]. On the other hand, many other different co-dimension one

self-shrinkers are found (e.g., see [2]), and a classification of all self-shrinkers is not

expected. Our understanding on self-shrinkers in higher co-dimension is even more

limited. Smoczyk obtained a classification for self-shrinkers with parallel principal

normal ν ≡ H/|H| and bounded geometry in [16]. In addition to above researches,

a nice condition, Lagrangian condition, gives us another possibility to realize self-

shrinkers for higher co-dimensional cases.

A half-dimensional submanifold L in a symplectic manifold, equipped with a

closed nondegenerate differential 2-form ω, is called a Lagrangian submanifold if

ω|L = 0. Especially, the standard complex Euclidean space

(
C

n, ω =
n∑

j=1

dxj ∧ dyj
)

is a trivial symplectic manifold. In this thesis, our ambient space is the standard Eu-

clidean space Rm or Cn. Fortunately, the Lagrangian condition is preserved by mean

curvature flow. It was proved by Smoczyk in [15]. In Cn, various different families of

Lagrangian self-shrinkers are constructed in [1], [14] and [12].

Adapted from the back heat kernel introduced by Huisken in [8], Colding and

Minicozzi [6] defined a functional F by

F (Σ, x, t) =
1√
4πt

n

∫
Σ

e
−|X−x|2

4t dμ. (1.0.1)

for any submanifold X : Σn → Rn+1, x ∈ Rn+1 and t > 0. For the first variation of F ,

the critical points (Σ, x0, t0) of F are the surfaces shrinking to x0 at the time t0 along

mean curvature flow. Especially, they are self-shrinkers when x0 = 0 and t0 = 1. The
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entropy functional λ = λ(Σ) of Σ is defined by

λ(Σ) = sup
x∈Rn+1,t>0

F (Σ, x, t).

The entropy λ has three main properties. First, it is positive and is invariant under

dilations, translations and rotations of Σ. Secondly, it is non-increasing along mean

curvature flow. Thirdly, its critical points are self-shrinkers. However, it is not smooth

with respect to the variable Σ. A self-shrinker is entropy-stable if it is a local minimum

for the entropy functional. From the study of Colding and Minicozzi [6], the singular

models of a ”perturbed” mean curvature flow must be an entropy-stable self-shrinker.

Moreover, they also showed that shrinking spheres, cylinders and planes are the only

stable self-shrinkers under mean curvature flow. In their proof, one can see that an F -

unstable self-shrinker which does not split a line must be entropy-unstable. This also

holds for higher co-dimensional case. So it is worthy to discuss the F -stability of self-

shrinkers of higher codimensions. Here F -stable indicates that for every compactly

supported smooth variation Σs with Σ0 = Σ, there exist variations xs of 0 and ts of

1 such that ∂2

∂s2
F (Σs, xs, ts) ≥ 0 at s = 0.

In this thesis, we intend to generalize Colding and Minicozzi’s work [6] to higher

co-dimensional cases. The domain of the functional F is now (Σ, x, t) for Σn ⊂ Rm,

x ∈ Rm and t > 0. Colding and Minicozzi’s classification on stable self-shrinkers in

co-dimension one is first to conclude that the mean curvature function h is the first

eigenvalue of an elliptic operator, it then implies h ≥ 0, and Huisken’s classification

of self-shrinkers with nonnegative h will lead to the conclusion. Although the counter

part of Huisken’s result in higher co-dimension is still not available, we can also pin

down the stability of self-shrinkers in higher co-dimension to the mean curvature vec-

tor being the first vector-valued eigenfunction for an elliptic system. More precisely,

the equivalent condition of stabilities is as in the following Theorem 3.2.1.

Theorem 3.2.1. Suppose Σ ⊂ Rm is an n-dimensional smooth closed self-shrinker,

H = −X⊥

2
. The following statements are equivalent:
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(i) Σ is F-stable.

(ii)
∫
Σ
〈V,−L⊥V 〉e− |X|2

4 dμ ≥ 0 for any admissible vector field V , namely, a

smooth vector field V which satisfies

∫
Σ

〈V,H〉e− |X|2

4 dμ = 0 and

∫
Σ

〈V, y⊥〉e− |X|2

4 dμ = 0

for all constant vector y ∈ Rm, where L⊥V = Δ⊥V + 〈Aij, V 〉gkigjlAkl +
V
2
− 1

2
∇⊥

X�V

is a second order operator and Aij is the second fundamental form as definition in

(2.1.1), and ∇⊥ is the normal connection of Σ.

From the standard spectrum theory for unbounded domain, it is natural to

consider the set H1
0(Σ), which is the closure of the collection of all smooth normal

vector fields with compact support with respect to the norm || · ||1,e. See the definition
of ||·||1,e in (2.1.2). We can also find the following equivalent condition for the stability

of F in the complete noncompact case.

Theorem 3.2.2. Let Σ ⊂ Rm be an n-dimensional smooth complete noncompact

self-shrinker, H = −X⊥

2
. Suppose that the second fundamental form A of Σ is of

polynomial growth and Σ has polynomial volume growth. The following statements

are equivalent:

(i) Σ is F -stable.

(ii)
∫
Σ
〈V,−L⊥V 〉e− |X|2

4 dμ ≥ 0 for any admissible vector field V in H1
0(Σ).

Let Σn1
1 ⊂ Rm1 and Σn2

2 ⊂ Rm2 be two smooth complete self-shrinkers, it is easy

to see that Σ = Σ1 × Σ2 is also a self-shrinker in Rm1+m2 . Conversely, consider a

self-shrinker Σ ⊂ Rm1+m2 , if Σ can be expressed as Σn1
1 × Σn2

2 for smooth Σn1
1 ⊂ Rm1

and Σn2
2 ⊂ Rm2 , then both Σn1

1 and Σn2
2 are self-shrinkers. Such Σ is called a product

self-shrinker in the thesis. In Chapter 4, we prove

Theorem 1.0.1 The n-plane is the only complete smooth F -stable product self-shrinker

in Rm provided that its volume and second fundamental form are of polynomial growth.

In general, the F -stability of higher co-dimensional self-shrinkers is not clear.
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Hence we need to impose certain structure on the submanifold. In this thesis, we in-

troduce the Lagrangian condition on self-shrinkers and discuss the F -stability of the

example constructed by Anciaux in [1]. The self-shrinkers are Lagrangian submani-

folds in Cn, which are expressed as γ(s)ψ(σ), where ψ : Mn−1 → S2n−1 is a minimal

Legendrian immersion and γ satisfies the system of ordinary differential equations

(5.1.1). Because the F -functional is infinite on the complete noncompact Lagrangian

examples constructed by Anciaux in [1], we will only discuss the closed cases. That is,

the corresponding curves γ are closed and the immersions ψ :M → S2n−1 are closed.

We employ the equivalent condition Theorem 3.2.1 to investigate the F -stability of

this example.

Theorem 5.2.1. If Anciaux’s example is closed and has dimension ≥ 2, then it is

F -unstable.

Since Anciaux’s examples are Lagrangian submanifolds in C
n, it is thus natural

to study whether Anciaux’s example is furthermore F -unstable under the restricted

Lagrangian variations. We have the following

Theorem 5.3.1. If Anciaux’s example is closed and has dimension n = 2 or n ≥ 7,

then it is F -unstable under Lagrangian variations.

For dimensions between 2 and 7, this theorem still holds under a technical

assumption on γ. Details can be found in Chapter 5. Besides self-shrinkers, in

the last chapter, we also study expanding and translating Lagrangian graphs under

certain conditions on symmetry.
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Chapter 2

The 1st and 2nd variation formulae
of F

2.1 Notation and Preliminaries

Let X : Σn → R
m be a smooth isometric immersion of a submanifold of codi-

mension m− n. The Riemannian metric gij on Σ is induced by the standard metric

of Rm. ∇ and ∇ denote the connection of the ambient space and Σ, respectively.

If {ei} and {eα} are orthonormal frames for the tangent bundle TΣ and the normal

bundle NΣ, respectively, then the coefficients of the second fundamental form and

the mean curvature vector are defined to be

Aij = Aα
ijeα ≡ 〈∇eiej, eα〉eα (2.1.1)

and H = Hαeα ≡ Aii,

where by convention we are summing over repeated indices. In general, AB,C and

HB,C denote the second fundamental form and mean curvature of the submanifold B

which is contained in C, respectively. When C is (complex) Euclidean space, AB,C and

HB,C are simplified as AB (or A) andHB (orH), respectively. In particular, when Σ is

a hypersurface, the mean curvature vector H and the second fundamental form reduce

to the function h = −〈H,n〉 and the 2-tensor hij = −〈Aij ,n〉, respectively. Here n is

the unit outer normal vector of Σ. Given a normal vector field V in the space of cross

sections Γ(NΣ), in terms of local coordinates {x1, ..., xn}, a (2, 0)−tensor 〈A, V 〉 is
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written as 〈Aij , V 〉dxidxj and the norm of the (2,0)-tensor is defined to be

|〈A, V 〉|2 =
n∑

i,j,k,l=1

gikgjl〈Aij , V 〉〈Akl, V 〉.

Definition 1 Let Σ be a submanifold in Rm and Br(0) be the geodesic ball in Rm

with radius r. Σ is said to have polynomial volume growth if there are constants C1,

C2 and k ∈ N so that for all r ≥ 0

V ol(Br(0) ∩ Σ) ≤ C1r
k + C2.

Definition 2 A normal vector field V (or the second fundamental form A) of Σ is of

polynomial growth if there are constants C1, C2 and k ∈ N so that for all r ≥ 0

|V | ≤ C1r
k + C2 (or |A| ≤ C1r

k + C2) on Br(0) ∩ Σ.

For any smooth normal vector fields V and W in the space of cross sec-

tions Γ(NΣ), its weighted L2 inner product, denoted as 〈V,W 〉e, is defined to be∫
Σ
〈V,W 〉e− |X|2

4 dμ, where 〈·, ·〉 denotes the standard inner product on Rm. The

weighted L2 norm ||V ||e is induced by the weighted L2 inner product 〈V, V 〉
1
2
e . The

space (Γ(NΣ), 〈·, ·〉e) is called the weighted L2 inner product space. For V ∈ Γ(NΣ),

we have the norm

||V ||1,e = (

∫
Σ

|V |2e− |X|2

4 dμ)1/2 + (

∫
Σ

|∇⊥V |2e− |X|2

4 dμ)1/2. (2.1.2)

Let Nc(Σ) be the collection of all smooth normal vector fields in Γ(NΣ) with compact

support and denote the space H1
0(Σ) as the closure of Nc(Σ) with respect to the norm

|| · ||1,e.

Definition 3 A submanifold Σ in Rm is called a self-similar solution if

H = αX⊥ + T⊥

for some constant α ∈ R and some constant vector T ∈ Rm, where X is the position

vector. Σ is called a self-shrinker if T = 0 and α = −1
2
, a self-expander if T = 0 and

α = 1. When α = 0, i.e., H = T⊥, Σ is called a translating solution.
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In Chapter 5 and 6, our ambient space is always the complex Euclidean space Cn

with coordinates zj = xj +
√−1yj, the standard symplectic form ω =

n∑
j=1

dxj ∧ dyj,
and the standard almost complex structure J with J( ∂

∂xj
) = ∂

∂yj
. A Lagrangian

submanifold is an n-dimensional submanifold in Cn on which the symplectic form ω

vanishes. On a Lagrangian submanifold L, the Lagrangian angle θ : L→ R/2πZ can

be defined by the relation that dz1 ∧ · · · ∧ dzn|L = eiθVolL and the mean curvature

vector H is given by

H = J∇θ

where ∇ is the gradient on L.

2.2 The first variation formula of F

Colding and Minicozzi derived the first and second variation formulae of the F -

functional of a hypersurface in [6]. These can be generalized to higher co-dimensional

cases by similar calculation. We derive the first variation formula of F in the following

Theorem.

Theorem 2.2.1 Let Σ ⊂ Rm be an n-dimensional complete manifold with polynomial

volume growth. Suppose that Σs ⊂ R
m is a normal variation of Σ, xs, ts are variations

of x0 and t0, and

∂Σs

∂s
= V,

dxs
ds

= y, and
dts
ds

= τ,

where V has compact support. Then

∂

∂s
F (Σs, xs, ts) =

1√
4πts

n

∫
Σs

(
− 〈V,Hs +

Xs − xs
2ts

〉+ τ(
|Xs − xs|2

4t2s
− n

2ts
)

+
〈Xs − xs, y〉

2ts

)
e

−|Xs−xs|
2

4ts dμ, (2.2.1)

where Xs is the position vector of Σs and Hs is its mean curvature vector.

Proof. From the first variation formula for area, we know that

∂

∂s
(dμ) = −〈Hs, V 〉dμ. (2.2.2)
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The variation of the weight 1√
4πts

n e−|Xs−xs|2/4ts have terms coming from the variation

of Xs, the variation of xs and the variation of ts, respectively. Using the following

equations

∂

∂ts
log

(
(4πts)

−n/2e−
|Xs−xs|

2

4ts

)
=

−n
2ts

+
|Xs − xs|2

4t2s
,

∂

∂xs
log

(
(4πts)

−n/2e−
|Xs−xs|

2

4ts

)
=
Xs − xs

2ts

and
∂

∂Xs
log

(
(4πts)

−n/2e−
|Xs−xs|

2

4ts

)
= −Xs − xs

2ts
,

we obtain

∂

∂s
log

(
(4πts)

−n/2e−
|Xs−xs|

2

4ts

)
=− 〈Xs − xs, V 〉

2ts
+ τ(

|Xs − xs|2
4t2s

− n

2ts
) +

1

2ts
〈Xs − xs, y〉.

Combining this with (2.2.2) gives (2.2.1). �

Definition 4 We will call (Σ, x0, t0) a critical point of F if it is critical with respect

to all normal variations which have compact support in Σ and all variations in x and

t.

From the definition of F in (1.0.1), we have F (Σ, x, t) = F (Σ−x√
t
, 0, 1) and it is

easy to see the following property:

(Σ, x0, t0) is a critical point of F if and only if (
Σ− x0√

t0
, 0, 1)

is a critical point of F. (2.2.3)

Therefore, we only consider the case x0 = 0, t0 = 1. In the case of hypersurfaces,

Colding and Minicozzi proved that (Σ, 0, 1) is a critical point of F if Σ satisfies that

h = 〈X,n〉
2

. Their result, when written in the vector form H = −X⊥

2
, also holds for

higher co-dimensional cases. The proof needs following propositions.
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Proposition 2.2.2 If Σ ⊂ R
m is an n-dimensional complete submanifold with H =

−X⊥

2
, then

LXi = −1

2
Xi and

L|X|2 = 2n− |X|2. (2.2.4)

Here Xi is the i-th component of the position vector X, i.e., Xi = 〈X, ∂i〉 and the

linear operator Lf = Δf − 1
2
〈X,∇f〉 = e

|X|2

4 div(e
−|X|2

4 ∇f).

Proposition 2.2.3 If Σ ⊂ Rm is an n-dimensional complete submanifold, with poly-

nomial volume growth, and H = −X⊥

2
, then

∫
Σ

Xe
−|X|2

4 dμ =
−→
0 =

∫
Σ

X|X|2e−|X|2

4 dμ and∫
Σ

(|X|2 − 2n)e
−|X|2

4 dμ = 0. (2.2.5)

Moreover, if W ∈ Rm is a constant vector, then

∫
Σ

〈X,W 〉2e− |X|2

4 dμ = 2

∫
Σ

|W�|2e− |X|2

4 dμ. (2.2.6)

These propositions were proved by Colding and Minicozzi in the case of hyper-

surfaces (see Lemma 3.20 and Lemma 3.25 in [6]). We omit the proofs here because

the argument is similar. Combining (2.2.1), (2.2.3) and (2.2.5), we get

Proposition 2.2.4 For any x0 ∈ Rm, t0 ∈ R+, (Σ, x0, t0) is a critical point of F if

and only if H = − (X−x0)⊥

2t0
.

2.3 The general second variation formula of F

Theorem 2.3.1 Let Σ be an n-dimensional complete manifold with polynomial vol-

ume growth. Suppose that Σs is a normal variation of Σ, xs, ts are variations of x0

and t0, and

∂Σs

∂s
= V,

dxs
ds

= y,
dts
ds

= τ,
d2xs
ds2

= y′, and
d2ts
ds2

= τ ′,
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where V has compact support. Then

∂2F

∂s2
(Σ, x0, t0)

=
1√
4πt0

n

∫
Σ

e
− |X−x0|

2

4t0

{
− 〈V, L⊥

x0,t0
V 〉+ 〈X − x0, V 〉

t20
τ +

〈V, y〉
t0

− (|X − x0|2 − nt0)τ
2

2t30
− |y|2

2t0
− τ〈X − x0, y〉

t20

+

(
−〈V,H +

X − x0
2t0

〉+ τ(
|X − x0|2

4t20
− n

2t0
) + 〈X − x0

2t0
, y〉

)2

− 〈∇⊥
V V,H +

X − x0
2t0

〉+ τ ′(
|X − x0|2

4t0
− n

2t0
) +

〈X − x0, y
′〉

2t0

}
dμ, (2.3.1)

where L⊥
x0,t0V = Δ⊥V + 〈Aij, V 〉gkigjlAkl +

V
2t0

− 1
2t0

∇⊥
(X−x0)�

V and Aij is the second

fundamental form as definition in (2.1.1).

Proof. Apply one more derivative on equation (2.2.1), it gives

∂2F

∂s2
(Σ, x0, t0)

=
1√
4πt0

n

∫
Σ

e
− |X−x0|

4t0

{
−〈V, ∂

∂s
(Hs +

Xs − xs
2ts

)
∣∣∣
s=0

〉

+ τ
∂

∂s
(
|Xs − xs|2

4t2s
− n

2ts
)
∣∣∣
s=0

+ 〈 ∂
∂s

(
Xs − xs

2ts
)
∣∣∣
s=0

, y〉

+

(
−〈V,H +

X − x0
2t0

〉+ τ(
|X − x0|2

4t20
− n

2t0
) + 〈(X − x0

2t0
), y〉

)2

− 〈V ′, (H +
X − x0
2t0

)〉+ τ ′(
|X − x0|2

4t20
− n

2t0
) + 〈(X − x0

2t0
), y′〉

}
dμ. (2.3.2)

Similar to the derivation of the second variation formula for the area, we have

〈(∂Hs

∂s
), V 〉 = 〈Δ⊥V + 〈Aij , V 〉gkigjlAkl, V 〉. (2.3.3)

On the other hand, since [V, (X−x0

2t0
)�] is tangent to Σs, it follows that

〈∇�
V V,

X − x0
2t0

〉 = −〈V,∇V (
X − x0
2t0

)�〉 = −〈V,∇
(
X−x0
2t0

)�
V 〉. (2.3.4)
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Using ∂Xs

∂s
= V , dt−1

s

ds
= −τt−2

s and dxs

ds
= y, we simplify

− 〈V, ∂
∂s

(Hs +
Xs − xs

2ts
)
∣∣∣
s=0

〉 − 〈V ′, H +
X − x0
2t0

〉

=− 〈V, ∂Hs

∂s

∣∣∣
s=0

〉 − 〈V, ∂
∂s

(
Xs − xs

2ts
)
∣∣∣
s=0

〉 − 〈∇⊥
V V,H +

X − x0
2t0

〉 − 〈∇�
V V,

X − x0
2t0

〉

=− 〈V, L⊥
x0,t0

V 〉 − 〈∇⊥
V V,H +

X − x0
2t0

〉+ 〈V, y
2t0

〉+ τ

2t20
〈V,X − x0〉,

where the second equality is from (2.3.3), (2.3.4), and the definition of L⊥
x0,t0 . The

second term in (2.3.2) is given by

∂

∂s
(
|Xs − xs|2

4t2s
− n

2ts
)
∣∣∣
s=0

=
〈X − x0, V − y〉

2t20
− τ |X − x0|2

2t30
+
nτ

2t20

=
〈X − x0, V 〉

2t20
− |X − x0|2 − nt0

2t30
τ − 〈X − x0, y〉

2t20
.

For the third term in (2.3.2), observe that

〈 ∂
∂s

(
Xs − xs

2ts
)
∣∣∣
s=0

, y〉 = 〈 V
2t0

, y〉 − |y|2
2t0

− τ

2t20
〈X − x0, y〉.

Combining these gives the theorem. �

2.4 The second variation at a critical point

For convenience, from now on we denote D2
(V,y,τ)F as ∂2F

∂s2
(Σ, 0, 1) in (2.3.1).

When (Σ, 0, 1) is a critical point of F , we have H = −X⊥

2
, the second variation

formula of F at the point can be simplified as the following equation (2.4.1).

Theorem 2.4.1 Let Σ be a complete manifold with polynomial volume growth. Sup-

pose that Σs is a normal variation of Σ, xs, ts are variations of x0 = 0 and t0 = 1,

and

∂Σs

∂s

∣∣∣
s=0

= V,
dxs
ds

∣∣∣
s=0

= y,
dts
ds

∣∣∣
s=0

= τ,

where V has compact support. If (Σ, 0, 1) is a critical point of F , then

D2
(V,y,τ)F

=
1√
4π

n

∫
Σ

(
−〈V, L⊥V 〉 − 2τ〈H, V 〉 − τ 2|H|2 + 〈V, y〉 − 1

2
|y⊥|2

)
e−

|X|2

4 dμ. (2.4.1)
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Here the operator L⊥ = L⊥
0,1, and

L⊥V = Δ⊥V − 1

2
∇⊥

X�V + 〈Aij, V 〉gkigjlAkl +
V

2
. (2.4.2)

Proof. Since (Σ, 0, 1) is a critical point of F , by (2.2.1) we have that

H = −X
⊥

2
. (2.4.3)

It follows from (2.2.5) that

∫
Σ

Xe
−|X|2

4 dμ =
−→
0 =

∫
Σ

X|X|2e−|X|2

4 dμ and

∫
Σ

(|X|2 − 2n)e
−|X|2

4 dμ = 0. (2.4.4)

Theorem 2.3.1 (with x0 = 0 and t0 = 1) gives

D2
(V,y,τ)F = (4π)−

n
2

∫
Σ

(
− 〈V, L⊥V 〉+ τ〈X, V 〉+ 〈V, y〉 − (|X|2 − n)τ 2

2
− |y|2

2

− τ〈X, y〉+ {τ( |X|2
4

− n

2
) + 〈X

2
, y〉}2

)
e−

|X|2

4 dμ,

where we use (2.4.3) and (2.4.4) to conclude the vanishing of a few terms in (2.3.1).

Note that y is a constant vector and τ is a constant. Squaring out the last term of

D2
(V,y,τ)F and using (2.4.3) and (2.4.4) again leads to

D2
(V,y,τ)F =(4π)−

n
2

∫
Σ

(
−〈V, L⊥V 〉 − 2τ〈H, V 〉+ 〈V, y〉 − |y|2

2

+ τ 2(
|X|2
4

− n

2
)2 +

1

4
〈X, y〉2 − (|X|2 − n)τ 2

2

)
e−

|X|2

4 dμ.

Using the equality (2.2.4) and Stokes’ theorem, we have that

∫
Σ

τ 2(
|X|2
4

− n

2
)2e−

|X|2

4 dμ =

∫
Σ

τ 2
|X�|2
4

e−
|X|2

4 dμ.

Combining (2.2.5) and (2.2.6), the second variation D2
(V,y,τ)F can be further simplified

as

1√
4π

n

∫
Σ

(
−〈V, L⊥V 〉 − 2τ〈H, V 〉 − τ 2|H|2 + 〈V, y〉 − 1

2
|y⊥|2

)
e−

|X|2

4 dμ.

�

In [6], Colding and Minicozzi defined the following concept.
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Definition 5 A critical point (Σ, 0, 1) of F is F -stable if for every compactly sup-

ported smooth variation Σs with Σ0 = Σ and ∂Σs

∂s

∣∣
s=0

= V , there exist variations xs

of 0 and ts of 1 such that D2
(V,y,τ)F ≥ 0, where y = dxs

ds

∣∣
s=0

and τ = dts
ds

∣∣
s=0

.

Remark 1 When Σ is fixed, i.e. V = 0, from (2.4.1), we can see that the second

variation formula of F is nonpositive under any variations of xs and ts.
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Chapter 3

An equivalent condition for
F -stability

3.1 Vector-valued eigenfunctions and eigenvalues

of L⊥

Let X : Σ → Rm be a closed self-shrinker. Recall that the second order operator

L⊥ is defined by

L⊥V = Δ⊥V − 1

2
∇⊥

X�V + 〈Aij , V 〉gkigjlAkl +
V

2

for V ∈ Γ(NΣ). Therefore, we have the following

∫
Σ

〈−L⊥V,W 〉e− |X|2

4 dμ =

∫
Σ

(
〈∇⊥V,∇⊥W 〉 − 〈Aij , V 〉〈Akl,W 〉gikgjl − 1

2
〈V,W 〉

)
e−

|X|2

4 dμ

for V,W ∈ Γ(NΣ). It is easy to see that the operator L⊥ is self-adjoint in the weighted

L2 inner product space. From the standard spectrum theory, the operator −L⊥ has

distinct real eigenvalues {μi} such that μ1 < μ2 ≤ μ3 ≤ ... → +∞. We have the

following proposition.

Proposition 3.1.1 Let Σ ⊂ Rm be an n-dimensional smooth complete self-shrinker,

H = −X⊥

2
. Then the mean curvature vector H and the normal part y⊥ of a constant

vector field y are vector-valued eigenfunctions of L⊥ with

L⊥H = H and L⊥y⊥ =
1

2
y⊥. (3.1.1)
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Proof. Fix p ∈ Σ and choose an orthonormal frame {ei} such that ∇eiej(p) = 0,

gij = δij in a neighborhood of p. Using H = −1
2
X⊥, we have

∇⊥
ei
H = ∇⊥

ei
(−1

2
X⊥) =

1

2
∇⊥

ei
(〈X, ej〉ej −X) =

1

2
〈X, ej〉Aij . (3.1.2)

In the second equality of (3.1.2), we used X� = 〈X, ej〉ej. Taking another covariant

derivative at p, it gives

∇⊥
ek
∇⊥

ei
H =

1

2
(∇ek〈X, ej〉)Aij +

1

2
〈X, ej〉∇⊥

ek
Aij

=
1

2
Aik +

1

2
〈X,Akj〉Aij +

1

2
〈X, ej〉∇⊥

ej
Aik, (3.1.3)

where we used (3.1.2), ∇ekej(p) = 0, and the Codazzi equation in the last equality.

Taking the trace of (3.1.3) and using H = −1
2
X⊥, we conclude that

Δ⊥H =
1

2
H − 〈H,Aij〉Aij +

1

2
∇⊥

X�H.

Therefore,

L⊥H = Δ⊥H − 1

2
∇⊥

X�H + 〈Aij, H〉Aij +
1

2
H = H.

For a constant vector y in Rm, the covariant derivative of y⊥ is

∇⊥
ei
y⊥ = ∇⊥

ei
(y − 〈y, ej〉ej) = −〈y, ej〉Aij . (3.1.4)

Taking another covariant derivative at p, it gives

∇⊥
ek
∇⊥

ei
y⊥ = −(∇ek〈y, ej〉)Aij − 〈y, ej〉∇⊥

ek
Aij

= −〈y, Akj〉Aij − 〈y, ej〉∇⊥
ej
Aki, (3.1.5)

by ∇ekej(p) = 0 and the Codazzi equation. Taking the trace of (3.1.5) and using

(3.1.2), (3.1.4), we conclude that

Δ⊥y⊥ = −〈y, Aij〉Aij − 〈y, ej〉∇⊥
ej
H

= −〈y⊥, Aij〉Aij − 1

2
〈y, ej〉〈X, ei〉Aij

= −〈y⊥, Aij〉Aij +
1

2
〈X, ei〉∇⊥

ei
y⊥

= −〈y⊥, Aij〉Aij +
1

2
∇⊥

X�y
⊥.
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Therefore,

L⊥y⊥ = Δ⊥y⊥ − 1

2
∇⊥

X�y
⊥ + 〈Aij, y

⊥〉Aij +
1

2
y⊥ =

1

2
y⊥.

�

Remark 2 At the same time, Andrews, Li, and Wei also showed the same result

independently. See Proposition 5.1 in [5].

For hypersurface case, we have the following immediate corollary.

Corollary 3.1.2 (Theorem 5.2 in [6]) Let Σ ⊂ Rn+1 be an n-dimensional smooth

complete self-shrinker, h = 〈X,n〉
2

. Then the mean curvature function h = −〈H,n〉
and the normal part 〈y,n〉 of a constant vector field y are eigenfunctions of L with

Lh = h and L〈y,n〉 = 1
2
〈y,n〉, where Lf = Δf − 1

2
〈X,∇f〉+ |〈Aij, n〉|2f + 1

2
f.

3.2 An equivalent condition

In the following theorems, we give an equivalent condition for F (Σ, 0, 1) to be

stable. Roughly speaking, Σ is F -stable if and only if the H and y⊥ are the only

eigenvectors of L⊥ with positive eigenvalues for any constant vector y in Rm. It is

inspired by the proof of Lemma 4.23 of Colding and Minicozzi in [6].

Theorem 3.2.1 Suppose Σ ⊂ Rm is an n-dimensional smooth closed self-shrinker,

H = −X⊥

2
. The following statements are equivalent:

(i) Σ is F-stable.

(ii)
∫
Σ
〈V,−L⊥V 〉e− |X|2

4 dμ ≥ 0 for any admissible vector field V , namely, a

smooth normal vector field V which satisfies

∫
Σ

〈V,H〉e− |X|2

4 dμ = 0 and

∫
Σ

〈V, y⊥〉e− |X|2

4 dμ = 0. (3.2.1)

for all constant vector y ∈ R
m.
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Proof. (i) ⇒ (ii) Assume the contrary that there is an admissible vector field V

satisfying
∫
Σ
〈V,−L⊥V 〉e−|X|2

4 dμ < 0. For any real value τ and constant vector y in

Rm, using (2.4.1), we have

D2
(V,y,τ)F

=
1√
4π

n

∫
Σ

(
−〈V, L⊥V 〉 − 2τ〈H, V 〉 − τ 2|H|2 + 〈V, y〉 − 1

2
|y⊥|2

)
e−

|X|2

4 dμ

=
1√
4π

n

∫
Σ

(
−〈V, L⊥V 〉 − τ 2|H|2 − 1

2
|y⊥|2

)
e−

|X|2

4 dμ

<0.

This contradicts the stability of F .

(ii) ⇒ (i) From the standard spectrum theory, a smooth normal vector field

can be decomposed as aH + z⊥ +V0, where aH and z⊥ are the projections of V to H

and {y⊥|y ∈ Rm} with respect to weighted L2 inner product, respectively. Note that

V0 is an admissible vector field. For any real value τ and constant vector y ∈ Rm, by

plugging the decomposition of V into (2.4.1), we have

D2
(V,y,τ)F

=
1√
4π

n

∫
Σ

(
−〈V, L⊥V 〉 − 2τ〈H, V 〉 − τ 2|H|2 + 〈V, y〉 − 1

2
|y⊥|2

)
e−

|X|2

4 dμ

=
1√
4π

n

∫
Σ

(
− a2|H|2 − 1

2
|z⊥|2 − 〈V0, L⊥V0〉 − 2τa|H|2 − τ 2|H|2

+ 〈z⊥, y⊥〉 − 1

2
|y⊥|2

)
e−

|X|2

4 dμ

≥ 1√
4π

n

∫
Σ

(
−|H|2(a+ τ)2 − 1

2
|z⊥ − y⊥|2

)
e−

|X|2

4 dμ,

where the condition (ii) is used in the last inequality. Choosing τ = −a and y = z, it

gives D2
(V,z,−a)F ≥ 0. That is, Σ is F -stable. �

Recall that H1
0(Σ) is the closure of Nc(Σ) with respect to the norm || · ||1,e, where

Nc(Σ) is the collection of all smooth normal vector fields with compact support. If Σ

is a smooth self-shrinker with polynomial volume growth and its second fundamental

form A is of polynomial growth, it is easy to see that |H|e and |y⊥|e are finite and be-
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long toH1
0(Σ). For any V ∈ H1

0(Σ), the integral
∫
Σ

(|∇⊥V |2 − |〈A, V 〉|2 − 1
2
|V |2) e− |X|2

4 dμ

is finite. Assume that Σ has no boundary, we have

〈V,−L⊥V 〉e =
∫
Σ

(
|∇⊥V |2 − |〈A, V 〉|2 − 1

2
|V |2

)
e−

|X|2

4 dμ, (3.2.2)

and can also find the following equivalent condition for the stability of F in the

complete noncompact case.

Theorem 3.2.2 Let Σ ⊂ Rm be an n-dimensional smooth complete noncompact self-

shrinker, H = −X⊥

2
. Suppose that the second fundamental form A of Σ is of poly-

nomial growth and Σ has polynomial volume growth. The following statements are

equivalent:

(i) Σ is F -stable.

(ii)
∫
Σ
〈V,−L⊥V 〉e− |X|2

4 dμ ≥ 0 for any admissible vector field V in H1
0(Σ).

Remark 3 The condition of the second fundamental form can be weakened to that

the integral
∫
Σ
|A|2e− |X|2

4 dμ is finite. Admissible vector fields are characterized by

(3.2.1).

Proof of Theorem 3.2.2. (i) ⇒ (ii) Assume the contrary that there is an admissible

vector field V in H1
0(Σ) satisfying 〈V,−L⊥V 〉e < 0. Here V may not have a compact

support. For j ∈ N, consider smooth functions φj : R+
⋃{0} → R that satisfy

0 ≤ φj ≤ 1, φj ≡ 1 on [0, j), φj ≡ 0 outside [0, j + 2) and |φ′
j| ≤ 1. Define cutoff

functions ψj(X) = φj(ρ(X)), X ∈ Σ, where ρ(X) is the distance function from a

fixed point p ∈ Σ to X with respect to the metric gij. Let Vj(X) = ψj(X)V (X), then

we have

|∇⊥Vj|2 =
n∑

i=1

|(∇eiψj)V + ψj∇⊥
ei
V |2

≤ 2|∇ψj |2|V |2 + 2|ψj|2|∇⊥V |2

≤ 2|V |2 + 2|∇⊥V |2.
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Here {ei} is an orthonormal basis for TXΣ. Since the second fundamental form A of Σ

is of polynomial growth and V ∈ H1
0(Σ), the weighted L2 inner product 〈V,−L⊥V 〉e

is finite. Using the dominant convergence theorem and the admissible condition, it

follows that

lim
j→∞

〈Vj,−L⊥Vj〉e = 〈V,−L⊥V 〉e and lim
j→∞

〈Vj, H〉e = lim
j→∞

〈Vj, y⊥〉e = 0.

For any small positive ε, choose a sufficiently large j such that

〈Vj,−L⊥Vj〉e < 1

2
〈V,−L⊥V 〉e < 0,

|〈Vj, H〉e| < ε|H|e, and max
|y⊥|e=1

|〈Vj, y⊥〉e| < ε.

For any real value τ and constant vector y in Rm, we get

D2F(Vj ,y,τ)

=
1√
4π

n

∫
Σ

(
−〈Vj , L⊥Vj〉 − 2τ〈H, Vj〉 − τ 2|H|2 + 〈Vj, y⊥〉 − 1

2
|y⊥|2

)
e−

|X|2

4 dμ

<
1√
4π

n

(
−1

2
〈V, L⊥V 〉e + 2τε|H|e − τ 2|H|2e + ε|y⊥|e − 1

2
|y⊥|2e

)

=
1√
4π

n

(
−1

2
〈V, L⊥V 〉e + ε2 − (τ |H|e − ε)2 +

1

2
ε2 − 1

2
(|y⊥|e − ε)2

)
.

Choosing ε2 < 1
10
〈V, L⊥V 〉e, we get D2F(Vj ,y,τ) < 0 for every τ and y. This contradicts

the stability of F .

(ii) ⇒ (i) From the standard spectrum theory, a compactly supported smooth

normal vector field V can be decomposed as aH + z⊥+V0, where V0, is an admissible

vector field. Because V , H , and z⊥ belong to H1
0(Σ), which is a Hilbert space, V0

belongs to H1
0(Σ), too. The remaining part of the proof is essentially the same as the

proof of (ii) ⇒ (i) in Theorem 3.2.1. �
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Chapter 4

Classification of stable product
self-shrinkers

In this chapter, we discuss the F -stability of product self-shrinkers.

4.1 For compact case

Corollary 4.1.1 Suppose Σni

i ⊂ Rmi, i = 1, 2, are smooth closed self-shrinkers which

satisfy Hi = −X⊥
i

2
. Here Xi are the position vectors of Σi. Then Σ1 × Σ2 ⊂ Rm1+m2

is a self-shrinker and is F-unstable.

Proof. The mean curvature H of Σ1 × Σ2 is equal to (H1, H2) ∈ R
m1 × R

m2

and Σ1 × Σ2 is a self-shrinker because H1 = −X⊥
1

2
and H2 = −X⊥

2

2
. To prove this

corollary, by Theorem 3.2.1, it suffices to construct an admissible vector field V such

that
∫
Σ1×Σ2

〈V,−L⊥V 〉e− |X|2

4 dμ < 0. Let V = (aH1, bH2), where a and b would be

chosen later. Note that V does not completely vanish since Σ1 and Σ2 are closed

submanifolds in Euclidean spaces. The first integral in the admissible condition is

∫
Σ1×Σ2

〈V,H〉e− |X|2

4 dμ

=

∫
Σ1

∫
Σ2

(a|H1|2 + b|H2|2)e−
|X1|

2

4 e−
|X2|

2

4 dμ2dμ1

=a

∫
Σ1

|H1|2e−
|X1|

2

4 dμ1

∫
Σ2

e−
|X2|

2

4 dμ2 + b

∫
Σ1

e−
|X1|

2

4 dμ1

∫
Σ2

|H2|2e−
|X2|

2

4 dμ2.
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We can choose a and b to be nonzero constants such that
∫
Σ1×Σ2

〈V,H〉e− |X2|
4 dμ = 0.

Recall that Hi and y
⊥
i are eigenfunctions of L⊥

i with respect to distinct eigenvalues for

yi ∈ Rmi , where L⊥
i is the operator corresponding to Σi, i = 1, 2. Hence the second

integral in the admissible condition is∫
Σ1×Σ2

〈V, y⊥〉e− |X|2

4 dμ

=a

∫
Σ1

〈H1, y1〉e−
|X1|

2

4 dμ1

∫
Σ2

e−
|X2|

2

4 dμ2 + b

∫
Σ1

e−
|X1|

2

4 dμ1

∫
Σ2

〈H2, y2〉e−
|X2|

2

4 dμ2

=0

for y = (y1, y2) ∈ Rm1+m2 . Therefore V is an admissible vector field and the weighted

L2 inner product 〈V,−L⊥V 〉e can be computed as∫
Σ1×Σ2

〈V,−L⊥V 〉e− |X|2

4 dμ

=

∫
Σ1×Σ2

〈(aH1, bH2),−(aH1, bH2)〉e−
|X|2

4 dμ

=− a2
∫
Σ1

|H1|2e−
|X1|

2

4 dμ1

∫
Σ2

e−
|X2|

2

4 dμ2 − b2
∫
Σ1

e−
|X1|

2

4 dμ1

∫
Σ2

|H2|2e−
|X2|

2

4 dμ2

<0.

Then Σ1 × Σ2 is F -unstable. �

4.2 For noncompact case

In [6], Colding and Minicozzi proved that Sn−1×R is F -unstable. In this section,

we use analogous their idea to get the following

Corollary 4.2.1 Let Σni

i ⊂ Rmi, i = 1, 2, be two smooth complete self-shrinkers with

Hi = −X⊥
i

2
. Here Xi is the position vector of Σi. Suppose that each Σi has polynomial

volume growth and the second fundamental form of each Σi is of polynomial growth.

Then Σ1×Σ2 ⊂ Rm1+m2 is a self-shrinker and is F -unstable except the plane Rn1+n2.

Proof. The mean curvature H of Σ1 × Σ2 is equal to (H1, H2) ∈ Rm1 × Rm2 and

Σ1 × Σ2 is a self-shrinker because H1 = −X⊥
1

2
and H2 = −X⊥

2

2
. Since the smooth
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minimal self-shrinker must be a plane through 0 (Corollary 2.8 in [6]), only two cases,

Σ1 × Σ2 with H1 �= 0, H2 �= 0 or Σ1 × Rn2 with H1 �= 0, need to be considered.

In the first case, the proof is similar to the proof of Corollary 4.1.1. In the second

one, by Theorem 3.2.1, it suffices to construct an admissible vector field V satisfying∫
Σ1×Rn2

〈V,−L⊥V 〉e− |X|2

4 dμ < 0. Set V = s(H1, 0), where s is the coordinate function

corresponding to the first coordinates in Rn2 . Using the fact that
∫
Rn2

se−
|X2|

2

4 dμ2 = 0,

the first integral in the admissible condition is

∫
Σ1×Rn2

〈V,H〉e− |X|2

4 dμ =

∫
Rn2

se−
|X2|

2

4 dμ2

∫
Σ1

|H1|2e−
|X1|

2

4 dμ1 = 0

and the second integral in the admissible condition is

∫
Σ1×Rn2

〈V, y⊥〉e− |X|2

4 dμ =

∫
Rn2

se−
|X2|

2

4 dμ2

∫
Σ1

〈H1, y
⊥
1 〉e−

|X1|
2

4 dμ1 = 0

for y = (y1, y2) ∈ R
m1+m2 . Therefore, the smooth normal vector field V = s(H1, 0)

is an admissible vector field and belongs to H1
0(Σ). Using the fact L⊥H = H , it

implies that the vector field V is a eigenvector of L⊥ with respect to eigenvalue 1
2

and the weighted L2 inner product 〈V,−L⊥V 〉e =
∫
Σ1×Rn2

−1
2
|V |2e− |X|2

4 dμ < 0. Then

Σ1 × R
n2 is F -unstable. �

Proof of Theorem 1.0.1. Combining Corollary 4.1.1 and 4.2.1, this complete the

proof of Theorem 1.0.1. �
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Chapter 5

The unstability of Anciaux’s
examples

5.1 Anciaux’s examples

Let 〈〈·, ·〉〉 =
n∑

i=1

dzi⊗dzi be the standard Hermitian form on C
n, where zi = xi+

√−1yi, i = 1, ..., n are the standard complex coordinates. The standard Riemannian

metric is 〈·, ·〉 = Re〈〈·, ·〉〉 =
n∑

i=1

(dx2i + dy2i ) and the symplectic form is ω(·, ·) =

−Im〈〈·, ·〉〉 =
n∑

i=1

dxi ∧ dyi. We have ω(·, ·) = 〈J ·, ·〉, where J is the standard almost

complex structure J( ∂
∂xi

) = ∂
∂yi

and J( ∂
∂yi

) = − ∂
∂xi

.

Recall that an immersion ψ from a manifold M of dimension (n− 1) into S2n−1

is said to be Legendrian if α|ψ(M) = 0 for the contact 1-form α(·) = ω(XM , ·), where
XM is the position vector and ω is the standard symplectic form on Cn. Moreover,

dα = 2ω and 〈Jy, z〉 = ω(y, z) = 1
2
dα(y, z) = 0, 〈JXM , y〉 = ω(XM , y) = α(y) = 0

for all y, z ∈ Tψ(M). It means that y, Jz, XM , and JXM are mutually orthogonal

with respect to the standard metric g for any y, z ∈ Tψ(M). When ψ is a minimal

immersion, the complex scalar product γψ of a smooth regular curve γ : I → C∗ and

ψ is a Lagrangian submanifold in Cn, i.e., ω|γψ ≡ 0. This was observed by Anciaux

in [1]. Indeed, he proved by following Lemma.

Lemma 5.1.1 (Anciaux [1]) Let ψ :M → S2n−1 be a minimal Legendrian immer-

sion for n ≥ 2 and γ : I → C∗ be a smooth regular curve parameterized by the
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arclength s. Then the following immersion

γ ∗ ψ : I ×M → C
n

(s, σ) → γ(s)ψ(σ)

is Lagrangian. Moreover, γ ∗ ψ satisfies the self-shrinker equation

H +
1

2
(γ ∗ ψ)⊥ = 0

if and only if γ satisfies the following system of ordinary differential equations:{
r′(s) = cos(θ − φ),

θ′(s)− φ′(s) = ( r
2
− n

r
) sin(θ − φ),

(5.1.1)

where the curve γ is denoted as r(s)eiφ(s) and θ is the angle of the tangent and the

x-axis. From (5.1.1), we have a conservation law

rne−
r2

4 sin(θ − φ) = E, (5.1.2)

where 0 < E ≤ Emax = (2n
e
)n/2 is a constant determined by the initial data (r(s0), θ(s0)−

φ(s0)).

5.2 The unstability for general variations

Recall that F -functional is infinite on the complete noncompact Anciaux’s La-

grangian. We will only discuss the closed cases.

Theorem 5.2.1 Anciaux’s closed example as described in Lemma 5.1.1 is F -unstable.

To prove the result, we first set up the notations and derive a few Lemmas. For

a fixed point p ∈ Σ = γ ∗ ψ(I ×M), it can be represented by γ(s0)q for some s0 ∈ I

and q ∈ ψ(M). Choose a local normal coordinate system x1, ..., xn−1 at q. Denote

us =
∂X
∂s

= γ′XM , ei =
∂XM

∂xi , and ui =
∂X
∂xi = γei for i = 1, ..., n− 1, where XM is the

position vector of ψ(M) and X = γXM . The matrix (gαβ) of the induced metric of

Σ with respect to the basis u1, ..., un−1, us is

gss = 1, gjs = gsj = 0, gjk = r2hjk, and hjk(q) = δjk (5.2.1)
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for j, k = 1, ..., n− 1. The Levi-Civita connections on Σ and ψ(M) are denoted by ∇
and ∇M , respectively. Define

N0 = {V |V = J(γw), w ∈ Γ(Tψ(M))}.

For V ∈ N0, the operator 〈V,−L⊥V 〉e can be simplified as below.

Lemma 5.2.2 Assume that Σ is a closed Lagrangian self-shrinker as in Lemma 5.1.1

and V ∈ N0 is represented by J(γw). The second fundamental forms of Σ in C
n and

ψ(M) in S2n−1 are denoted by AΣ and AM,S, respectively. We have

(i) |〈AΣ, V 〉|2 = |〈AM,S, Jw〉|2 + 2 sin2(θ − φ)|w|2, (5.2.2)

(ii) |∇⊥V |2 = |∇Mw|2 + 2 cos2(θ − φ)|w|2, (5.2.3)

(iii) 〈V,−L⊥V 〉e = −
∫
γ

(
1

2
r2 − 2 + 4 sin2(θ − φ)

)
e

−r2

4 rn−1ds

∫
M

|w|2dμM

+

∫
γ

e
−r2

4 rn−1ds

∫
M

(|∇Mw|2 − |〈AM,S, Jw〉|2) dμM . (5.2.4)

Proof. (i) For V ∈ N0, it can be represented by J(γw) for some vector field

w ∈ Γ(Tψ(M)). Using γγ = r2 and γ′γ = rei(θ−φ), we conclude that

〈AΣ
kl, V 〉 = Re〈〈γ ∂

2XM

∂xk∂xl
, J(γw)〉〉 = r2Re〈〈AM

kl , Jw〉〉 = r2〈AM,S
kl , Jw〉,

〈AΣ
ks, V 〉 = Re〈〈γ′∂X

M

∂xk
, J(γw)〉〉 = r sin(θ − φ)〈ek, w〉, (5.2.5)

〈AΣ
ss, V 〉 = Re〈〈γ′′XM , J(γw)〉〉 = Re(γ′′γ〈〈XM , Jw〉〉) = 0

for k, l = 1, .., n− 1. Here the second equalities of the second and third equations of

(5.2.5) are followed by the fact that ek, Jw, X
M , and JXM are mutually orthogonal.

Combining (5.2.1) and (5.2.5), it gives

|〈AΣ, V 〉|2 =
n−1∑
k,l=1

〈AΣ
kl, V 〉2

1

r4
+ 2

n−1∑
k=1

〈AΣ
ks, V 〉2 1

r2
+ 〈AΣ

ss, V 〉2

=|〈AM,S, Jw〉|2 + 2 sin2(θ − φ)|w|2 at p.

(ii) Since Σ is Lagrangian, {Juα}α=1,...,n−1,s is an orthogonal basis at p for the normal

bundle. We will calculate the normal projection of (∇⊥
uα
J(γw))α=1,...,n−1,s on Juj
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and Jus. Using the property that w, Jek, X
M , and JXM are mutually orthogonal,

γγ = r2 and γ′γ = rei(θ−φ), we conclude that

〈∇⊥
uk
J(γw), Juj〉 = Re〈〈iγ ∂

∂xkw, iγej〉〉 = r2〈∇M
ek
w, ej〉

〈∇⊥
uk
J(γw), Jus〉 = −Re〈〈iγw, ∂

∂xk iγ
′XM〉〉 = −r cos(θ − φ)〈w, ek〉

〈∇⊥
us
J(γw), Juj〉 = Re〈〈iγ′w, iγej〉〉 = r cos(θ − φ)〈w, ej〉

〈∇⊥
us
J(γw), Jus〉 = Re〈〈iγ′w, iγ′XM〉〉 = 0.

