請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67674| 標題: | 單領域監督之跨領域深度解離特徵學習 Learning Cross-Domain Feature Disentanglement with Supervision from A Single Domain |
| 作者: | Yen-Cheng Liu 劉彥成 |
| 指導教授: | 王勝德(Sheng-De Wang) |
| 共同指導教授: | 王鈺強(Yu-Chiang Frank Wang) |
| 關鍵字: | 解離特徵,領域適應,對抗生成學習網路,多樣式自動編碼器, Feature Disentanglement,Domain Adaptation,Generative Adversarial Networks,Variational Autoencoder, |
| 出版年 : | 2017 |
| 學位: | 碩士 |
| 摘要: | 深度生成模型於電腦視覺與機器學習領域中,近期有顯著發展與影響。特徵解離主要在不可分析之潛在向量中分離出具有語義之個別特徵,傳統方法多為監督學習框架,少數非監督學習框架則無法確保解離語義之穩定性。本篇論文中,我們將提出深度生成類神經網路架構,在單邊領域監督之下,達成跨領域解離語義特徵學習,同時在本文中,我們應用非監督領域適應之概念,學習共同特徵解離與適應。藉由生成對抗學習架構,本文將出新式具特徵解離能力之深度學習架構,此架構將同時訓練於跨領域資料,學習出具有共同語義之分離特徵,進而在生成模型框架之下,完成單領域監督之跨領域深度解離特徵學習。本文實驗中,我們利用此深度生成架構,將原始輸入影像於潛在空間空改變屬性後,生成對應屬性之跨領域影像。同時也將呈現單邊監督情況之下,利用此深度網路架構,完成雙邊領域個別之影像分類,解決非監督領域適應影像分類問題。 The recent progress and development of deep generative models have led to remarkable improvements in research topics in computer vision and machine learning. In this article, the task of cross-domain feature disentanglement is addressed. This thesis advances the idea of unsupervised domain adaptation and propose to perform joint feature disentanglement and adaptation. Based on generative adversarial networks, a novel deep learning architecture with disentanglement ability is presented, which observes cross-domain image data and derives latent features with the underlying factors(e.g., attributes). As a result, our generative model is able to address cross-domain feature disentanglement with only the (attribute) supervision from the source-domain data (not the target-domain ones). In the experiments, the model is applied for generating and classifying images with particular attributes, and show that satisfactory results can be produced. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67674 |
| DOI: | 10.6342/NTU201702026 |
| 全文授權: | 有償授權 |
| 顯示於系所單位: | 電機工程學系 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 2.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
