請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67722
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔣丙煌(Been-Huang Chiang) | |
dc.contributor.author | Tsai-I Lin | en |
dc.contributor.author | 林采儀 | zh_TW |
dc.date.accessioned | 2021-06-17T01:46:06Z | - |
dc.date.available | 2020-08-01 | |
dc.date.copyright | 2017-08-01 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-07-26 | |
dc.identifier.citation | 王青、胡明華、董燕、潘華新、周聯、王培訓。茯苓多糖對免疫抑制小鼠粘膜淋巴組織及脾臟中 CD3+ 和 CD19+ 細胞變化的影響。2011。中國免疫學雜誌。第27卷。228-231。
王曉波、劉殿武、郭麗莉、王本華。發酵黃芪對 BALB/C 小鼠免疫功能及細胞因數的作用。2010。時珍國醫國藥。第21卷。F0003-F0004。 仝欣。黃芪主要活性成分的藥理作用。2011。時珍國醫國藥。第22卷。1246-1249。 朱新術、楊志強、李建喜、王學智、孟嘉仁、張豔、張凱。發酵黃芪的乳酸菌的馴化及其與黃芪相互作用研究。2008。中國微生態學雜誌。第20卷。450-451。 牟玉楨。三七之乳酸菌發酵產品抑制肝癌細胞生長之功效。2005。臺灣大學食品科技研究所碩士學位論文。臺北,臺灣。1-138。 吳梅、譚睿。黃芪多糖研究進展。2013。川北醫學院學報。17-22。 吳菀翠、陳桐榮。黃耆經不同處理及乳酸菌發酵後其類異黃酮含量的變化及功能性探討。2011。國立嘉義大學食品科學研究所碩士學位論文。嘉義,臺灣。1-141。 李曉冰、崔利宏、陳玉龍、展俊平、謝忠禮、朱豔琴、沈小君、李瑞琴。參苓白朮散對潰瘍性結腸炎小鼠腸道調節性 T 細胞免疫調節作用。2014。中成藥。第36卷。1295-1297。 邢善田、耿長山、周金黃。補益中藥有效活性成分的免疫藥理研究及應用。1988。軍事醫學科學院院刊。第12卷。219-219。 周吉春、趙新新、劉青、孔慶科。提高黏膜免疫的方法及研究進展。2015。微生物學通報。第42卷。574-583。 周金黃。中藥免疫藥理學。1994。人民軍醫出版社。 林春福、吳正男、歐威志、李珮瑜、林育興、洪紹文。免疫學。2013。第一版。華杏出版社。臺北,臺灣。 林莎莎、周洪雷、孫筱林、池雨鋒、蔣海強、張玲、楚新紅。HPLC 測定經不同益生菌發酵前後黃芪中黃芪甲苷和黃芪皂苷 Ⅱ 的含量。2016。山東科學。第29卷。17-20。 林義恭、陳邦華、張永勳、吳岳文、劉新裕、賴瑞聲、高瑞隆、劉嘉仁。膜莢黃耆的農藝性狀調查與活性成分分析。2006。台灣農業研究。第55卷。190-200。 邵鵬、趙魯杭。黃芪多糖對樹突狀細胞表型及功能成熟的影響。2006。中華微生物學和免疫學雜誌。第26卷。637-640。 馬岩、李運曼。中藥對腸道黏膜免疫系統調節作用的研究進展。2013。臨床合理用藥雜誌。第6卷。168-169。 馬偉、賈豔姝、劉秀波、龔賀、張豔賀。保加利亞乳桿菌發酵黃芪工藝優化。2013。中醫藥學報。第40卷。44-46。 張大鵬、周聯、張志敏、王青、王培訓。四君子湯總多糖對免疫抑制小鼠腸道 sIgA 的影響及其機制研究。2010。中藥新藥與臨床藥理。第21卷。11-14。 張皖東、呂誠、趙宏豔、陳士林、楊大堅、呂愛平。人參多糖和豬苓多糖對 CIA 大鼠腸道黏膜免疫細胞功能的影響。2007。細胞與分子免疫學雜誌。第23卷。867-868。 張磊、吳瑕、王嵐、李東曉、周訓倫。玉屏風散多糖類成分對免疫功能的影響。2006。中藥藥理與臨床。第22卷。2-4。 張霞。黃芪化學成分及藥理作用概述。2013。實用中醫藥雜誌。608-609。 陳盈綺。黃耆水溶性多醣之劃分與分子特徵。2008。臺灣大學食品科技研究所學位論文。臺北,臺灣。1-87。 陳琳、趙婷、侯恩太、賴智捷、路鋒、鞏江、倪士峰。發酵中藥研究概況。2010。安徽農業科學。第38卷。8274-8275。 陳雷、張建梅、孫合美、秦波、穀巍。乳酸菌―芽孢菌發酵黃芪對小鼠免疫功能作用的研究。2014。中國畜牧獸醫。第41卷。126-129。 黃喬書、呂歸寶、李雅臣、郭俊華、王瑞香。1982。黃芪多糖的研究。藥學學報。第17卷。200-206。 楊鳳華、康成、李淑華、張德山。黃芪水溶性黃酮類對小鼠細胞免疫功能的影響。2002。時珍國醫國藥。第13卷。718-719。 楊鳳華、楊勇、張文竹。黃芪水溶性黃酮對荷瘤小鼠免疫功能影響的實驗研究。2007。國際中醫中藥雜誌。第29卷。201-202。 劉仁俊。黃芪化學成分及臨床應用研究。2011。中國中醫藥現代遠端教育。第9卷。71-71。 劉必旺、許凱霞、解冬、朱冰清、趙換。黃芪及其發酵產物對免疫低下糖尿病大鼠的影響。2013。山西中醫學院學報。第14卷。26-28。 劉曉霓、陳德喜、李寧。中藥黃芪微生物發酵研究相關文獻分析。2015。時珍國醫國藥。第26卷。2470-2472。 劉顯軍、陳靜、尚麗娟。白頭翁皂苷的提取及抑菌活性試驗。2012。中國獸醫雜誌。第48卷。69-70。 歐陽迎光。微生物技術在中藥炮製中的應用。2016。中國藥物經濟學。第7卷。012。 駱和生。中藥與免疫:補益類藥。1982。廣東科學技術出版社。 駱殊、邵佳。黃芪多糖對樹突狀細胞免疫活性的影響。2009。中醫藥臨床雜誌。 顏培宇、於曉紅、張德山、聞傑。黃芪總黃酮對免疫功能低下小鼠 T 細胞極化的影響。2008。浙江中醫藥大學學報。第32卷。163-164。 羅振立、白引苗、王茉琳、李立秋、楊景雲。中藥 0708 對潰瘍性結腸炎大鼠腸道菌群失調及免疫功能低下的調整作用。2014。山西醫藥雜誌。第43卷。1627-1629。 羅霞、鄭林用、餘夢瑤、魏巍、江南、許曉燕。黃芪-乳酸菌發酵組合對小鼠免疫功能的增強作用。2012。時珍國醫國藥。第23卷。894-896。 Anderson, R. C.; Cookson, A. L.; McNabb, W. C.; Kelly, W. J.; Roy, N. C., Lactobacillus plantarum DSM 2648 is a potential probiotic that enhances intestinal barrier function. FEMS Microbiology Letters 2010, 309, 184-192. Araujo, M. A.; Libério, S. A.; Guerra, R. N.; Ribeiro, M. N. S.; Nascimento, F. R., Mechanisms of action underlying the anti-inflammatory and immunomodulatory effects of propolis: a brief review. Revista Brasileira de Farmacognosia 2012, 22, 208-219. Berges, C.; Naujokat, C.; Tinapp, S.; Wieczorek, H.; Höh, A.; Sadeghi, M.; Opelz, G.; Daniel, V., A cell line model for the differentiation of human dendritic cells. Biochemical and biophysical research communications 2005, 333, 896-907. Blanpain, C.; Horsley, V.; Fuchs, E., Epithelial stem cells: turning over new leaves. Cell 2007, 128, 445-458. Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 1976, 72, 248-254. Brandtzaeg, P.; Kiyono, H.; Pabst, R.; Russell, M., Terminology: nomenclature of mucosa-associated lymphoid tissue. Mucosal immunology 2008, 1, 31-37. Breckpot, K.; Escors, D., Dendritic cells for active anti-cancer immunotherapy: targeting activation pathways through genetic modification. Endocrine, Metabolic & Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders) 2009, 9, 328-343. Breslin, S.; O’Driscoll, L., Three-dimensional cell culture: the missing link in drug discovery. Drug discovery today 2013, 18, 240-249. Butler, M.; Ng, C. Y.; van Heel, D. A.; Lombardi, G.; Lechler, R.; Playford, R. J.; Ghosh, S., Modulation of dendritic cell phenotype and functionin an in vitro model of the intestinal epithelium. European journal of immunology 2006, 36, 864-874. Chehade, M.; Mayer, L., Oral tolerance and its relation to food hypersensitivities. Journal of Allergy and Clinical Immunology 2005, 115, 3-12. Cho, J. H., The genetics and immunopathogenesis of inflammatory bowel disease. Nature Reviews Immunology 2008, 8, 458-466. Chu, C.; Cai, H. X.; Ren, M. T.; Liu, E. H.; Li, B.; Qi, L. W.; Li, P., Characterization of novel astragaloside malonates from Radix Astragali by HPLC with ESI quadrupole TOF MS. Journal of separation science 2010, 33, 570-581. Church, F. C.; Swaisgood, H. E.; Porter, D. H.; Catignani, G. L., Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins1. Journal of Dairy Science 1983, 66, 1219-1227. Denizot, F.; Lang, R., Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. Journal of immunological methods 1986, 89, 271-277. Duan, L. j.; Sun, B. h., Research reviews on astragaloside Ⅳ. Journal of Shenyang Pharmaceutical University 2011, 5, 020. Engle, M.; Goetz, G.; Alpers, D., Caco‐2 cells express a combination of colonocyte and enterocyte phenotypes. Journal of cellular physiology 1998, 174, 362-369. Gai, Q. Y.; Jiao, J.; Luo, M.; Wang, W.; Yao, L. P.; Fu, Y. J., Deacetylation biocatalysis and elicitation by immobilized Penicillium canescens in Astragalus membranaceus hairy root cultures: towards the enhanced and sustainable production of astragaloside IV. Plant biotechnology journal 2017, 15, 297-305. Gavrovic-Jankulovic, M.; Willemsen, L. E., Epithelial models to study food allergen-induced barrier disruption and immune activation. Drug Discovery Today: Disease Models 2016, 17, 29-36. Hao, W.-L.; Lee, Y.-K., Microflora of the gastrointestinal tract: a review. Public Health Microbiology: Methods and Protocols 2004, 491-502. Hase, K.; Kawano, K.; Nochi, T.; Pontes, G. S.; Fukuda, S.; Ebisawa, M.; Kadokura, K.; Tobe, T.; Fujimura, Y.; Kawano, S., Uptake through glycoprotein 2 of FimH+ bacteria by M cells initiates mucosal immune response. Nature 2009, 462, 226-230. Horton, C.; Shanmugarajah, K.; Fairchild, P. J., Harnessing the properties of dendritic cells in the pursuit of immunological tolerance. Biomedical Journal 2017. Huang, C.-H.; Liu, D.-Z.; Jan, T.-R., Diosgenin, a plant-derived sapogenin, enhances regulatory T-cell immunity in the intestine of mice with food allergy. Journal of natural products 2010, 73, 1033-1037. Hubo, M.; Trinschek, B.; Kryczanowsky, F.; Tuettenberg, A.; Steinbrink, K.; Jonuleit, H., Costimulatory molecules on immunogenic versus tolerogenic human dendritic cells. Frontiers in immunology 2013, 4. Ionkova, I.; Momekov, G.; Proksch, P., Effects of cycloartane saponins from hairy roots of Astragalus membranaceus Bge., on human tumor cell targets. Fitoterapia 2010, 81, 447-451. Kagnoff, M. F., The intestinal epithelium is an integral component of a communications network. The Journal of clinical investigation 2014, 124, 2841. Kiyono, H.; Fukuyama, S., NALT-versus Peyer's-patch-mediated mucosal immunity. Nature Reviews Immunology 2004, 4, 699-710. Lai, P. K. K.; Chan, J. Y. W.; Cheng, L.; Lau, C. P.; Han, S. Q. B.; Leung, P. C.; Fung, K. P.; Lau, C. B. S., Isolation of Anti‐Inflammatory Fractions and Compounds from the Root of Astragalus membranaceus. Phytotherapy Research 2013, 27, 581-587. Lawrence, T., The nuclear factor NF-κB pathway in inflammation. Cold Spring Harbor perspectives in biology 2009, 1, a001651. Lee, K. Y.; Jeon, Y. J., Macrophage activation by polysaccharide isolated from Astragalus membranaceus. International Immunopharmacology 2005, 5, 1225-1233. Lee, Y. S.; Han, O. K.; Park, C. W.; Yang, C. H.; Jeon, T. W.; Yoo, W. K.; Kim, S. H.; Kim, H. J., Pro-inflammatory cytokine gene expression and nitric oxide regulation of aqueous extracted Astragali radix in RAW 264.7 macrophage cells. Journal of ethnopharmacology 2005, 100, 289-294. Leonard, F.; Collnot, E.-M.; Lehr, C.-M., A three-dimensional coculture of enterocytes, monocytes and dendritic cells to model inflamed intestinal mucosa in vitro. Molecular pharmaceutics 2010, 7, 2103-2119. Li, J.; Huang, L.; Wang, S.; Yao, Y.; Zhang, Z., Astragaloside IV attenuates inflammatory reaction via activating immune function of regulatory T-cells inhibited by HMGB1 in mice. Pharmaceutical biology 2016, 54, 3217-3225. Li, W.; Sun, Y. N.; Yan, X. T.; Yang, S. Y.; Kim, S.; Lee, Y. M.; Koh, Y.-S.; Kim, Y. H., Flavonoids from Astragalus membranaceus and their inhibitory effects on LPS-stimulated pro-inflammatory cytokine production in bone marrow-derived dendritic cells. Archives of pharmacal research 2014, 37, 186-192. Lin, L.-Z.; He, X.-G.; Lindenmaier, M.; Nolan, G.; Yang, J.; Cleary, M.; Qiu, S.-X.; Cordell, G. A., Liquid chromatography–electrospray ionization mass spectrometry study of the flavonoids of the roots of Astragalus mongholicus and A. membranaceus. Journal of Chromatography A 2000, 876, 87-95. Liu, B.-G.; Jia, X.-M.; Cao, Y.-Y.; Chen, S.-H.; Gao, P.-H.; Wang, Y.; Jiang, Y.-Y.; Cao, Y.-B., Changtai granule, a traditional Chinese drug, protects hapten-induced colitis by attenuating inflammatory and immune dysfunctions. Journal of ethnopharmacology 2008, 115, 1-8. Liu, J.; Hu, X.; Yang, Q.; Yu, Z.; Zhao, Z.; Yi, T.; Chen, H., Comparison of the immunoregulatory function of different constituents in radix astragali and radix hedysari. BioMed Research International 2010. Ma, H.-D.; Deng, Y.-R.; Tian, Z.; Lian, Z.-X., Traditional Chinese medicine and immune regulation. Clinical Reviews in Allergy and Immunology 2013, 1-13. Ma, X.; Guo, D., Biotransformation methods for bioactive compounds in traditional chinese medicines. Chin J Nat Med 2007, 5, 162. Ma, X. Q.; Shi, Q.; Duan, J.; Dong, T. T.; Tsim, K. W., Chemical analysis of Radix Astragali (Huangqi) in China: a comparison with its adulterants and seasonal variations. Journal of agricultural and food chemistry 2002, 50, 4861-4866. Mantis, N. J.; Rol, N.; Corthésy, B., Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut. Mucosal immunology 2011, 4, 603-611. Martínez-Augustin, O.; Rivero-Gutiérrez, B.; Mascaraque, C.; Sánchez de Medina, F., Food derived bioactive peptides and intestinal barrier function. International journal of molecular sciences 2014, 15, 22857-22873. Masuko, T.; Minami, A.; Iwasaki, N.; Majima, T.; Nishimura, S.-I.; Lee, Y. C., Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Analytical biochemistry 2005, 339, 69-72. Maynard, C. L.; Elson, C. O.; Hatton, R. D.; Weaver, C. T., Reciprocal interactions of the intestinal microbiota and immune system. Nature 2012, 489, 231-241. Miller, G. L., Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical chemistry 1959, 31, 426-428. Mowat, A. M.; Agace, W. W., Regional specialization within the intestinal immune system. Nature Reviews Immunology 2014, 14, 667-685. Murphy, K.; Weaver, C., Janeway's immunobiology. Garland Science: 2016. Natoli, M.; Leoni, B. D.; D’Agnano, I.; Zucco, F.; Felsani, A., Good Caco-2 cell culture practices. Toxicology in vitro 2012, 26, 1243-1246. Niu, Y.; Wang, H.; Xie, Z.; Whent, M.; Gao, X.; Zhang, X.; Zou, S.; Yao, W.; Yu, L., Structural analysis and bioactivity of a polysaccharide from the roots of Astragalus membranaceus (Fisch) Bge. var. mongolicus (Bge.) Hsiao. Food chemistry 2011, 128, 620-626. Oeckinghaus, A.; Ghosh, S., The NF-κB family of transcription factors and its regulation. Cold Spring Harbor perspectives in biology 2009, 1, a000034. Ostos, M. A.; Recalde, D.; Zakin, M. M.; Scott-Algara, D., Implication of natural killer t cells in atherosclerosis development during a LPS‐induced chronic inflammation. FEBS letters 2002, 519, 23-29. Park, S.-G.; Lee, D.-Y.; Seo, S.-K.; Lee, S.-W.; Kim, S.-K.; Jung, W.-K.; Kang, M.-S.; Choi, Y. H.; Yea, S. S.; Choi, I., Evaluation of anti-allergic properties of caffeic acid phenethyl ester in a murine model of systemic anaphylaxis. Toxicology and applied pharmacology 2008, 226, 22-29. Perez-Lopez, A.; Behnsen, J.; Nuccio, S.-P.; Raffatellu, M., Mucosal immunity to pathogenic intestinal bacteria. Nature Reviews Immunology 2016, 16, 135-148. Pokusaeva, K.; Fitzgerald, G. F.; van Sinderen, D., Carbohydrate metabolism in Bifidobacteria. Genes & nutrition 2011, 6, 285-306. Rescigno, M.; Urbano, M.; Valzasina, B.; Francolini, M.; Rotta, G.; Bonasio, R.; Granucci, F.; Kraehenbuhl, J.-P.; Ricciardi-Castagnoli, P., Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nature immunology 2001, 2, 361-367. Ryu, M.; Kim, E. H.; Chun, M.; Kang, S.; Shim, B.; Yu, Y.-B.; Jeong, G.; Lee, J.-S., Astragali Radix elicits anti-inflammation via activation of MKP-1, concomitant with attenuation of p38 and Erk. Journal of ethnopharmacology 2008, 115, 184-193. Sallusto, F.; Schaerli, P.; Loetscher, P.; Schaniel, C.; Lenig, D.; Mackay, C. R.; Qin, S.; Lanzavecchia, A., Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. European journal of immunology 1998, 28, 2760-2769. Sallusto, F.; Lanzavecchia, A., Mobilizing dendritic cells for tolerance, priming, and chronic inflammation. Journal of Experimental Medicine 1999, 189, 611-614. Schepetkin, I. A.; Quinn, M. T., Botanical polysaccharides: macrophage immunomodulation and therapeutic potential. International immunopharmacology 2006, 6, 317-333. Shao, B.-M.; Xu, W.; Dai, H.; Tu, P.; Li, Z.; Gao, X.-M., A study on the immune receptors for polysaccharides from the roots of Astragalus membranaceus, a Chinese medicinal herb. Biochemical and biophysical research communications 2004, 320, 1103-1111. Shin, K. M.; Shen, L.; Park, S. J.; Jeong, J. H.; Lee, K. T., Bis‐(3‐hydroxyphenyl) diselenide inhibits LPS‐stimulated iNOS and COX‐2 expression in RAW 264.7 macrophage cells through the NF‐kB inactivation. Journal of Pharmacy and Pharmacology 2009, 61, 479-486. Srinivasan, B.; Kolli, A. R.; Esch, M. B.; Abaci, H. E.; Shuler, M. L.; Hickman, J. J., TEER measurement techniques for in vitro barrier model systems. Journal of laboratory automation 2015, 20, 107-126. Steinman, R., The control of immunity and tolerance by dendritic cells. Pathologie Biologie 2003, 51, 59-60. Susewind, J.; de Souza Carvalho-Wodarz, C.; Repnik, U.; Collnot, E.-M.; Schneider-Daum, N.; Griffiths, G. W.; Lehr, C.-M., A 3D co-culture of three human cell lines to model the inflamed intestinal mucosa for safety testing of nanomaterials. Nanotoxicology 2016, 10, 53-62. Tang, M.; Martino, D., Oral immunotherapy and tolerance induction in childhood. Pediatric Allergy and Immunology 2013, 24, 512-520. Vighi, G.; Marcucci, F.; Sensi, L.; Di Cara, G.; Frati, F., Allergy and the gastrointestinal system. Clinical & Experimental Immunology 2008, 153, 3-6. Visser, J.; Rozing, J.; Sapone, A.; Lammers, K.; Fasano, A., Tight junctions, intestinal permeability, and autoimmunity. Annals of the New York Academy of Sciences 2009, 1165, 195-205. Walker, A.; Cerdeño-Tárraga, A.; Bentley, S., Faecal matters. Nature Reviews Microbiology 2006, 4, 572-573. Wan, C.-p.; Gao, L.-x.; Hou, L.-f.; Yang, X.-q.; He, P.-l.; Yang, Y.-f.; Tang, W.; Yue, J.-m.; Li, J.; Zuo, J.-p., Astragaloside II triggers T cell activation through regulation of CD45 protein tyrosine phosphatase activity. Acta Pharmacologica Sinica 2013, 34, 522-530. Wang, C.-H.; Lin, J.-H.; Lu, T.-J.; Chiang, A.-N.; Chiou, S.-T.; Chen, Y.-A.; Pan, M.-H.; Hsieh, S.-C., Establishment of reporter platforms capable of detecting NF-κB mediated immuno-modulatory activity. Journal of agricultural and food chemistry 2013a, 61, 12582-12587. Wang, X.; Li, Y.; Yang, X.; Yao, J., Astragalus polysaccharide reduces inflammatory response by decreasing permeability of LPS-infected Caco2 cells. International journal of biological macromolecules 2013b, 61, 347-352. Wang, Y.-P.; Li, X.-Y.; Song, C.-Q.; Hu, Z.-B., Effect of astragaloside IV on T, B lymphocyte proliferation and peritoneal macrophage function in mice. Acta Pharmacologica Sinica 2002, 23, 263-266. Wei, W.; Xiao, H.-T.; Bao, W.-R.; Ma, D.-L.; Leung, C.-H.; Han, X.-Q.; Ko, C.-H.; Bik-San Lau, C.; Chun-Kwok, W.; Fung, K.-P., TLR-4 may mediate signaling pathways of Astragalus polysaccharide RAP induced cytokine expression of RAW264. 7 cells. Journal of ethnopharmacology 2016, 179, 243-252. Xu, D.-J.; Xia, Q.; Wang, J.-J.; Wang, P.-P., Molecular weight and monosaccharide composition of Astragalus polysaccharides. Molecules 2008, 13, 2408-2415. Xu, H.; You, C.; Zhang, R.; Gao, P.; Wang, Z., Effects of Astragalus polysaccharides and astragalosides on the phagocytosis of Mycobacterium tuberculosis by macrophages. Journal of international medical research 2007, 35, 84-90. Ye, L.; Liu, X.-H.; Zhou, W.; Feng, M.-Q.; Shi, X.-L.; Li, J.-Y.; Chen, D.-F.; Zhou, P., Microbial transformation of astragalosides to astragaloside IV by Absidia corymbifera AS2. Process biochemistry 2011, 46, 1724-1730. Yesilada, E.; Bedir, E.; Çalış, İ.; Takaishi, Y.; Ohmoto, Y., Effects of triterpene saponins from Astragalus species on in vitro cytokine release. Journal of ethnopharmacology 2005, 96, 71-77. Yin, G.; Wiegertjes, G.; Li, Y.; Schrama, J.; Verreth, J.; Xu, P.; Zhou, H., Effect of Astragalus radix on proliferation and nitric oxide production of head kidney macrophages in Cyprinus carpio: an in vitro study. Shuichan xuebao 2003, 28, 628-632. Yoo, S.; Ha, S.-J., Generation of tolerogenic dendritic cells and their therapeutic applications. Immune network 2016, 16, 52-60. Yu, S.-L.; Kuan, W.-P.; Wong, C.-K.; Li, E. K.; Tam, L.-S., Immunopathological roles of cytokines, chemokines, signaling molecules, and pattern-recognition receptors in systemic lupus erythematosus. Clinical and Developmental Immunology 2012. Zhang, L.-J.; Liu, H.-K.; Hsiao, P.-C.; Kuo, L.-M. Y.; Lee, I.-J.; Wu, T.-S.; Chiou, W.-F.; Kuo, Y.-H., New isoflavonoid glycosides and related constituents from astragali radix (Astragalus membranaceus) and their inhibitory activity on nitric oxide production. Journal of agricultural and food chemistry 2011, 59, 1131-1137. Zhang, W.-J.; Hufnagl, P.; Binder, B. R.; Wojta, J., Anti-inflammatory activity of astragaloside IV is mediated by inhibition of NF-qB activation and adhesion molecule expression. Thromb Haemost 2003, 90, 904-914. Zhao, L.-H.; Ma, Z.-X.; Zhu, J.; Yu, X.-H.; Weng, D.-P., Characterization of polysaccharide from Astragalus radix as the macrophage stimulator. Cellular immunology 2011, 271, 329-334. Zhou, R.-N.; Song, Y.-L.; Ruan, J.-Q.; Wang, Y.-T.; Yan, R., Pharmacokinetic evidence on the contribution of intestinal bacterial conversion to beneficial effects of astragaloside IV, a marker compound of astragali radix, in traditional oral use of the herb. Drug metabolism and pharmacokinetics 2012, 27, 586-597. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67722 | - |
dc.description.abstract | 腸道黏膜佔有人體 70 % 的淋巴組織,是身體最頻繁與外界抗原接觸的場所,因此調節腸黏膜的免疫反應與耐受性,是促進全身性免疫平衡的重要標的。在衛生福利部認可的藥食同源中草藥中,黃耆(Radix Astragali)在免疫調節方面擁有豐碩的研究成果。此外,利用微生物進行中草藥的加工炮製,可望透過微生物對其成分進行生物轉換,提升生理活性。本實驗利用Bifidobacterium infantis (BCRC14602)、B. adolescentis(BCRC14606)、B. bifidum(BCRC14615)、B. longum(BCRC14634)及B. animalis subsp. Lactis(BB-12)進行黃耆的發酵,得到黃耆發酵產物(Fermented Radix Astragali, FRA),並與未發酵之黃耆(Non-fermented Radix Astragali, NRA)進行比較,探討是否能透過發酵的方式,提升黃耆的腸道黏膜免疫調節活性。實驗結果發現,在非特異性免疫方面,經BCRC 14615、14634與BB-12發酵的黃耆與NFR相比,可顯著促進RAW 264.7的NF-κB轉錄活性,且FRA對LPS誘導之NO生成具有更佳的抑制作用。接著以分化的Caco-2細胞模擬類小腸上皮細胞,發現在給予BCRC 14606與BB-12發酵的黃耆後,可在不影響細胞生長的前提下,顯著提升跨上皮細胞電阻(TEER),促進Caco-2細胞間的緊密連結,以強化腸道上皮的屏障功能。另一方面,以NRA及BCRC 14606、BB-12發酵黃耆處理THP-1誘導的未成熟樹突細胞,可抑制其表面MHC II與共同刺激分子(CD40、CD80、CD86)的表現,限制樹突細胞的成熟及活化適應性免疫反應的能力。在Caco-2與THP-1誘導的未成熟樹突細胞所建構的共培養模式中,極化上皮細胞的存在使得樹突細胞具有較高的耐受性,讓共培養系統更能模擬實際腸黏膜免疫環境。在共培養系統下,NRA與BCRC 14606、BB-12發酵黃耆可誘導正常生理狀態下的樹突細胞產生免疫耐受性,並抑制LPS活化的MHC II、共同刺激分子及促發炎細胞激素(IL-1β與IL-6)的表達,使樹突細胞保持在未成熟狀態,藉此阻止適應性免疫反應的發生,恢復腸黏膜的免疫平衡狀態。最後,透過NRA與FRA中的活性物質分析,推測Bifidobacterium spp.可對黃耆中極性較高的成分進行生物轉換作用,提升極性較低之成分(例如黃耆皂苷AS I – IV)的含量,因而提升黃耆的腸黏膜免疫調節活性。綜合以上實驗結果,本實驗所製備出的黃耆發酵產物有作為腸黏膜免疫調節膳食補充劑的潛力。未來可針對黃耆發酵前後的活性成分變化作進一步的分析,以釐清黃耆發酵產物中具有腸黏膜免疫調節活性的關鍵成分。 | zh_TW |
dc.description.abstract | Gut-associated lymphoid tissue (GALT) represents approximately 70 % of the entire immune system, and it is the main route of contact with the external antigens. Therefore, regulation of immune response and tolerance of gut mucosal immune system is essential for promoting systemic immune balance. Radix Astragali is an important traditional Chinese medicine widely used in regulating immune system, and it is also approved by the Ministry of Health and Welfare to be used as a food ingredient due to its safety. Since fermentation is often used for processing Chinese herbal medicine to enhance its bioactivity. In this study, we fermented Radix Astragali by using Bifidobacterium infantis (BCRC14602), B. adolescentis (BCRC14606), B. bifidum (BCRC14615), B. longum (BCRC14634) and B. animalis subsp. Lactis (BB-12) to get fermented Radix Astragali (FRA) in comparison with non-fermented Radix Astragali (NRA). The purpose of this study was to investigate whether the gut mucosal immunomodulatory activity of Radix Astragali can be improved by fermentation. In respect of non-specific immunity, the expression of NF-κB in RAW 264.7 was significantly enhanced by BCRC 14615, 14634 and BB-12 FRA compared with NRA, and FRA had a better inhibitory effect on LPS-induced NO production. Then we used differentiated Caco-2 cells to mimic small intestinal epithelial cells. Results showed that BCRC 14606 and BB-12 FRA could significantly increase transepithelial electrical resistance (TEER) without influening cell growth. It appeared that BCRC 14606 and BB-12 FRA can promote tight junction between Caco-2 cells thus enhance the intestinal barrier function. On the other hand, we found that NRA, BCRC 14606 FRA and BB-12 FRA could inhibit the expression of MHC II and co-stimulatory molecules (CD40, CD80, CD86) on THP-1 induced immature dendritic cells, which in term limit the maturation of dendritic cells and prevent the activation of adaptive immune responses. We further constructed an in vitro co-culture model using differentiated Caco-2 cells and THP-1 induced immature dendritic cells. We found that the dendritic cells in the environment of polarized epithelial cells had a higher tolerance, thus the co-culture model is more similar to human gut mucosal immune environment. In this co-culture model, NRA, BCRC 14606 FRA and BB-12 FRA could induce dendritic cells to yield immune tolerance in normal physiological state and inhibit the expression of MHC II, co-stimulatory molecules and pro-inflammatory cytokines (IL-1β and IL-6), which keeps dendritic cells in immature state and prevents the activation of adaptive immune responses. As a result, the fermentation samples we used can restore the immune homeostasis of gut mucosa. Finally, by the analyses of the active compontents of NRA and FRA, we found that the Bifidobacterium spp. could transform the high polarity compounds in Radix Astragali and increase the content of low polarity compounds such as astragalus saponins (asrtragaloside I-IV), and thus enhanced the gut mucosal immunoregulatory activity of Radix Astragali. In conclusion, our Radix Astragali fermentation products may have the potential to be a dietary supplement for gut mucosal immunoregulation. In the future, we should conduct more analyses and compared the changes in the active ingredients before and after fermentation, thus we may be able to identify the key compounds in fermented Radix Astragali, which have gut mucosal immunomodulatory activity. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:46:06Z (GMT). No. of bitstreams: 1 ntu-106-R04641006-1.pdf: 3912790 bytes, checksum: de10f7d09e0170248afef2614fbb0974 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 謝誌 i
中文摘要 iii Abstract v 目錄 vii 圖目錄 xi 第一章、文獻回顧 1 第一節、腸道黏膜免疫(Gut mucosal immunity)系統的相關介紹 1 1.1 腸道黏膜免疫系統的組成 1 1.2 腸道黏膜的防禦機制 4 1.2.1 非免疫性防禦 4 1.2.2 免疫性防禦 6 第二節、中草藥在腸黏膜免疫系統的調控機制 12 2.1 調節腸道淋巴細胞亞群比例 13 2.2 調節腸道黏膜淋巴細胞激素表達 13 2.3 促進腸道黏膜sIgA生成 14 2.4 調節腸道共生菌群 15 第三節、黃耆的相關介紹 16 3.1 黃耆的基本介紹 16 3.2 黃耆的活性成分與生理活性 17 3.2.1 黃耆多醣(Astragalus polysaccharides) 17 3.2.2黃耆皂苷(Astragalus saponins) 20 3.2.3黃酮類化合物(Flavonoids) 22 3.3 發酵黃耆的相關研究 24 第四節、模擬人體腸道黏膜之體外模型 26 第二章、研究目的與架構 29 第一節、研究目的 29 第二節、實驗架構 30 第三章、材料與方法 31 第一節、實驗材料 31 1.1 發酵基質 31 1.2 發酵菌種 31 1.3細胞株來源 31 第二節、藥品試劑 32 第三節、儀器設備 35 第四節、實驗方法 36 4.1 黃耆發酵樣品製備 36 4.1.1 黃耆樣品前處理 36 4.1.2 菌種活化 36 4.1.3 菌種保存 36 4.1.4 黃耆發酵基本流程 36 4.1.5 固形物含量測定 37 4.2 黃耆發酵前後產物之監控與分析 37 4.2.1 還原糖含量測定 37 4.2.2 蛋白質含量測定 38 4.2.3 胜肽含量測定 39 4.2.4 水溶性粗多醣含量測定 39 4.2.5 黃耆皂苷指紋圖譜(fingerprints)分析 40 4.3 細胞培養 42 4.3.1細胞培養條件 42 4.3.2 細胞活化 42 4.3.3 細胞繼代培養 42 4.3.4 細胞冷凍保存 43 4.4 發酵樣品配製 43 4.5 細胞存活率試驗(MTT assay) 44 4.6 發酵產物免疫調節活性測定 45 4.6.1 NF-κB轉錄活性測定(Luciferase assay) 45 4.6.2 一氧化氮(NO)生成量測定 47 4.7 建構腸黏膜體外共培養模式 48 4.7.1 Caco-2上皮細胞分化 48 4.7.2 跨上皮細胞電阻測定(Transepithelial electrical resistance, TEER) 49 4.7.3 NRA/FRA對Caco-2上皮屏障作用 49 4.7.4 未成熟樹突細胞分化 50 4.7.5 NRA/FRA對THP-1誘導之未成熟樹突細胞表面標記分子的影響 51 4.7.6 流式細胞技術 51 4.7.7 NRA/FRA對腸黏膜共培養模式免疫活性測試 52 4.7.9 培養液細胞激素測定 53 第四章、結果與討論 55 第一節、黃耆乳酸菌發酵產物之製備與監控 55 1.1 黃耆乳酸菌發酵條件之確立 55 1.2 黃耆乳酸菌發酵產物基本成分監控 57 1.2.1 還原糖測定 57 1.2.2 蛋白質與胜肽含量測定 59 第二節、NRA/FRA對小鼠巨噬細胞RAW 264.7之免疫調節作用 63 2.1 NRA/FRA對RAW 264.7細胞存活率之影響 63 2.2 NRA/FRA對RAW 264.7的免疫活化作用 66 2.3 NRA/FRA對RAW 264.7的抗發炎作用 70 第三節、NRA/FRA對模擬人類腸道黏膜免疫共培養系統之作用 78 3.1 NRA/FRA對人類大腸上皮細胞Caco-2之影響 78 3.1.1 NRA/FRA對Caco-2細胞存活率的影響 78 3.1.2 Caco-2分化模型的建立與NRA/FRA的上皮屏障作用 81 3.2 NRA/FRA對THP-1誘導之未成熟樹突細胞的影響 87 3.2.1 NRA/FRA對未成熟樹突細胞之細胞存活率的影響 87 3.2.2 NRA/FRA對樹突細胞成熟相關標記分子的影響 89 3.3 模擬人類腸道黏膜免疫反應之共培養系統 94 第四節、黃耆發酵前後產物功效性成分測定 102 4.1 水溶性粗多醣含量測定 102 4.2 發酵前後黃耆皂苷指紋圖譜(fingerprints)變化 104 第五章、結論 109 第六章、參考文獻 111 | |
dc.language.iso | zh-TW | |
dc.title | 黃耆發酵產物對腸黏膜免疫調節作用之研究 | zh_TW |
dc.title | Effect of Radix Astragali fermentation products on gut mucosal immunomodulation | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳錦樹(Chin-shuh Chen),潘敏雄(Min-Hsiung Pan),李柏憲(Po-Hsien Li) | |
dc.subject.keyword | 腸道黏膜免疫系統,黃耆,免疫調節,生物轉換,免疫耐受性, | zh_TW |
dc.subject.keyword | gut mucosal immune system,Radix Astragali,immunomodulation,bioconversion,immune tolerance, | en |
dc.relation.page | 125 | |
dc.identifier.doi | 10.6342/NTU201701696 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-07-27 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 食品科技研究所 | zh_TW |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 3.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。