請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67062完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘敏雄(Min-Hsiung Pan) | |
| dc.contributor.author | Tzu-Ling Lee | en |
| dc.contributor.author | 李姿伶 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:18:49Z | - |
| dc.date.available | 2017-08-20 | |
| dc.date.copyright | 2017-08-20 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-11 | |
| dc.identifier.citation | Ai, C.; Ma, N.; Sun, X.; Duan, M.; Wu, S.; Yang, J.; Wen, C.; Song, S., Absorption and degradation of sulfated polysaccharide from pacific abalone in in vitro and in vivo models. Journal of Functional Foods 2017, 35, 127-133.
Arai, T.; Wang, N.; Bezouevski, M.; Welch, C.; Tall, A. R., Decreased atherosclerosis in heterozygous low density lipoprotein receptor-deficient mice expressing the scavenger receptor BI transgene. Journal of Biological Chemistry 1999, 274, 2366-2371. Ballinger, A.; Peikin, S. R., Orlistat: its current status as an anti-obesity drug. European journal of pharmacology 2002, 440, 109-117. Barberá, M. J.; Schlüter, A.; Pedraza, N.; Iglesias, R.; Villarroya, F.; Giralt, M., Peroxisome Proliferator-activated Receptor α Activates Transcription of the Brown Fat Uncoupling Protein-1 Gene A LINK BETWEEN REGULATION OF THE THERMOGENIC AND LIPID OXIDATION PATHWAYS IN THE BROWN FAT CELL. Journal of Biological Chemistry 2001, 276, 1486-1493. Bouchard, C.; Tremblay, A.; Leblanc, C.; Lortie, G.; Savard, R.; Theriault, G., A method to assess energy expenditure in children and adults. The American journal of clinical nutrition 1983, 37, 461-467. Buckley, J. D.; Howe, P., Anti‐obesity effects of long‐chain omega‐3 polyunsaturated fatty acids. Obesity reviews 2009, 10, 648-659. Butt, M. S.; Nazir, A.; Sultan, M. T.; Schroën, K., Morus alba L. nature's functional tonic. Trends in Food Science & Technology 2008, 19, 505-512. Cannon, B.; Nedergaard, J., Cell biology: Neither brown nor white. Nature 2012, 488, 286-287. Chang, Y. H.; Chang, D. M.; Lin, K. C.; Shin, S. J.; Lee, Y. J., Visfatin in overweight/obesity, type 2 diabetes mellitus, insulin resistance, metabolic syndrome and cardiovascular diseases: a meta‐analysis and systemic review. Diabetes/metabolism research and reviews 2011, 27, 515-527. Chen, W.; Yeo, S. C. M.; Elhennawy, M. G. A. A.; Lin, H.-S., Oxyresveratrol: A bioavailable dietary polyphenol. Journal of Functional Foods 2016, 22, 122-131. Chrousos, G., The role of stress and the hypothalamic-pituitary-adrenal axis in the pathogenesis of the metabolic syndrome: neuro-endocrine and target tissue-related causes. International Journal of Obesity 2000, 24, S50. Chusyd, D. E.; Wang, D.; Huffman, D. M.; Nagy, T. R., Relationships between Rodent White Adipose Fat Pads and Human White Adipose Fat Depots. Frontiers in Nutrition 2016, 3, 10. Daan, S.; Masman, D.; Groenewold, A., Avian basal metabolic rates: their association with body composition and energy expenditure in nature. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 1990, 259, R333. Dalgaard, L. T.; Pedersen, O., Uncoupling proteins: functional characteristics and role in the pathogenesis of obesity and Type II diabetes. Diabetologia 2001, 44, 946-965. de Gusmao Correia, M. L.; Haynes, W. G., Leptin, obesity and cardiovascular disease. Current opinion in nephrology and hypertension 2004, 13, 215-223. Dempersmier, J.; Sambeat, A.; Gulyaeva, O.; Paul, Sarah M.; Hudak, Carolyn S. S.; Raposo, Helena F.; Kwan, H.-Y.; Kang, C.; Wong, Roger H. F.; Sul, Hei S., Cold-Inducible Zfp516 Activates UCP1 Transcription to Promote Browning of White Fat and Development of Brown Fat. Molecular Cell 57, 235-246. Deng, J.-Y.; Hsieh, P.-S.; Huang, J.-P.; Lu, L.-S.; Hung, L.-M., Activation of Estrogen Receptor Is Crucial for Resveratrol-Stimulating Muscular Glucose Uptake via Both Insulin-Dependent and -Independent Pathways. Diabetes 2008, 57, 1814-1823. Dixon, J. B.; Zimmet, P.; Alberti, K. G.; Rubino, F.; on behalf of the International Diabetes Federation Taskforce on, E.; Prevention, Bariatric surgery: an IDF statement for obese Type 2 diabetes. Diabetic Medicine 2011, 28, 628-642. Do Amaral, C. L.; Francescato, H. D. C.; Coimbra, T. M.; Costa, R. S.; Darin, J. D. a. C.; Antunes, L. M. G.; Bianchi, M. D. L. P., Resveratrol attenuates cisplatin-induced nephrotoxicity in rats. Archives of toxicology 2008, 82, 363-370. Gambineri, A.; Pelusi, C.; Vicennati, V.; Pagotto, U.; Pasquali, R., Obesity and the polycystic ovary syndrome. International journal of obesity 2002, 26, 883. Gao, Y.; Kang, L.; Li, C.; Wang, X.; Sun, C.; Li, Q.; Liu, R.; Wang, J., Resveratrol ameliorates diabetes-induced cardiac dysfunction through AT1R-ERK/p38 MAPK signaling pathway. Cardiovascular toxicology 2016, 16, 130-137. Ge, H.; Xiong, Y.; Lemon, B.; Lee, K. J.; Tang, J.; Wang, P.; Weiszmann, J.; Hawkins, N.; Laudemann, J.; Min, X., Generation of novel long-acting globular adiponectin molecules. Journal of molecular biology 2010, 399, 113-119. Hainer, V.; Toplak, H.; Mitrakou, A., Treatment modalities of obesity. Diabetes care 2008, 31, S269-S277. Harms, M.; Seale, P., Brown and beige fat: development, function and therapeutic potential. Nature medicine 2013, 19, 1252-1263. Harwood, J. L., Fatty acid metabolism. Annual Review of Plant Physiology and Plant Molecular Biology 1988, 39, 101-138. Hattori, Y.; Suzuki, K.; Hattori, S.; Kasai, K., Metformin inhibits cytokine-induced nuclear factor κB activation via AMP-activated protein kinase activation in vascular endothelial cells. Hypertension 2006, 47, 1183-1188. Huang, P.; Galloway, C. A.; Yoon, Y., Control of Mitochondrial Morphology Through Differential Interactions of Mitochondrial Fusion and Fission Proteins. PLoS ONE 2011, 6, e20655. Hui, X.; Gu, P.; Zhang, J.; Nie, T.; Pan, Y.; Wu, D.; Feng, T.; Zhong, C.; Wang, Y.; Lam, K. S., Adiponectin enhances cold-induced browning of subcutaneous adipose tissue via promoting M2 macrophage proliferation. Cell metabolism 2015, 22, 279-290. Hull, R. L.; Willard, J. R.; Struck, M. D.; Barrow, B. M.; Brar, G. S.; Andrikopoulos, S.; Zraika, S., High fat feeding unmasks variable insulin responses in male C57BL/6 mouse substrains. Journal of Endocrinology 2017, 233, 53-64. Jarvis, P.; López-Juez, E., Biogenesis and homeostasis of chloroplasts and other plastids. Nature reviews. Molecular cell biology 2013, 14, 787. Kadowaki, T.; Yamauchi, T.; Kubota, N.; Hara, K.; Ueki, K.; Tobe, K., Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. The Journal of clinical investigation 2006, 116, 1784-1792. Karamanlidis, G.; Karamitri, A.; Docherty, K.; Hazlerigg, D. G.; Lomax, M. A., C/EBPβ reprograms white 3T3-L1 preadipocytes to a brown adipocyte pattern of gene expression. Journal of Biological Chemistry 2007, 282, 24660-24669. Kim, S.; Jin, Y.; Choi, Y.; Park, T., Resveratrol exerts anti-obesity effects via mechanisms involving down-regulation of adipogenic and inflammatory processes in mice. Biochemical Pharmacology 2011, 81, 1343-1351. Kokkoris, P.; Pi-Sunyer, F. X., Obesity and endocrine disease. Endocrinology and metabolism clinics of North America 2003, 32, 895-914. Krotkiewski, M.; Björntorp, P., Muscle tissue in obesity with different distribution of adipose tissue. Effects of physical training. International journal of obesity 1986, 10, 331-341. Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P., Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 2006, 127, 1109-1122. Le Maho, Y.; Van Kha, H. V.; Koubi, H.; Dewasmes, G.; Girard, J.; Ferre, P.; Cagnard, M., Body composition, energy expenditure, and plasma metabolites in long-term fasting geese. American Journal of Physiology-Endocrinology And Metabolism 1981, 241, E342-E354. Lepper, C.; Fan, C. M., Inducible lineage tracing of Pax7‐descendant cells reveals embryonic origin of adult satellite cells. Genesis 2010, 48, 424-436. Lin, S.; Storlien, L. H.; Huang, X.-F., Leptin receptor, NPY, POMC mRNA expression in the diet-induced obese mouse brain. Brain research 2000, 875, 89-95. Lodhi, I. J.; Wei, X.; Semenkovich, C. F., Lipoexpediency: de novo lipogenesis as a metabolic signal transmitter. Trends in Endocrinology & Metabolism 2011, 22, 1-8. Martínez de Morentin, Pablo B.; González-García, I.; Martins, L.; Lage, R.; Fernández-Mallo, D.; Martínez-Sánchez, N.; Ruíz-Pino, F.; Liu, J.; Morgan, Donald A.; Pinilla, L.; Gallego, R.; Saha, Asish K.; Kalsbeek, A.; Fliers, E.; Bisschop, Peter H.; Diéguez, C.; Nogueiras, R.; Rahmouni, K.; Tena-Sempere, M.; López, M., Estradiol Regulates Brown Adipose Tissue Thermogenesis via Hypothalamic AMPK. Cell Metabolism 2014, 20, 41-53. Matenia, D.; Mandelkow, E. M., Emerging modes of PINK1 signaling: another task for MARK2. Frontiers in molecular neuroscience 2014, 7. Mopuri, R.; Ganjayi, M.; Banavathy, K. S.; Parim, B. N.; Meriga, B., Evaluation of anti-obesity activities of ethanolic extract of Terminalia paniculata bark on high fat diet-induced obese rats. BMC Complementary and Alternative Medicine 2015, 15, 76. Nieman, L. K.; Biller, B. M. K.; Findling, J. W.; Newell-Price, J.; Savage, M. O.; Stewart, P. M.; Montori, V. M., The Diagnosis of Cushing's Syndrome: An Endocrine Society Clinical Practice Guideline. The Journal of Clinical Endocrinology & Metabolism 2008, 93, 1526-1540. Nihei, T.; Miura, Y.; Yagasaki, K., Inhibitory effect of resveratrol on proteinuria, hypoalbuminemia and hyperlipidemia in nephritic rats. Life sciences 2001, 68, 2845-2852. Ohno, H.; Shinoda, K.; Spiegelman, Bruce M.; Kajimura, S., PPARγ agonists Induce a White-to-Brown Fat Conversion through Stabilization of PRDM16 Protein. Cell Metabolism 2012, 15, 395-404. Parker, E.; Van Heek, M.; Stamford, A., Neuropeptide Y receptors as targets for anti-obesity drug development: perspective and current status. European journal of pharmacology 2002, 440, 173-187. Parkkila, S.; Vullo, D.; Maresca, A.; Carta, F.; Scozzafava, A.; Supuran, C. T., Serendipitous fragment-based drug discovery: ketogenic diet metabolites and statins effectively inhibit several carbonic anhydrases. Chemical Communications 2012, 48, 3551-3553. Peng, C.-H.; Liu, L.-K.; Chuang, C.-M.; Chyau, C.-C.; Huang, C.-N.; Wang, C.-J., Mulberry water extracts possess an anti-obesity effect and ability to inhibit hepatic lipogenesis and promote lipolysis. Journal of agricultural and food chemistry 2011, 59, 2663-2671. Petrovic, N.; Shabalina, I. G.; Timmons, J. A.; Cannon, B.; Nedergaard, J., Thermogenically competent nonadrenergic recruitment in brown preadipocytes by a PPARγ agonist. American Journal of Physiology-Endocrinology And Metabolism 2008, 295, E287-E296. Puigserver, P., Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC1-[alpha]. International journal of obesity 2005, 29, S5. Ricquier, D.; Bouillaud, F., The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochemical Journal 2000, 345, 161. Sambandam, N.; Lopaschuk, G. D., AMP-activated protein kinase (AMPK) control of fatty acid and glucose metabolism in the ischemic heart. Progress in lipid research 2003, 42, 238-256. Shan, T.; Liang, X.; Bi, P.; Kuang, S., Myostatin knockout drives browning of white adipose tissue through activating the AMPK-PGC1α-Fndc5 pathway in muscle. The FASEB Journal 2013, 27, 1981-1989. Shin, H. D.; Kim, K. S.; Cha, M. H.; Yoon, Y., The effects of UCP-1 polymorphisms on obesity phenotypes among Korean female subjects. Biochemical and Biophysical Research Communications 2005, 335, 624-630. Spiegelman, B. M.; Flier, J. S., Obesity and the regulation of energy balance. Cell 2001, 104, 531-543. Tan, H.-Y.; Iris, M.; Li, E. T.; Wang, M., Inhibitory effects of oxyresveratrol and cyanomaclurin on adipogenesis of 3T3-L1 cells. Journal of Functional Foods 2015, 15, 207-216. Tanabe, K.; Nakamura, S.; Omagari, K.; Oku, T., Repeated ingestion of the leaf extract from Morus alba reduces insulin resistance in KK-Ay mice. Nutrition Research 2011, 31, 848-854. Trigueros, L.; Peña, S.; Ugidos, A.; Sayas-Barberá, E.; Pérez-Álvarez, J.; Sendra, E., Food ingredients as anti-obesity agents: a review. Critical reviews in food science and nutrition 2013, 53, 929-942. Tsagarakis, S.; Vasiliou, V.; Kokkoris, P.; Stavropoulos, G.; Thalassinos, N., Assessment of cortisol and ACTH responses to the desmopressin test in patients with Cushing's syndrome and simple obesity. CLINICAL ENDOCRINOLOGY-OXFORD- 1999, 51, 473-478. Ukkola, O.; Tremblay, A.; Sun, G.; Chagnon, Y.; Bouchard, C., Genetic variation at the uncoupling protein 1, 2 and 3 loci and the response to long-term overfeeding. European journal of clinical nutrition 2001, 55, 1008. Valle, I.; Álvarez-Barrientos, A.; Arza, E.; Lamas, S.; Monsalve, M., PGC-1α regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovascular Research 2005, 66, 562. Van Heek, M.; Compton, D. S.; France, C. F.; Tedesco, R. P.; Fawzi, A. B.; Graziano, M. P.; Sybertz, E. J.; Strader, C. D.; Davis Jr, H. R., Diet-induced obese mice develop peripheral, but not central, resistance to leptin. Journal of Clinical Investigation 1997, 99, 385. Ventura-Clapier, R.; Garnier, A.; Veksler, V., Transcriptional control of mitochondrial biogenesis: the central role of PGC-1α. Cardiovascular research 2008, 79, 208-217. von Wettstein‐Knowles, P.; Olsen, J. G.; McGuire, K. A.; Henriksen, A., Fatty acid synthesis. The FEBS journal 2006, 273, 695-710. Waldén, T. B.; Hansen, I. R.; Timmons, J. A.; Cannon, B.; Nedergaard, J., Recruited vs. nonrecruited molecular signatures of brown,“brite,” and white adipose tissues. American Journal of Physiology-Endocrinology and Metabolism 2012, 302, E19-E31. Wang, S.; Liang, X.; Yang, Q.; Fu, X.; Rogers, C. J.; Zhu, M.; Rodgers, B.; Jiang, Q.; Dodson, M. V.; Du, M., Resveratrol induces brown-like adipocyte formation in white fat through activation of AMP-activated protein kinase (AMPK) α1. International Journal of Obesity 2015, 39, 967-976. WHO, Obesity and overweight, 2015 Wu, J.; Boström, P.; Sparks, Lauren M.; Ye, L.; Choi, Jang H.; Giang, A.-H.; Khandekar, M.; Virtanen, Kirsi A.; Nuutila, P.; Schaart, G.; Huang, K.; Tu, H.; van Marken Lichtenbelt, Wouter D.; Hoeks, J.; Enerbäck, S.; Schrauwen, P.; Spiegelman, Bruce M., Beige Adipocytes Are a Distinct Type of Thermogenic Fat Cell in Mouse and Human. Cell 150, 366-376. Wu, J.; Boström, P.; Sparks, L. M.; Ye, L.; Choi, J. H.; Giang, A.-H.; Khandekar, M.; Nuutila, P.; Schaart, G.; Huang, K.; Tu, H.; van Marken Lichtenbelt, W. D.; Hoeks, J.; Enerbäck, S.; Schrauwen, P.; Spiegelman, B. M., Beige Adipocytes are a Distinct Type of Thermogenic Fat Cell in Mouse and Human. Cell 2012, 150, 366-376. Wu, Y.-K.; Chen, C.-C.; Lin, T.-W.; Tsai, P.-C.; Kuo, C.-F., Absolute bioavailability, tissue distribution, and excretion of 2,4,5-trimethoxybenzaldehyde in rats. Journal of Functional Foods 2017, 35, 90-96. Xiao, B.; Sanders, M. J.; Underwood, E.; Heath, R.; Mayer, F.; Carmena, D.; Jing, C.; Walker, P. A.; Eccleston, J. F.; Haire, L. F.; Saiu, P.; Howell, S. A.; Aasland, R.; Martin, S. R.; Carling, D.; Gamblin, S. J., Structure of Mammalian AMPK and its regulation by ADP. Nature 2011, 472, 230-233. Xin, P.; Han, H.; Gao, D.; Cui, W.; Yang, X.; Ying, C.; Sun, X.; Hao, L., Alleviative effects of resveratrol on nonalcoholic fatty liver disease are associated with up regulation of hepatic low density lipoprotein receptor and scavenger receptor class B type I gene expressions in rats. Food and Chemical Toxicology 2013, 52, 12-18. Xin, X.; Zhou, L.; Reyes, C. M.; Liu, F.; Dong, L. Q., APPL1 mediates adiponectin-stimulated p38 MAPK activation by scaffolding the TAK1-MKK3-p38 MAPK pathway. American Journal of Physiology-Endocrinology and Metabolism 2011, 300, E103-E110. Ye, J.-M.; Doyle, P. J.; Iglesias, M. A.; Watson, D. G.; Cooney, G. J.; Kraegen, E. W., Peroxisome proliferator—activated receptor (PPAR)-α activation lowers muscle lipids and improves insulin sensitivity in high fat—fed rats. Diabetes 2001, 50, 411-417. Youngstrom, T. G.; Bartness, T. J., White adipose tissue sympathetic nervous system denervation increases fat pad mass and fat cell number. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 1998, 275, R1488-R1493. Zheng, Z.; Liu, X.; Zhao, Q.; Zhang, L.; Li, C.; Xue, Y., Regulation of UCP1 in the browning of epididymal adipose tissue by β3-adrenergic agonist: a role for microRNAs. International journal of endocrinology 2014, 2014. Zhou, Z.; Toh, S. Y.; Chen, Z.; Guo, K.; Ng, C. P.; Ponniah, S.; Lin, S.-C.; Hong, W.; Li, P., Cidea-deficient mice have lean phenotype and are resistant to obesity. Nature genetics 2003, 35, 49-56. 衛生福利部國民健康署. (2016). 成人肥胖定義 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67062 | - |
| dc.description.abstract | 肥胖已經是全球性的健康問題,且有逐年增加的趨勢。肥胖不在只是外觀上的美感問題,它更是危害人類健康的主要因子。肥胖由能量不平衡導致,當攝入的能量大於耗出時即會造成肥胖,若提高能量消耗時即可延緩肥胖的進展。腹股溝脂肪為較容易棕色化的白色脂肪,易受適當刺激後增加UCP1 (uncoupling protein 1)表現量而增加生熱作用提高能量耗出。此外,UCP1 具有基因多樣性,個體會因為帶有不同的對偶基因而對肥胖有不同的耐受性。本實驗利用Oxyresveratrol (OXY) 和Resveratrol (RES) 餵食高脂飲食誘導肥胖的C57BL/6雄性小鼠,分為正常飲食、高脂飲食 (50% energy from fat)、高脂飲食添加0.5% RES、高脂飲食添加0.1% OXY、高脂飲食添加0.5% OXY,各組n=8 ,飼養11周。結果顯示在不影響攝食量的情況下OXY顯著性的降低小鼠體重及體脂肪 (p<0.05),但不具有劑量效應,且。血清中的ALT和TG也有顯著性的降低,肝臟組織切片顯示餵食RES和OXY皆可以減少油滴累積。進一步利用即時聚合酶鏈式反應和西方墨點法分析其分子機制,結果顯示,餵食OXY可增加Nurf1和CPT1 的基因表現和Sirt1和PGC1α的蛋白質表現量,推測可能增加粒線體的生成的現象。另一方面,餵食OXY可增加UCP1, Cidea, CD137基因表現和棕色化相關的蛋白: PRDM16, PPARα, C/EBPβ而使得UCP1表現增加。同樣地,在IHC也有相同的趨勢。此外,推測餵食OXY得此功效是由MAPK-p38的活化而不是AMPK路徑。綜合以上,推測餵食OXY和RES可藉由提高增加個體的能量消耗的相關蛋白,延緩肥胖的進展。將天然物搭配平日飲食可改變個體形成”易瘦”體質,Oxyresveratrol具有開發成不易形成體脂肪之保健食品的潛力。 | zh_TW |
| dc.description.abstract | Obesity plays an important role on modern people’s health issue, obesity also bring to some disease, like type2 DM, non-alcoholic fatty liver disease (NAFLD). Our study postulated oxyresveratrol (OXY), found on mulberry, have anti-obesity effect by browning white adipose tissue (WAT), elevating uncoupling proteins expression (UCP1) on high-fat diet (50% energy from fat, HFD) animal model . Five-week-old C57BL/6 randomly separated into five groups, normal diet (ND), HFD (50% energy from fat), HFD+0.5% RES (RES), HFD+0.1% OXY (LOXY) and HFD+0.5%OXY (HOXY) for 11 weeks. Compared to HFD group, administrated OXY can siginificantly result in reduce body weight, body fat ratio, serum total triglyceride levels and alanine aminotransferase, without affecting food intake. Treatment with OXY can elevate gene expression of Nurf1 and CPT1 and protein levels of Sirt1 and PGC1α, which are related to mitochondria biogenesis and lipid oxidation. In addition to, treated with OXY significantly increased mRNA and/or protein expression of brown adipocyte markers, including UCP1, PRDM16, Cidea, PGC1α, PPARα and C/EBPβ. The result of IHC showed that treated with OXY increasing UCP1 expressions. These results suggested that an ability of browning adipose could through MAPK-p38 pathway rather than AMPK. To sum up, supplemntion with OXY and RES have similar ability of attenuate HFD fed induced obesity, owning to higher energy expenditure. Overall, our results suggest that OXY has potential to act as thermogenic agent for future applications in the prevention and treatment of metabolic syndrome and obesity. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:18:49Z (GMT). No. of bitstreams: 1 ntu-106-R04641032-1.pdf: 4652916 bytes, checksum: f4ae02add1a0e9e319dd82ace17fd29d (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口委審定書 II
謝誌 III 中文摘要 IV Abstract V Abstract Graph VI 附圖目錄 XI 附表目錄 XII 表目錄 XIII 圖目錄 XIV 縮寫表 VIII 第壹章、 緒論 9 第貳章、 文獻回顧 10 第一節 肥胖 10 (一) 背景 10 (二) 肥胖定義 10 (三) 造成肥胖的原因 12 (四) 肥胖的預防與延緩 13 第二節 脂肪組織 15 (一) 簡介 15 (二) 米色脂肪 15 (三) 脂肪的生合成 16 (四) 脂肪氧化作用 18 第三節 影響個體的能量消耗相關路徑 18 (一) AMP-activated protein kinase (AMPK) 調節 18 (二) 粒線體活性 22 (三) 棕色化的指標蛋白質 23 (四) 與棕色化相關的分子機制 25 (五) 影響人類UCP1的表現 30 (六) 脂肪激素影響肥胖 31 第四節 Oxyresveratrol介紹 32 (一) 簡介 32 (二) 生物利用率 32 (三) Resveratrol在細胞實驗中降低油滴蓄積的能力 33 (四) Resveratrol動物模式下利用棕色化脂肪細胞達到延緩肥胖進展 34 (五) Oxyresveratral 抗肥胖的潛力 34 第參章、 實驗目的與架構 35 第一節 實驗目的 35 第二節 實驗架構 35 第肆章、 材料與方法 37 第一節 實驗材料 37 第二節 試劑與藥品 38 第三節 動物飼養 39 (一) 動物品種及飼養環境 39 (二) 飼料配製 40 (三) 動物犧牲 42 第四節 分析方法 43 (一) 組織均質 43 (二) 蛋白質定量 44 (三) 西方墨點法 45 (四) 抽取RNA 49 (五) 合成cDNA 51 (六) 即時聚合酶鏈式反應 52 (七) 組織切片染色 53 (八) 免疫組織染色 57 (九) 統計分析 60 第伍章、 實驗結果 61 (一) 餵食Oxyreveratrol 對高脂飲食C57BL/6小鼠體重影響 61 (二) 餵食Oxyresveratrol 對於高脂飲食C57BL/6小鼠攝食量影響 61 (三) 餵食Oxyresveratrol 對於高脂飲食C57BL/6 小鼠肝、腎及脾影響 62 (四) 餵食Oxyresveratrol 對於高脂飲食C57BL/6小鼠血清生化數值之影響 63 (五) 餵食Oxyresveratrol 對於高脂飲食C57BL/6小鼠肝臟影響 63 (六) 餵食Oxyresveratrol 對於高脂飲食C57BL/6小鼠脂肪組織的影響 64 (七) 餵食Oxyresveratrol 對於高脂飲食C57BL/6脂肪組織Sirt1/PGC1α影響 65 (八) 餵食Oxyresveratro對於高脂飲食C57BL/6脂肪組織棕色化的影響 66 (九) 餵食Oxyresveratro對於高脂飲食C57BL/6的脂肪組織路徑影響 66 (十) 餵食Oxyresveratro對於高脂飲食C57BL/6脂肪組織棕色化相關轉錄因子影響 67 (十一) 餵食Oxyresveratrol對於高脂飲食C57BL/6脂肪組織粒線體產能效率相關因子的影響 67 (十二) 餵食Oxyresveratrol對於高脂飲食C57BL/6脂肪組織Adiponectin表現量影響 68 第陸章、 討論 69 (一) 餵食Oxyresveratrol 減少高脂飲食C57BL/6小鼠體重及攝食量 69 (二) 餵食Oxyresveratrol對於肝、腎及脾器官的影響 71 (三) 餵食Oxyresveratrol影響血清生化數值 72 (四) 餵食Oxyresveratrol 對於小鼠脂肪的影響 73 (五) 餵食Oxyresveratrol影響腹股溝脂肪產能效率的因子 74 (六) 餵食Oxyresveratrol增加腹股溝脂肪棕色化 75 (七) 餵食Oxyresveratrol 藉由MAPK –依賴P-p38啟動相關轉錄因子促使腹股溝脂肪棕色化 76 (八) 餵食Oxyresveratrol 促進粒線體產能效率而增加個體的能量消耗 78 (九) 餵食Oxyresveratrol 影響腹股溝Adiponectin的表現 79 第柒章、 結論 80 第捌章、 圖表 82 第玖章、 參考文獻 100 | |
| dc.language.iso | zh-TW | |
| dc.subject | 肥胖 | zh_TW |
| dc.subject | 能量平衡 | zh_TW |
| dc.subject | Oxyresveratrol | zh_TW |
| dc.subject | UCP1 | zh_TW |
| dc.subject | MAPK-p38 | zh_TW |
| dc.subject | Oxyresveratrol | en |
| dc.subject | UCP1 | en |
| dc.subject | MAPK-p38 | en |
| dc.subject | Energy expenditure | en |
| dc.subject | Obesity | en |
| dc.title | 研究氧化白藜蘆醇抑制高脂飲食誘導小鼠肥胖的功效及其分子機轉 | zh_TW |
| dc.title | Studies on the anti-obesity efficacy and underlying molecular mechanism of oxyresveratrol in hfd fed | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃步敏,王朝鐘,何元順,陳億乘 | |
| dc.subject.keyword | 肥胖,能量平衡,Oxyresveratrol,UCP1,MAPK-p38, | zh_TW |
| dc.subject.keyword | Obesity,UCP1,Oxyresveratrol,Energy expenditure,MAPK-p38, | en |
| dc.relation.page | 107 | |
| dc.identifier.doi | 10.6342/NTU201703055 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-13 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 4.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
