Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67674
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王勝德(Sheng-De Wang)
dc.contributor.authorYen-Cheng Liuen
dc.contributor.author劉彥成zh_TW
dc.date.accessioned2021-06-17T01:43:28Z-
dc.date.available2017-08-02
dc.date.copyright2017-08-02
dc.date.issued2017
dc.date.submitted2017-07-26
dc.identifier.citation[1] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel, “InfoGAN: Interpretable representation learning by information maximizing
generative adversarial nets,” in Advances in Neural Information Processing Systems (NIPS), 2016
[2] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by backpropagation,” in Proceedings of the International Conference on Machine Learning (ICML), 2015.
[3] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, et al., “Generative adversarial nets,” in Advances in Neural Information Processing
Systems (NIPS), 2014.
[4] Y. Güçlütürk, U. Güçlü, R. van Lier, and M. AJ van Gerven, “Convolutional sketch inversion,” in Proceedings of the European Conference on Computer Vision (ECCV), 2016.
[5] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, et al., “beta-VAE: Learning basic visual concepts with a constrained variational framework,” in Proceedings of the International Conference on Learning Representations (ICLR), 2017.
[6] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style transfer and super-resolution,” in Proceedings of the European Conference on Computer Vision (ECCV), 2016.
[7] T. Kim, M. Cha, H. Kim, J. Lee, and J. Kim, “Learning to discover cross-domain relations with generative adversarial networks,” arXiv preprint arXiv:1703.05192, 2017.
[8] D. P. Kingma and M. Welling,” Stochastic gradient VB and the variational autoencoder,” in Proceedings of the International Conference on Learning Representations (ICLR), 2014.
[9] D. P. Kingma, S. Mohamed, D. Jimenez Rezende, and Max Welling,” Semi-supervised learning with deep generative models,” in Advances in Neural Information Processing Systems (NIPS), 2014.
[10] T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum, “Deep convolutional inverse graphics network,” in Advances in Neural Information Processing Systems (NIPS), 2015.
[11] M.-Y. Liu and O. Tuzel, “Coupled generative adversarial networks,” in Advances in Neural Information Processing Systems (NIPS), 2016.
[12] M.-Y. Liu, T. Breuel, and J. Kautz, “Unsupervised image-to- image translation networks,” arXiv preprint arXiv:1703.00848, 2017.
[13] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,” in Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015.
[14] A. Makhzani, J. Shlens, N. Jaitly, and I. Goodfellow, “Adversarial autoencoders,” in Proceedings of the International Conference on Learning Representations
(ICLR), 2016.
[15] A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with auxiliary classifier GANs,” arXiv preprint arXiv:1610.09585, 2016.
[16] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on Knowledge and Data Engineering (TKDE), 22(10):1345–1359, 2010.
[17] V. M. Patel, R. Gopalan, R. Li, and R. Chellappa, “Visual domain adaptation: A survey of recent advances,” IEEE Signal Processing Magazine, 32(3):53– 69, 2015.
[18] T. Zhou, P. Isola, J.-Y. Zhu and A. A. Efros, “Image-to- image translation with conditional adversarial nets,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
[19] P. Sangkloy, J. Lu, C. Fang, F. Yu, and J. Hays, “Scribbler: Controlling deep image synthesis with sketch and color,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
[20] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
[21] E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko, “Adversarial discriminative domain adaptation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
[22] Z. Yi, H. Zhang, P. T. Gong, et al., “DualGAN: Unsupervised dual learning for image-to- image translation,” arXiv preprint arXiv:1704.02510, 2017.
[23] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to- image translation using cycle-consistent adversarial networks,” arXiv preprint arXiv:1703.10593, 2017.
[24] Y. Bengio, A. Courville, P. Vincent, “Representation learning: A review and new perspectives,” IEEE transactions on pattern analysis and machine intelligence (PAMI), 2013
[25] A. Mahendran, A. Vedaldi, “Understanding deep image representations by inverting them,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015
[26] L. A. Gatys, A. S. Ecker, M. Bethge, “Image Style Transfer Using Convolutional Neural Networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016
[27] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” arXiv 2015
[28] A. Radford, L. Metz, S. Chintala, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks,” in Proceedings of the International Conference on Learning Representations (ICLR), 2016
[29] Y. Taigman, A. Polyak, and L. Wolf, “Unsupervised Cross-Domain Image Generation,” in Proceedings of the International Conference on Learning Representations (ICLR), 2017
[30] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, A. A. Efros, “Context Encoders: Feature Learning by Inpainting,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016
[31] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, H. Lee, “Generative Adversarial Text-to- Image Synthesis,” in Proceedings of the International Conference on Machine Learning (ICML), 2016
[32] A. Dosovitskiy, J. T. Springenberg, M. Tatarchenko, T. Brox, “Learning to Generate Chairs, Tables and Cars with Convolutional Networks,” IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2016
[33] S. Reed, Z. Akata, S. Mohan, S. Tenka, B. Schiele, H. Lee, “Learning What and Where to Draw,” in Advances in Neural Information Processing Systems (NIPS),2016.
[34] M. Arjovsky, L. Bottou, “Towards Principled Methods for Training Generative Adversarial Networks,” in Proceedings of the International Conference on Learning Representations (ICLR), 2017
[35] Z. Dai, A. Almahairi, P. Bachman, E. Hovy, and A. Courville, “Calibrating Energy-based Generative Adversarial Networks,” in Proceedings of the International Conference on Learning Representations (ICLR), 2017
[36] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen, “Improved Techniques for Training GANs,” in Advances in Neural Information Processing Systems (NIPS), 2016.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67674-
dc.description.abstract深度生成模型於電腦視覺與機器學習領域中,近期有顯著發展與影響。特徵解離主要在不可分析之潛在向量中分離出具有語義之個別特徵,傳統方法多為監督學習框架,少數非監督學習框架則無法確保解離語義之穩定性。本篇論文中,我們將提出深度生成類神經網路架構,在單邊領域監督之下,達成跨領域解離語義特徵學習,同時在本文中,我們應用非監督領域適應之概念,學習共同特徵解離與適應。藉由生成對抗學習架構,本文將出新式具特徵解離能力之深度學習架構,此架構將同時訓練於跨領域資料,學習出具有共同語義之分離特徵,進而在生成模型框架之下,完成單領域監督之跨領域深度解離特徵學習。本文實驗中,我們利用此深度生成架構,將原始輸入影像於潛在空間空改變屬性後,生成對應屬性之跨領域影像。同時也將呈現單邊監督情況之下,利用此深度網路架構,完成雙邊領域個別之影像分類,解決非監督領域適應影像分類問題。zh_TW
dc.description.abstractThe recent progress and development of deep generative models have led to remarkable improvements in research topics in computer vision and machine learning. In this article, the task of cross-domain feature disentanglement is addressed. This thesis advances the idea of unsupervised domain adaptation and propose to perform joint feature disentanglement and adaptation. Based on generative adversarial networks, a novel deep learning architecture with disentanglement ability is presented, which observes cross-domain image data and derives latent features with the underlying factors(e.g., attributes). As a result, our generative model is able to address cross-domain feature disentanglement with only the (attribute) supervision from the source-domain data (not the target-domain ones). In the experiments, the model is applied for generating and classifying images with particular attributes, and show that satisfactory results can be produced.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:43:28Z (GMT). No. of bitstreams: 1
ntu-106-R04921003-1.pdf: 2225062 bytes, checksum: 9466a74e02e531cdf9bc726a44ce0091 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents誌謝................................................................................................................................... i
中文摘要.......................................................................................................................... ii
ABSTRACT .................................................................................................................... iii
CONTENTS .................................................................................................................... iv
LIST OF FIGURES......................................................................................................... vi
LIST OF TABLES......................................................................................................... viii
Chapter 1 Introduction..............................................................................................1
Chapter 2 Preliminaries ............................................................................................5
2.1 Generative Adversarial Networks...................................................................5
2.2 Variational Autoencoder .................................................................................6
2.3 Perceptual Loss...............................................................................................8
Chapter 3 Related Works..........................................................................................9
3.1 Image Synthesis and Image-to-Image Translation .........................................9
3.2 Feature Disentanglement for Image Synthesis.............................................10
3.3 Adaptation Across Visual Domains..............................................................11
Chapter 4 Methodology ...........................................................................................13
4.1 Problem Definition and Notation..................................................................13
4.2 Learning Disentangled Feature Representation in a Single Domain............14
4.3 Learning Cross-Domain Disentangled Representation ................................17
4.4 Objectives of Cross-Domain Disentanglement ............................................20
Chapter 5 Experiment .............................................................................................22
5.1 Implementation.............................................................................................22
5.2 Training Detail..............................................................................................23
5.3 Conditional Image Synthesis and Translation ..............................................25
5.4 Cross-Domain Visual Classification.............................................................27
Chapter 6 Conclusion ..............................................................................................30
REFERENCE ..................................................................................................................31
dc.language.isoen
dc.subject解離特徵zh_TW
dc.subject對抗生成學習網路zh_TW
dc.subject多樣式自動編碼器zh_TW
dc.subject領域適應zh_TW
dc.subjectFeature Disentanglementen
dc.subjectDomain Adaptationen
dc.subjectGenerative Adversarial Networksen
dc.subjectVariational Autoencoderen
dc.title單領域監督之跨領域深度解離特徵學習zh_TW
dc.titleLearning Cross-Domain Feature Disentanglement with Supervision from A Single Domainen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.coadvisor王鈺強(Yu-Chiang Frank Wang)
dc.contributor.oralexamcommittee李宏毅(Hung-yi Lee),邱維辰(Wei-Chen Chiu)
dc.subject.keyword解離特徵,領域適應,對抗生成學習網路,多樣式自動編碼器,zh_TW
dc.subject.keywordFeature Disentanglement,Domain Adaptation,Generative Adversarial Networks,Variational Autoencoder,en
dc.relation.page35
dc.identifier.doi10.6342/NTU201702026
dc.rights.note有償授權
dc.date.accepted2017-07-27
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
2.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved