請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67674完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王勝德(Sheng-De Wang) | |
| dc.contributor.author | Yen-Cheng Liu | en |
| dc.contributor.author | 劉彥成 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:43:28Z | - |
| dc.date.available | 2017-08-02 | |
| dc.date.copyright | 2017-08-02 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-07-26 | |
| dc.identifier.citation | [1] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel, “InfoGAN: Interpretable representation learning by information maximizing
generative adversarial nets,” in Advances in Neural Information Processing Systems (NIPS), 2016 [2] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by backpropagation,” in Proceedings of the International Conference on Machine Learning (ICML), 2015. [3] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, et al., “Generative adversarial nets,” in Advances in Neural Information Processing Systems (NIPS), 2014. [4] Y. Güçlütürk, U. Güçlü, R. van Lier, and M. AJ van Gerven, “Convolutional sketch inversion,” in Proceedings of the European Conference on Computer Vision (ECCV), 2016. [5] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, et al., “beta-VAE: Learning basic visual concepts with a constrained variational framework,” in Proceedings of the International Conference on Learning Representations (ICLR), 2017. [6] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style transfer and super-resolution,” in Proceedings of the European Conference on Computer Vision (ECCV), 2016. [7] T. Kim, M. Cha, H. Kim, J. Lee, and J. Kim, “Learning to discover cross-domain relations with generative adversarial networks,” arXiv preprint arXiv:1703.05192, 2017. [8] D. P. Kingma and M. Welling,” Stochastic gradient VB and the variational autoencoder,” in Proceedings of the International Conference on Learning Representations (ICLR), 2014. [9] D. P. Kingma, S. Mohamed, D. Jimenez Rezende, and Max Welling,” Semi-supervised learning with deep generative models,” in Advances in Neural Information Processing Systems (NIPS), 2014. [10] T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum, “Deep convolutional inverse graphics network,” in Advances in Neural Information Processing Systems (NIPS), 2015. [11] M.-Y. Liu and O. Tuzel, “Coupled generative adversarial networks,” in Advances in Neural Information Processing Systems (NIPS), 2016. [12] M.-Y. Liu, T. Breuel, and J. Kautz, “Unsupervised image-to- image translation networks,” arXiv preprint arXiv:1703.00848, 2017. [13] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,” in Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015. [14] A. Makhzani, J. Shlens, N. Jaitly, and I. Goodfellow, “Adversarial autoencoders,” in Proceedings of the International Conference on Learning Representations (ICLR), 2016. [15] A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with auxiliary classifier GANs,” arXiv preprint arXiv:1610.09585, 2016. [16] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on Knowledge and Data Engineering (TKDE), 22(10):1345–1359, 2010. [17] V. M. Patel, R. Gopalan, R. Li, and R. Chellappa, “Visual domain adaptation: A survey of recent advances,” IEEE Signal Processing Magazine, 32(3):53– 69, 2015. [18] T. Zhou, P. Isola, J.-Y. Zhu and A. A. Efros, “Image-to- image translation with conditional adversarial nets,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. [19] P. Sangkloy, J. Lu, C. Fang, F. Yu, and J. Hays, “Scribbler: Controlling deep image synthesis with sketch and color,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. [20] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014. [21] E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko, “Adversarial discriminative domain adaptation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. [22] Z. Yi, H. Zhang, P. T. Gong, et al., “DualGAN: Unsupervised dual learning for image-to- image translation,” arXiv preprint arXiv:1704.02510, 2017. [23] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to- image translation using cycle-consistent adversarial networks,” arXiv preprint arXiv:1703.10593, 2017. [24] Y. Bengio, A. Courville, P. Vincent, “Representation learning: A review and new perspectives,” IEEE transactions on pattern analysis and machine intelligence (PAMI), 2013 [25] A. Mahendran, A. Vedaldi, “Understanding deep image representations by inverting them,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015 [26] L. A. Gatys, A. S. Ecker, M. Bethge, “Image Style Transfer Using Convolutional Neural Networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016 [27] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” arXiv 2015 [28] A. Radford, L. Metz, S. Chintala, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks,” in Proceedings of the International Conference on Learning Representations (ICLR), 2016 [29] Y. Taigman, A. Polyak, and L. Wolf, “Unsupervised Cross-Domain Image Generation,” in Proceedings of the International Conference on Learning Representations (ICLR), 2017 [30] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, A. A. Efros, “Context Encoders: Feature Learning by Inpainting,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016 [31] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, H. Lee, “Generative Adversarial Text-to- Image Synthesis,” in Proceedings of the International Conference on Machine Learning (ICML), 2016 [32] A. Dosovitskiy, J. T. Springenberg, M. Tatarchenko, T. Brox, “Learning to Generate Chairs, Tables and Cars with Convolutional Networks,” IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2016 [33] S. Reed, Z. Akata, S. Mohan, S. Tenka, B. Schiele, H. Lee, “Learning What and Where to Draw,” in Advances in Neural Information Processing Systems (NIPS),2016. [34] M. Arjovsky, L. Bottou, “Towards Principled Methods for Training Generative Adversarial Networks,” in Proceedings of the International Conference on Learning Representations (ICLR), 2017 [35] Z. Dai, A. Almahairi, P. Bachman, E. Hovy, and A. Courville, “Calibrating Energy-based Generative Adversarial Networks,” in Proceedings of the International Conference on Learning Representations (ICLR), 2017 [36] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen, “Improved Techniques for Training GANs,” in Advances in Neural Information Processing Systems (NIPS), 2016. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67674 | - |
| dc.description.abstract | 深度生成模型於電腦視覺與機器學習領域中,近期有顯著發展與影響。特徵解離主要在不可分析之潛在向量中分離出具有語義之個別特徵,傳統方法多為監督學習框架,少數非監督學習框架則無法確保解離語義之穩定性。本篇論文中,我們將提出深度生成類神經網路架構,在單邊領域監督之下,達成跨領域解離語義特徵學習,同時在本文中,我們應用非監督領域適應之概念,學習共同特徵解離與適應。藉由生成對抗學習架構,本文將出新式具特徵解離能力之深度學習架構,此架構將同時訓練於跨領域資料,學習出具有共同語義之分離特徵,進而在生成模型框架之下,完成單領域監督之跨領域深度解離特徵學習。本文實驗中,我們利用此深度生成架構,將原始輸入影像於潛在空間空改變屬性後,生成對應屬性之跨領域影像。同時也將呈現單邊監督情況之下,利用此深度網路架構,完成雙邊領域個別之影像分類,解決非監督領域適應影像分類問題。 | zh_TW |
| dc.description.abstract | The recent progress and development of deep generative models have led to remarkable improvements in research topics in computer vision and machine learning. In this article, the task of cross-domain feature disentanglement is addressed. This thesis advances the idea of unsupervised domain adaptation and propose to perform joint feature disentanglement and adaptation. Based on generative adversarial networks, a novel deep learning architecture with disentanglement ability is presented, which observes cross-domain image data and derives latent features with the underlying factors(e.g., attributes). As a result, our generative model is able to address cross-domain feature disentanglement with only the (attribute) supervision from the source-domain data (not the target-domain ones). In the experiments, the model is applied for generating and classifying images with particular attributes, and show that satisfactory results can be produced. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:43:28Z (GMT). No. of bitstreams: 1 ntu-106-R04921003-1.pdf: 2225062 bytes, checksum: 9466a74e02e531cdf9bc726a44ce0091 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 誌謝................................................................................................................................... i
中文摘要.......................................................................................................................... ii ABSTRACT .................................................................................................................... iii CONTENTS .................................................................................................................... iv LIST OF FIGURES......................................................................................................... vi LIST OF TABLES......................................................................................................... viii Chapter 1 Introduction..............................................................................................1 Chapter 2 Preliminaries ............................................................................................5 2.1 Generative Adversarial Networks...................................................................5 2.2 Variational Autoencoder .................................................................................6 2.3 Perceptual Loss...............................................................................................8 Chapter 3 Related Works..........................................................................................9 3.1 Image Synthesis and Image-to-Image Translation .........................................9 3.2 Feature Disentanglement for Image Synthesis.............................................10 3.3 Adaptation Across Visual Domains..............................................................11 Chapter 4 Methodology ...........................................................................................13 4.1 Problem Definition and Notation..................................................................13 4.2 Learning Disentangled Feature Representation in a Single Domain............14 4.3 Learning Cross-Domain Disentangled Representation ................................17 4.4 Objectives of Cross-Domain Disentanglement ............................................20 Chapter 5 Experiment .............................................................................................22 5.1 Implementation.............................................................................................22 5.2 Training Detail..............................................................................................23 5.3 Conditional Image Synthesis and Translation ..............................................25 5.4 Cross-Domain Visual Classification.............................................................27 Chapter 6 Conclusion ..............................................................................................30 REFERENCE ..................................................................................................................31 | |
| dc.language.iso | en | |
| dc.subject | 解離特徵 | zh_TW |
| dc.subject | 對抗生成學習網路 | zh_TW |
| dc.subject | 多樣式自動編碼器 | zh_TW |
| dc.subject | 領域適應 | zh_TW |
| dc.subject | Feature Disentanglement | en |
| dc.subject | Domain Adaptation | en |
| dc.subject | Generative Adversarial Networks | en |
| dc.subject | Variational Autoencoder | en |
| dc.title | 單領域監督之跨領域深度解離特徵學習 | zh_TW |
| dc.title | Learning Cross-Domain Feature Disentanglement with Supervision from A Single Domain | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 王鈺強(Yu-Chiang Frank Wang) | |
| dc.contributor.oralexamcommittee | 李宏毅(Hung-yi Lee),邱維辰(Wei-Chen Chiu) | |
| dc.subject.keyword | 解離特徵,領域適應,對抗生成學習網路,多樣式自動編碼器, | zh_TW |
| dc.subject.keyword | Feature Disentanglement,Domain Adaptation,Generative Adversarial Networks,Variational Autoencoder, | en |
| dc.relation.page | 35 | |
| dc.identifier.doi | 10.6342/NTU201702026 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-07-27 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 2.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