(5.2.6)

From (5.2.6), it follows that

|∇⊥V |2 = 〈∇⊥
uα
J(γw),∇⊥

uβ
J(γw)〉gαβ

=
n−1∑
k=1

〈∇⊥
uk
J(γw),∇⊥

uk
J(γw)〉 1

r2
+ 〈∇us

J(γw),∇us
J(γw)〉

=

(
n−1∑
j,k=1

〈∇⊥
uk
J(γw),

Juj
r

〉2 +
n−1∑
k=1

〈∇⊥
uk
J(γw), Jus〉2

)
1

r2
+

n−1∑
j=1

〈∇⊥
us
J(γw),

Juj
r

〉2

=
n−1∑
j,k=1

〈∇M
ek
w, ej〉2 +

n−1∑
j=1

2 cos2(θ − φ)〈w, ej〉2

=|∇Mw|2 + 2 cos2(θ − φ)|w|2.

(iii) Plugging (5.2.2) and (5.2.3) into (3.2.2), and using e
−|X|2

4 dμΣ = e−
r2

4 rn−1dsdμM ,

we get

〈V,−L⊥V 〉e
=

∫
Σ

(
|∇⊥V |2 − |〈AΣ, V 〉|2 − 1

2
|V |2

)
e−

|X|2

4 dμΣ

=

∫
γ

∫
M

(
|∇Mw|2 + 2 cos2(θ − φ)|w|2 − (|〈AM,S, Jw〉|2 + 2 sin2(θ − φ)|w|2)

− 1

2
r2|w|2

)
e−

r2

4 rn−1dμmds

=−
∫
γ

(
1

2
r2 − 2 + 4 sin2(θ − φ)

)
e

−r2

4 rn−1ds

∫
M

|w|2dμM

+

∫
γ

e
−r2

4 rn−1ds

∫
M

(|∇Mw|2 − |〈AM,S, Jw〉|2) dμM .

Thus (iii) is proved. �

To further simplify 〈V,−L⊥V 〉e, we now derive some integral properties of the

curve γ.
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Lemma 5.2.3 Let γ : I → C
∗ be a closed smooth regular curve parameterized by

the arclength s satisfying (5.1.1). That is, γ ∗ ψ in Lemma 5.1.1 define a closed

self-shrinker. Then one has ∫
γ

(
1

2
r2 − n)rn−1e−

r2

4 ds = 0 (5.2.7)

and ∫
γ

(
1

2r2
− n

r4
)rn−1e−

r2

4 ds = −
∫
γ

4 cos2(θ − φ)

r4
rn−1e−

r2

4 ds. (5.2.8)

Remark 4 The equality (5.2.7) is used to simplify (5.2.4) while the equality (5.2.8)

is used to simplify (5.3.4) for Lagrangian variation.

Proof. Equation (5.2.7) follows from the simplification of equation (2.2.5) and∫
M
dμM �= 0. Indeed, equation (2.2.5) becomes

0 =

∫
γ

∫
M

(r2 − 2n)e−
r2

4 rn−1dμMds =

∫
γ

(r2 − 2n)e−
r2

4 rn−1ds

∫
M

dμM .

Recall that the linear operator Lf = Δf − 1
2
〈X,∇f〉 = e

|X|2

4 div(e−
|X|2

4 ∇f) in Propo-

sition 2.2.2. It gives∫
Σ

L( 1

|X|2 )e
− |X|2

4 dμΣ =

∫
Σ

div(e−
|X|2

4 ∇ 1

|X|2 )dμΣ = 0 (5.2.9)

since ∂Σ = ∅. On the other hand, using equation (2.2.4) and ∇|X|2 = 2X� gives

L( 1

|X|2 ) =
−L|X|2
|X|4 +

2|∇|X|2|2
|X|6 =

−2n + |X|2
|X|4 +

8|X�|2
|X|6 . (5.2.10)

Combining (5.2.9), (5.2.10), and using |X�| = Re
(
rei(φ−θ)

)
= r cos(θ − φ), one has

0 =

∫
γ

∫
M

(
−2n + r2

r4
+

8r2 cos2(θ − φ)

r6
)e−

r2

4 rn−1dμMds

=

∫
γ

(
−2n + r2

r4
+

8r2 cos2(θ − φ)

r6
)e−

r2

4 rn−1ds

∫
M

dμM .

Then it gets the equation (5.2.8) immediately since
∫
M
dμM �= 0. �

Next, we want to find a vector field w0 in Γ(Tψ(M)) with nice special properties

that will be needed in proving Theorem 5.2.1 and Theorem 5.3.1.
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Lemma 5.2.4 Let ψ : Mn−1 → S
2n−1 ⊂ C

n be a minimal Legendrian immersion.

Then there exists a nonzero vector field w0 in Γ(Tψ(M)) satisfying∫
M
|∇Mw0|2 − |〈AM,S, Jw0〉|2dμ∫

M
|w0|2dμ ≤ 1 and 〈∇M

x w0, y〉 = 〈∇M
y w0, x〉 (5.2.11)

for any x, y ∈ Tψ(M).

Remark 5 The condition 〈∇M
x w0, y〉 = 〈∇M

y w0, x〉 implies that 1
r2
J(γw0) induces a

Lagrangian variation.

Proof. Define

f(y) =

∫
M

|∇My|2 − |〈AM,S, Jy〉|2dμ

for y ∈ Γ(Tψ(M)). Let E1, ..., E2n be the standard basis for Cn with Eα+n = JEα

for α = 1, ..., n. We claim that there exists a β0 in {1, ..., 2n} such that w0 = E�
β0

is a nonzero vector field satisfying f(w0) ≤
∫
M
|w0|2dμ, where E�

β0
is the projection

of Eβ0 into the tangent space of ψ(M). For fixed q ∈ ψ(M), choose a local normal

coordinate system x1, ..., xn−1 at q. Denote ∂j =
∂

∂xj . We have

〈∇M
∂k
(E�

β ), ∂j〉 = 〈 ∂

∂xk
(Eβ − E⊥

β ), ∂j〉 = −〈 ∂

∂xk
E⊥

β , ∂j〉 = 〈Eβ, A
M
jk〉, (5.2.12)

where E⊥
β is the normal part of Eβ. Since the map ψ is a Legendrian immersion into

S2n−1, the span {∂1, ..., ∂n−1, X
M} is a Lagrangian plane in Cn. It gives

AM
kj = AM,S

kj + 〈AM
kj , X

M〉XM = AM,S
kj − δkjX

M at q (5.2.13)

and the second fundamental form AM,S
jk of the submanifold ψ(M) in S2n−1 is orthog-

onal JXM because that

〈AM,S
kj , JXM〉 = 〈 ∂

∂xk
(∂j), JX

M〉 = −〈∂j , J∂k〉 = 0.

Since ∂l and XM are orthogonal, we have (JAM,S)� = JAM,S. Recall that ψ is a

minimal immersion in S2n−1 and hence HM,S = 0. Combining the equations (5.2.12)
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and (5.2.13), the first term of f(E�
β ) can be simplified as

|∇M(E�
β )|2 =

n−1∑
j,k=1

|〈Eβ, A
M,S
kj 〉 − 〈Eβ, δkjX

M〉|2

= |〈Eβ, A
M,S〉|2 − 2〈Eβ, H

M,S〉〈Eβ, X
M〉+ (n− 1)〈Eβ, X

M〉2

= |〈Eβ, A
M,S〉|2 + (n− 1)〈Eβ, X

M〉2 at q. (5.2.14)

Using the equality (JAM,S)� = JAM,S, the second term of f(E�
β ) can be simplified as

〈AM,S, J(E�
β )〉 = −〈JAM,S, E�

β 〉 = −〈JAM,S, Eβ〉 = 〈AM,S, JEβ〉. (5.2.15)

Combining (5.2.14) and (5.2.15), it gives

f(E�
α ) =

∫
M

(|〈Eα, A
M,S〉|2 + (n− 1)〈Eα, X

M〉2 − |〈Eα+n, A
M,S〉|2) dμ, (5.2.16)

f(E�
α+n) =

∫
M

(|〈Eα+n, A
M,S〉|2 + (n− 1)〈Eα+n, X

M〉2 − |〈Eα, A
M,S〉|2) dμ (5.2.17)

for α = 1, ..., n. Summing (5.2.16) and (5.2.17) over α = 1, ..., n gives

n∑
α=1

(
f(E�

α ) + f(E�
α+n)

)
= (n− 1)

2n∑
β=1

∫
M

〈Eβ, X
M〉2dμ = (n− 1)

∫
M

dμ (5.2.18)

since |XM | = 1.

On the other hand, we have
2n∑
β=1

|E�
β |2 =

2n∑
β=1

n−1∑
j=1

〈Eβ, ∂j〉2 =
n−1∑
j=1

|∂j|2 = n− 1 at q

because ∂1, ..., ∂n−1 is an orthonormal basis for Tqψ(M). Plugging it into (5.2.18), we

get

2n∑
β=1

∫
M

(|∇M(E�
β )|2 − |〈AM,S, J(E�

β )〉|2
)
dμ =

2n∑
β=1

∫
M

|E�
β |2dμ.

Therefore, there exists a β0 in {1, .., 2n} such that E�
β0

is a nonzero vector field and

∫
M

(|∇M(E�
β0
)|2 − |〈AM,S, J(E�

β0
)〉|2) dμ ≤

∫
M

|E�
β0
|2dμ.

Which is the inequality in (5.2.11). Using (5.2.12), 〈Eβ0, A
M
jk〉 is symmetric for j, k, it

follows that the vector field w0 = E�
β0

satisfies both conditions in (5.2.11). �

Now we are ready to proved Theorem 5.2.1:

30



Proof of Theorem 5.2.1. By Theorem 3.2.1, it suffices to construct an admissible

vector field V satisfying
∫
Σ
〈V,−L⊥V 〉e− |X|2

4 dμ < 0. Assume V = J(γw), where

w ∈ Γ(Tψ(M)) would be chosen later. Because H is parallel to Jus (see [1], p.40),

the first integral
∫
Σ
〈V,H〉e− |X|2

4 dμ in the admissible condition is equal to zero. The

second integral in the admissible condition is

∫
Σ

V e−
|X|2

4 dμ = i

∫
γ

γe−
r2

4 rn−1ds

∫
M

wdμM .

Recall that the construction of γ in [1] is made by m > 1 pieces Γ1, ...,Γm which each

corresponds one period of curvature function. Every piece Γi is the same as Γ1 up to

a rotation. Suppose the rotation index of γ is l. Then we have

∫
γ

γe−
r2

4 rn−1ds =

m∑
j=1

∫
Γj

e−
r2

4 rneiφds

=

∫
Γ1

e−
r2

4 rneiφ(1 + ei
2lπ
m + ...+ ei

(m−1)l
m

·2π)ds = 0

since 1 + ei
2π
m + ... + ei

(m−1)l
m

·2π = 0 for m > 1. Therefore, the second integral in the

admissible condition is equal to zero.

For the case n ≥ 3, we choose w = w0 satisfying (5.2.11) and V0 = J(γw0).

Plugging the first inequality of (5.2.11) into (5.2.4), the weighted L2 inner product

〈V0,−L⊥V0〉e becomes

∫
Σ

〈V0,−L⊥V0〉e−
|X|2

4 dμ

≤−
∫
γ

(
1

2
r2 − 3 + 4 sin2(θ − φ)

)
e

−r2

4 rn−1ds

∫
M

|w0|2dμM

=−
∫
γ

((
n− 3 + 4 sin2(θ − φ)

))
e−

r2

4 rn−1ds

∫
M

|w0|2dμM

<0.

We use (5.2.7) to conclude the equality above.

For the case n = 2, the only minimal Legendrian curves in S3 are great circles.

They are totally geodesic in S3. Therefore, the weighted L2 inner product 〈V,−L⊥V 〉e
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can be simplified as

∫
Σ

〈V,−L⊥V 〉e− |X|2

4 dμ

=

∫
γ

e−
r2

4 r
(∫

S1

|∇S1w|2 −
(
1

2
r2 − 2 + 4 sin2(θ − φ)

)
|w|2dμS1

)
ds.

=

∫
γ

e−
r2

4 r
(∫

S1

|∇S1w|2 − 4 sin2(θ − φ)|w|2dμS1

)
ds.

Here we use (5.2.7) again to get the last equality. Finally, by choosing w to be the

tangent vector of the great circle, which is a parallel vector field, we can make the

weighted L2 inner product negative. �

5.3 The unstability for Lagrangian variations

Since Anciaux’s examples are Lagrangian, it is natural to investigate whether

these examples are still unstable under the more restricted lagrangian variations.

That is, the variations come from the deformations of Lagrangian submanifolds. A

simple calculation shows that a variational field V induces a Lagrangian variation if

and only if the one form defined by αV = ω(V, ·) is closed. That is,

〈∇⊥
XV, JY 〉 = 〈∇⊥

Y V, JX〉, (5.3.1)

where ∇⊥ is the normal connection on NΣ and X, Y ∈ TΣ. We have the following

Theorem 5.3.1 Let Σ be an n-dimensional closed Lagrangian self-shrinker as in

Lemma 5.1.1. Then Σ is F -unstable under Lagrangian variations for the following

cases

(i) n = 2 or n ≥ 7,

(ii) 2 < n < 7, and E ∈ [
√

7−n
8
Emax, Emax],

where E and Emax are described in (5.1.2).
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For V ∈ N0, V is not a Lagrangian variation since 〈∇⊥
us
V, Juj〉 �= 〈∇⊥

uj
V, Jus〉.

Hence, instead of using N0, we need a new set N1 as follows:

N1 = {V |V =
1

r2
J(γw), where w ∈ Γ(Tψ(M)) satisfies

〈∇M
x w, y〉 = 〈∇M

y w, x〉, for all x, y ∈ Tψ(M)}.

For V ∈ N1, we claim that V satisfies the equation (5.3.1). That is, it induces a

Lagrangian variation. Suppose V = 1
r2
J(γw). Noting that γ′ = eiθ and 〈V, Jus〉 = 0,

we have

〈∇⊥
us
V, Juj〉 = −2r′

r3
〈J(γw), J(γej)〉+ 1

r2
〈J(γ′w), J(γej)〉

= −cos(θ − φ)

r
〈w, ej〉,

〈∇⊥
uj
V, Jus〉 = −〈V,∇⊥

uj
Jus〉 = − 1

r2
〈J(γw), J(γ′ej)〉 = −cos(θ − φ)

r
〈w, ej〉,

〈∇⊥
uk
V, Juj〉 = 1

r2
〈 ∂

∂xk
J(γw), J(γej)〉 = 〈∇M

ek
w, ej〉

= 〈∇M
ej
w, ek〉 = 〈∇⊥

uj
V, Juk〉.

This proves the claim.

For V ∈ N1, the operator 〈V,−L⊥V 〉e can be simplified as in Lemma 5.3.2.

Lemma 5.3.2 Assume that Σ is a closed Lagrangian self-shrinker as in Lemma 5.1.1

and V ∈ N1 is represented by 1
r2
J(γw). The second fundamental forms of Σ in Cn

and of ψ(M) in S
2n−1 are denoted by AΣ and AM,S, respectively. We have

(i) |〈AΣ, V 〉|2 = 1

r4
|〈AM,S, Jw〉|2 + 1

r4
sin2(θ − φ)|w|2, (5.3.2)

(ii) |∇⊥V |2 = 1

r4
|∇Mw|2 + 2 cos2(θ − φ)

r4
|w|2, (5.3.3)

(iii) 〈V,−L⊥V 〉e = −
∫
γ

(
1

2
r2 − 2 + 4 sin2(θ − φ)

)
e

−r2

4 rn−5ds

∫
M

|w|2dμM

+

∫
γ

e
−r2

4 rn−5ds

∫
M

(|∇Mw|2 − |〈AM,S, Jw〉|2) dμM . (5.3.4)

33



Proof. (i) For V ∈ N1, there exist V0 ∈ N0 such that V can be represented by

1
r2
V0 =

1
r2
J(γw). Using the equation (5.2.2), we have

|〈AΣ, V 〉|2 = 1

r4
|〈AΣ, V0〉|2 = 1

r4
|〈AM,S, Jw〉|2 + 1

r4
sin2(θ − φ)|w|2.

(ii) Using the equations (5.3.1) and (5.2.6), we have

〈∇⊥
uk

1

r2
J(γw), Juj〉 = 1

r2
〈∇⊥

uk
J(γw), Juj〉 = 〈∇M

ek
w, ej〉

〈∇⊥
uk

1

r2
J(γw), Jus〉 = 1

r2
〈∇⊥

uk
J(γw), Jus〉 = −1

r
cos(θ − φ)〈w, ej〉 (5.3.5)

〈∇⊥
us

1

r2
J(γw), Jus〉 = −2r′

r3
〈J(γw), J(γXM)〉+ 1

r2
〈∇⊥

us
J(γw), Jus〉 = 0.

Combining with (5.3.5) and (5.3.1), it gives

|∇⊥V |2 = 〈∇⊥
uα

1

r2
J(γw),∇⊥

uβ

1

r2
J(γw)〉gαβ

=
n−1∑
k=1

〈∇⊥
uk

1

r2
J(γw),∇⊥

uk

1

r2
J(γw)〉 1

r2
+ 〈∇us

1

r2
J(γw),∇us

1

r2
J(γw)〉

=

(
n−1∑
j,k=1

〈∇⊥
uk

1

r2
J(γw),

Juj
r

〉2 +
n−1∑
k=1

〈∇⊥
uk

1

r2
J(γw), Jus〉2

)
1

r2

+
n−1∑
j=1

〈∇⊥
us

1

r2
J(γw),

Juj
r

〉2

=
1

r4

n−1∑
j,k=1

〈∇M
ek
w, ej〉2 + 1

r4

n−1∑
j=1

2 cos2(θ − φ)〈w, ej〉2

=
1

r4
|∇Mw|2 + 2 cos2(θ − φ)

r4
|w|2.
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(iii) Plugging (5.3.2) and (5.3.3) into (3.2.2), and using e
−|X|2

4 dμΣ = e−
r2

4 rn−1dsdμM ,

we get

〈V,−L⊥V 〉e
=

∫
Σ

(
|∇⊥V |2 − |〈AΣ, V 〉|2 − 1

2
|V |2

)
e−

|X|2

4 dμΣ

=

∫
γ

∫
M

(
|∇Mw|2 + 2 cos2(θ − φ)|w|2 − (|〈AM,S, Jw〉|2 + 2 sin2(θ − φ)|w|2)

− 1

2
r2|w|2

)
e−

r2

4 rn−5dμMds

=−
∫
γ

(
1

2
r2 − 2 + 4 sin2(θ − φ)

)
e

−r2

4 rn−5ds

∫
M

|w|2dμM

+

∫
γ

e
−r2

4 rn−5ds

∫
M

(|∇Mw|2 − |〈AM,S, Jw〉|2) dμM .

Thus (iii) is proved. �

Proof of Theorem 5.3.1. By Theorem 3.2.1, it suffices to construct an admis-

sible Lagrangian variation V satisfying
∫
Σ
〈V,−L⊥V 〉e− |X|2

4 dμ < 0. Assume V =

1
r2
J(γw) ∈ N1, where w ∈ Γ(Tψ(M)) will be chosen later. Similar to the proof of

Theorem 5.2.1, V is an admissible Lagrangian variation.

We now further specify V , so that
∫
Σ
〈V,−L⊥V 〉e− |X|2

4 dμ < 0. When n ≥ 3, we

choose w = w0 satisfying (5.2.11). Then V1 =
1
r2
J(γw0) is in N1. From (5.2.11) and

(5.3.4), the weighted L2 inner product 〈V1,−L⊥V1〉e becomes∫
Σ

〈V1,−L⊥V1〉e−
|X|2

4 dμ

≤−
∫
γ

(
1

2
r2 − 3 + 4 sin2(θ − φ)

)
e

−r2

4 rn−5ds

∫
M

|w0|2dμM

=−
∫
γ

((
n− 3 + 4 sin2(θ − φ)− 4 cos2(θ − φ)

))
e−

r2

4 rn−5ds

∫
M

|w0|2dμM ,

=−
∫
γ

((
n− 7 + 8 sin2(θ − φ)

))
e−

r2

4 rn−5ds

∫
M

|w0|2dμM ,

where (5.2.8) is used to conclude the first equality. Thus it suffices to show that

f(s) = n−7+8 sin2(θ−φ) is nonnegative and positive at some point. For n ≥ 7, the

function f is clearly nonnegative and positive somewhere. Since sin(θ − φ) ≥ E
Emax

from (5.1.2), f(s) is nonnegative and positive somewhere for E ∈ [
√

7−n
8
Emax, Emax].
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In the case n = 2, the only minimal Legendrian curves in S
3 are great circles

which are totally geodesic. Choosing w1 to be the tangent vector of the great circle,

we have |∇S1w1| = 0 and |w1| = 1. The vector field V1 =
1
r2
J(γw1) gives a Lagrangian

variation and the weighted L2 inner product 〈V1,−L⊥V1〉e in (5.3.4) can be simplified

as

∫
Σ

〈V1,−L⊥V1〉e−
|X|2

4 dμ

=−
∫
γ

(
1

2
r2 − 2 + 4 sin2(θ − φ)

)
e−

r2

4 r−3ds

∫
S1

|w|2dμS1

=− 2π

∫
γ

(
1

2
r2 + 2

(
sin2(θ − φ)− cos2(θ − φ)

))
e−

r2

4 r−3ds

Using (5.2.8), it follows that

∫
γ

1

2
r2e−

r2

4 r−3ds =

∫
γ

2
(
sin2(θ − φ)− cos2(θ − φ)

)
e−

r2

4 r−3ds.

Therefore, 〈V1,−L⊥V1〉e = −2π
∫
γ
r2e−

r2

4 r−3ds < 0, and concludes the Lagrangian

unstability in Theorem 5.3.1. �
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Chapter 6

Self-similar Lagrangian graph

By a result of Harvey and Lawson [10], locally an n-dimensional Lagrangian

submanifold L can be described explicitly as the graph of a function over a tangent

plane. That is

L = {(x1, x2, .., xn) + i∇f) ∈ C
n = R

n + iRn| f : Ω ⊂ R
n → R}.

A Lagrangian L is called a Lagrangian graph with respect to f if the domain of the

function f is Rn.

6.1 Expanding Lagrangian graph

In this section, we discuss the expanding symmetric Lagrangian graph with

respect to f , that is, H = F⊥ and the function f satisfies f(x1, ..., xn) = f(r), where

r2 =
n∑

i=1

x2i . It can be simplified as

L = {(r + gi)σn−1 ∈ C
n|g(r) = f ′(r), σn−1 ∈ S

n−1}. (6.1.1)

The type is a special case of Anciaux’s examples in [1]. In terms of the spherical

coordinate system θ1, ..., θn−1, r, let Fr = ∂F
∂r

= (1 + g′i)σn−1, Fj = ∂F
∂θj

= (r + gi)uj

for j = 1, ..., n− 1, where F is the position vector of L and uj’s are tangent vectors
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on S
n−1. Then

det

⎛
⎜⎜⎜⎝

Fr

F1
...

Fn−1

⎞
⎟⎟⎟⎠

C

= (1 + g′i)(r + gi)n−1

and it gives

θ = arg(1 + g′i) + (n− 1) arg(r + gi), (6.1.2)

where θ is the Lagrangian angle of L. We have the following theorem.

Theorem 6.1.1 Assume a smooth expanding symmetric Lagrangian graph L doesn’t

contain the origin, then L is asymptotic to a cone C, where C = {ω(s)σn−1|σn−1 ∈
S
n−1, ω(s) ∈ C and ω(s) is a line in R

2}.

Proof. In terms of the spherical coordinate system, we have

θr =
g′′

1 + (g′)2
+ (n− 1)

rg′ − g

r2 + g2
. (6.1.3)

On the other hand, since H = F⊥ and H = J∇θ, it gives

θr = 〈∇θ, Fr〉 = 〈F, JFr〉 = −rg′ + g. (6.1.4)

Combining (6.1.3) and (6.1.4), we get

g′′

1 + (g′)2
= (g − rg′)

(
1 +

n− 1

r2 + g2

)
. (6.1.5)

Let h = g − rg′. Directly integrating from (6.1.5), we have h(r) = h(0)e−
∫ r

0
sϕ(s)ds

where ϕ(s) = (1 + |g′(s)|2)(1 + n−1
s2+g2(s)

). Since L does not contain the origin, h(0)

is positive. The function h is decreasing and positive on [0.a) for some a > 0. The

domain [0, a) can be extended to [0,∞). If not there is a number b ∈ R+ such that

h(b) = 0. Combining the definition of ϕ, |F | �= 0, and the fact that g is defined on

[0,∞), the limit of ϕ(s) is infinite as s approaches to b−. This is a contradiction for

h = g − rg′. Using both the above properties of the function h, the functions g
r
and
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g′ are decreasing and increasing, respectively. Because g
r
− g′ = h

r
> 0 and use the

completeness of the real numbers, the limits of g
r
and g′ exist as r → ∞ and both

the limits are equal. Take m = lim
r−→∞

g
r
= lim

r−→∞
g′, we have g′ ↗ m and g

r
↘ m. Since

the function g −mr is positive and decreasing, the limit of g −mr exists as r → ∞.

That is, g has an asymptote y = mx+ c. Then L is asymptotic to C. �

6.2 Translating Lagrangian graph

Now we discuss the translating Lagrangian graph L with respect to f . We have

the following proposition.

Proposition 6.2.1 Assume that f is symmetric on Rn, i.e., f(x1, ..., xn) = f(r).

Then the translating Lagrangian graph L with respect to f is the plane Rn.

Proof. Choose T = (0, ..., 1) without loss of generality. Since the Lagrangian angle

θ is only depend on r from the equation (6.1.2), it gives

0 = 〈∇θ, Fj〉 = 〈H, JFj〉 = 〈T, JFj〉 = −g〈T, Juj〉

for all 0 < j < n, where uj’s are tangent vectors on Sn−1 and g(r) = f ′(r). Therefore

f is a constant function on R
n and L is the Euclidean plane R

n. �

Next, we consider a more complex case forf(x1, ..., xn−1, y) = f(r, y) and r2 =
n−1∑
k=1

x2k.

The translating Lagrangian graph L can be written as

L = {(x1, x2, .., xn−1, y) + i∇f) ∈ C
n| f = f(r, y) ∈ R, r2 =

n−1∑
k=1

x2k}

= {((r + fri)σn−2, y + fyi) ∈ C
n|σn−2 ∈ S

n−2} (6.2.1)

In terms of the spherical coordinate system θ1, ..., θn−2, r, y, let⎧⎨
⎩

Fy = ∂F
∂y

= (ifryσn−2, 1 + ifyy)

Fr = ∂F
∂r

= ((1 + frri)σn−2, ifyr)
Fj = ∂F

∂θj
= ((r + fri)uj, 0)

(6.2.2)
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for j = 1, ..., n− 2, where F is the position vector of L and uj’s are tangent vectors

on Sn−2. Then

det

⎛
⎜⎜⎜⎜⎜⎝

F1
...

Fn−2

Fr

Fy

⎞
⎟⎟⎟⎟⎟⎠

C

= (r + ifr)
n−2[(1 + frri)(1 + fyyi) + f 2

ry]

= (r + ifr)
n−2[(1 + f 2

ry − frrfyy) + i(frr + fyy)]

and it gives

θ = (n− 2) arg(r + ifr) + arg[(1 + f 2
ry − frrfyy) + i(frr + fyy)], (6.2.3)

where θ is the Lagrangian angle of L. We have the following the theorem.

Theorem 6.2.2 Fix n ≥ 3, assume the Lagrangian graph L defined as above is

translating and the the translating vector T = (0, ..., 0, i). Then

L = {((r + fri)σn−2, (θ + C) + fθi) ∈ C
n|σn−2 ∈ S

n−2}

for some constant C. Moreover, if f(r, y) = G(r) + P (y), then L is the product of

(n− 1) special Lagrangian L′ and Grim Reaper Γ. i.e., L = L′ × Γ ⊂ Cn−1 × C.

Remark 6 The latter still holds under the translating vector T = (0, ..., 0, z) for all

z ∈ C. This example is the same as the example constructed in [12].

Proof. Using (6.2.2) and directly computing, it gives

θr = 〈∇θ, Fr〉 = 〈H, JFr〉 = 〈T, JFr〉 = 0,

θj = 〈∇θ, Fj〉 = 〈H, JFj〉 = 〈T, JFj〉 = 0,

θy = 〈∇θ, Fy〉 = 〈H, JFy〉 = 〈T, JFy〉 = 1.

Therefore, the Lagrangian angle θ is equal to θ + C for some constant C. When

f(r, y) = G(r) + P (y), we let g(r) = fr and p(y) = fy. From (6.2.3), the Lagrangian
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angle θ can be simplified as the following equation

θ = arg(1 + p′(y)i) + arg(1 + g′(r)i) + (n− 2) arg(r + g(r)i)

= α(y) + β(r),

where α(y) = arg(1+ p′(y)i) and β(r) = arg(1+ g′(r)i)+ (n−2) arg(r+ g(r)i). Since

θy = 1, it gives that β(r) is constant and α(y) = y + c. Directly computing, the

function p(y) = ln sec(y + c) + c1. That is, the Lagrangian graph L is the product of

(n−1) special Lagrangian graph L′ and Grim Reaper Γ which α and β are Lagrangian

angles of L′ and Γ, respectively. �
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