Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6741
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐宏民(Winston H. Hsu)
dc.contributor.authorFang-Erh Linen
dc.contributor.author林芳而zh_TW
dc.date.accessioned2021-05-17T09:17:14Z-
dc.date.available2012-08-03
dc.date.available2021-05-17T09:17:14Z-
dc.date.copyright2012-08-03
dc.date.issued2012
dc.date.submitted2012-07-26
dc.identifier.citation[1] aNobii, “anobii,” http://www.anobii.com/.
[2] Sam S. Tsai, David Chen, Vijay Chandrasekhar, Gabriel Takacs, Ngai-Man Cheung, Ramakrishna Vedantham, Radek Grzeszczuk, and Bernd Girod, “Mobile product recognition,” in Proceedings of the international conference on Multimedia, New York, NY, USA, 2010, pp. 1587–1590, ACM.
[3] Stephan Gammeter, Alexander Gassmann, Lukas Bossard, Till Quack, and Luc Van Gool, “Server-side object recognition and client-side object tracking for mobile augmented reality,” in Proceedings of IEEE International Workshop on Mobile Vision (CVPR 2010), 2010.
[4] Christoph H. Lampert, Matthew B. Blaschko, and Thomas Hofmann, “Beyond sliding window: object localization by efficient subwindow search,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1–8.
[5] Tom Yeh, John J. Lee, and Trevor Darrell, “Fast concurrent object localization and recognition,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, June 2009, pp. 280–287.
[6] Olga Russakovsky and Andrew Y. Ng, “A steiner tree approach to efficient object detection,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, June 2010, pp. 1070–1077.
[7] Martin A. Fischler and Robert C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography,” Communications of the ACM, 1981.
[8] Sam S. Tsai, David Chen, Gabriel Takacs, Vijay Chandrasekhar, Ramakrishna Vedantham, Radek Grzeszczuk, and Bernd Girod, “Fast geometric re-ranking for image-based retrieval,” in Proceedings of IEEE International Conference on Image Processing, 2010, September 2010, pp. 1029–1032.
[9] 博客來, “博客來,” http://www.books.com.tw/.
[10] Krystian Mikolajczyk and Cordelia Schmid, “Scale and affine invariant interest point detectors,” International Journal of Computer Vision, vol. 60, pp. 63–86, 2004.
[11] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, and L. Van Gool, “A comparison of affine region detectors,” International Journal of Computer Vision, vol. 65, pp. 43–72, 2005.
[12] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust wide-baseline stereo from maximally stable extremal regions,” Image and Vision Computing, vol. 22, no. 10, pp. 761–767, 2004.
[13] David G. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, November 2004.
[14] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool, “Surf: Speeded up robust features,” in Computer Vision – ECCV 2006, Aleˇs Leonardis, Horst Bischof, and Axel Pinz, Eds., vol. 3951 of Lecture Notes in Computer Science, pp. 404–417. Springer Berlin / Heidelberg, 2006.
[15] David Chen, Sam S. Tsai, Bernd Girod, Cheng-Hsin Hsu, Kyu-Han Kim, and Jatinder Pal Singh, “Building book inventories using smartphones,” in Proceedings of the international conference on Multimedia, New York, NY, USA, 2010, pp. 651–654, ACM.
[16] James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and Andrew Zisserman, “Object retrieval with large vocabularies and fast spatial matching,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, June 2007, pp. 1–8.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6741-
dc.description.abstract由於廣大的應用範圍及講求高效率的執行速度,近年來多物件的辨識與定位成為一個重要的問題。早期的研究只有在小型的資料庫中搜尋,因此能在短時間內搜尋與定位;我們希望除了能夠在龐大的物件圖片資料庫中準確辨識目標圖片中的物件與標出位置,也能夠在短時間內完成動作。這篇論文中,我們提出兩種演算法Adaptive Window Search和Hierarchical Cluster Search,利用物件辨識系統對目標圖片進行多物件的搜尋與定位,也提出一個加速演算法FastGV以減短物件定位的時間。實驗結果顯示我們提出的演算法在多物件的辨識與定位有很高的準確率,同時有效縮短在大型物件資料庫中的搜尋與定位時間。zh_TW
dc.description.abstractMultiple object localization and recognition has been an important problem in recent years not only because of its difficulty to be time efficient but also due to many different schemes of widespread applications. In many previous works, only a limited amount of object models contribute to less computational time. However, they tend to not work efficiently together with large-scale database. In this paper, we propose two search algorithm and search-based object recognition system to recognize and localize multiple objects in an image with a large-scale database. Since we tackle this problem with the idea that users can get brief information of an item immediately after taking only a snapshot, a low response time is also taken into account. Therefore, we propose a new spatial verification algorithm to improve the speed of localizing objects. We implement the algorithms within a large-scale book recognition system and present experimental results that demonstrate the efficiency of our algorithms in terms of detection recall, precision, and speed compared to the baseline and efficient subwindow search (ESS) approaches.en
dc.description.provenanceMade available in DSpace on 2021-05-17T09:17:14Z (GMT). No. of bitstreams: 1
ntu-101-R98944005-1.pdf: 10318964 bytes, checksum: 6c8f88e34752954340149397d0af11a4 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Object Recognition System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Collecting Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Recognition and Geometric Verification . . . . . . . . . . . . . . . . . . 5
3 Multiple Object Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1 Baseline Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Adaptive Window Search (AWS) . . . . . . . . . . . . . . . . . . . . . . 8
3.2.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.2 Window Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.3 Grid-based Feature Density Matrix . . . . . . . . . . . . . . . . 11
3.3 Hierarchical Cluster Search (HCS) . . . . . . . . . . . . . . . . . . . . . 11
3.3.1 Hierarchical Agglomerative Clustering . . . . . . . . . . . . . . 12
3.3.2 Top-Down Search . . . . . . . . . . . . . . . . . . . . . . . . . 12
4 Fast Geometric Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1 Fast Geometric Re-Ranking for Image Retrieval . . . . . . . . . . . . . . 15
4.2 Fast Geometric Verification (FastGV) . . . . . . . . . . . . . . . . . . . 15
4.2.1 Matching Feature Pairs . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.2 Geometric Similarity Scoring . . . . . . . . . . . . . . . . . . . 17
4.2.3 Affine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5 Experiments and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Dataset and Ground Truth . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 Baseline, AWS, and HCS . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3.1 Recognition Results and Precision . . . . . . . . . . . . . . . . . 21
5.3.2 Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4 RANSAC and Fast Geometric Verification . . . . . . . . . . . . . . . . . 24
5.4.1 Recognition Results and Precision . . . . . . . . . . . . . . . . . 26
5.4.2 Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.5 Comparisons with Similar Works . . . . . . . . . . . . . . . . . . . . . . 26
6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
dc.language.isoen
dc.title基於搜尋系統與快速空間關係驗證之多物件辨識及定位zh_TW
dc.titleMultiple Object Localization by Search-based Object Recognition and Fast Geometric Verificationen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊奕軒(Yi-Hsuan Yang),李明穗(Ming-Sui Lee)
dc.subject.keyword多物件辨識,多物件搜尋,物件定位,關係驗證,zh_TW
dc.subject.keywordMultiple object recognition,multiple object retrieval,object localization,geometric verification,en
dc.relation.page31
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-07-27
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊網路與多媒體研究所zh_TW
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf10.08 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved