請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6667完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 舒貽忠 | |
| dc.contributor.author | Po-Han Chang | en |
| dc.contributor.author | 張博涵 | zh_TW |
| dc.date.accessioned | 2021-05-17T09:16:00Z | - |
| dc.date.available | 2012-08-10 | |
| dc.date.available | 2021-05-17T09:16:00Z | - |
| dc.date.copyright | 2012-08-10 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-06 | |
| dc.identifier.citation | Reference
[1] R. A. Shelby, et al., 'Experimental Verification of a Negative Index of Refraction,' Science, vol. 292, pp. 77-79, April 6, 2001 2001. [2] V. G. Veselago, 'The electrodynamics of substances with simultaneously negative values of ε and μ,' Phys. Usp., vol. 10, 1968. [3] I. V. Lindell, et al., 'BW media—media with negative parameters, capable of supporting backward waves,' Microwave and Optical Technology Letters, vol. 31, pp. 129-133, 2001. [4] L. Akhlesh, 'Positive and Negative Goos-Hauml;nchen Shifts and Negative Phase-Velocity Mediums (alias Left-Handed Materials),' AEU - International Journal of Electronics and Communications, vol. 58, pp. 229-231, 2004. [5] J. B. Pendry, 'Negative Refraction Makes a Perfect Lens,' Physical Review Letters, vol. 85, pp. 3966-3969, 2000. [6] J. B. Pendry, 'A Chiral Route to Negative Refraction,' Science, vol. 306, pp. 1353-1355, November 19, 2004 2004. [7] Y. Jin and S. He, 'Focusing by a slab of chiral medium,' Opt. Express, vol. 13, pp. 4974-4979, 2005. [8] E. Plum, et al., 'Giant optical gyrotropy due to electromagnetic coupling,' Applied Physics Letters, vol. 90, pp. 223113-3, 2007. [9] S. Zhang, et al., 'Negative Refractive Index in Chiral Metamaterials,' Physical Review Letters, vol. 102, p. 023901, 2009. [10] Q. Cheng and T. J. Cui, 'Negative refractions in uniaxially anisotropic chiral media,' Physical Review B, vol. 73, p. 113104, 2006. [11] Q. Cheng and T. J. Cui, 'Negative refractions and backward waves in biaxially anisotropic chiral media,' Opt. Express, vol. 14, pp. 6322-6332, 2006. [12] S. Jian Qi and H. Sailing, 'Backward waves and negative refractive indices in gyrotropic chiral media,' Journal of Physics A: Mathematical and General, vol. 39, p. 15057, 2006. [13] T. G. Mackay and A. Lakhtakia, 'Negative refraction, negative phase velocity, and counterposition in bianisotropic materials and metamaterials,' Physical Review B, vol. 79, p. 235121, 2009. [14] P. A. Belov, 'Backward waves and negative refraction in uniaxial dielectrics with negative dielectric permittivity along the anisotropy axis,' Microwave and Optical Technology Letters, vol. 37, pp. 259-263, 2003. [15] S. Bassiri, et al., 'Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab,' J. Opt. Soc. Am. A, vol. 5, pp. 1450-1459, 1988. [16] S. A. Tretyakov and A. A. Sochava, 'Reflection and transmission of plane electromagnetic waves in uniaxial bianisotropic materials,' International Journal of Infrared and Millimeter Waves, vol. 15, pp. 829-856, 1994. [17] D. Jaggard, et al., 'On electromagnetic waves in chiral media,' Applied Physics A: Materials Science & Processing, vol. 18, pp. 211-216, 1979. [18] A. H. Sihvola and I. V. Lindell, 'BI-isotropic constitutive relations,' Microwave and Optical Technology Letters, vol. 4, pp. 295-297, 1991. [19] U. S. I. a. A. S. Inan., Ed., Electromagnetic waves. Prentice-Hall, 2000, p.^pp. Pages. [20] C. Monzon and D. W. Forester, 'Negative Refraction and Focusing of Circularly Polarized Waves in Optically Active Media,' Physical Review Letters, vol. 95, p. 123904, 2005. [21] I. V. S. S. A. Khakhomov, 'Artificial Uniaxial Bianisotropic Media at Oblique Incidence of Electromagnetic Waves,' Electromagnetics, vol. 22, 2002. [22] I. V. Lindell, et al., 'Plane-wave propagation in a uniaxial chiro-omega medium,' Microwave and Optical Technology Letters, vol. 6, pp. 517-520, 1993. [23] S. A. Tretyakov and A. A. Sochava, 'Eigenwaves in uniaxial chiral omega media,' Microwave and Optical Technology Letters, vol. 6, pp. 701-705, 1993. [24] P. Koivisto, 'Reflection and transmission of electromagnetic plane waves from an uniaxial chiro-omega slab,' International Journal of Infrared and Millimeter Waves, vol. 15, pp. 1755-1778, 1994. [25] S. A. T. a. A. A. Sochava, 'Novel uniaxial bianisotropic materials: Reflection and transmission in planar structures,' Journ. Electromagn. Waves Appl, 1994. [26] S. A. Tretyakov, et al., 'Bianisotropic route to the realization and matching of backward-wave metamaterial slabs,' Physical Review B, vol. 75, p. 153104, 2007. [27] I. V. Lindell and A. J. Viitanen, 'Plane wave propagation in uniaxial bianisotropic medium,' Electronics Letters, vol. 29, pp. 150-152, 1993. [28] S. He, 'Wave propagation through a dielectric-uniaxial bianisotropic interface and the computation of Brewster angles,' J. Opt. Soc. Am. A, vol. 10, pp. 2402-2409, 1993. [29] B. R. Horowitz and T. Tamir, 'Lateral Displacement of a Light Beam at a Dielectric Interface,' J. Opt. Soc. Am., vol. 61, pp. 586-594, 1971. [30] J. A. Kong, et al., 'A unique lateral displacement of a Gaussian beam transmitted through a slab with negative permittivity and permeability,' Microwave and Optical Technology Letters, vol. 33, pp. 136-139, 2002. [31] M. Notomi, 'Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,' Physical Review B, vol. 62, pp. 10696-10705, 2000. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6667 | - |
| dc.description.abstract | 人工超常材料雍有自然界天然材料所沒有之電磁行為。這些特殊現象導致了新的物理機制與工程應用。以物理角度而言,我們可用一等效材料參數來表示。 一旦等效參數確立,即可代入組成率方程式並研究其波傳行為。
本論文即已組成率為基礎下探討不一樣之波傳行為。由馬克斯威方程式,我們解析推導出色散關係、共振模態、阻抗與波因廷向量。之後考慮單一介面之波傳問題並利用模態解出反射與穿透係數。其中,針對其中一種非等效性材料:假對掌性材料做波傳研究。本研究發現到在假對掌性材料中波傳模態為兩個橢圓偏振且這兩個不同橢圓模態可分別導致負折射與後退波。最後並用數值高斯光束模擬來驗證此現象。 | zh_TW |
| dc.description.abstract | Meta-materials are man-made structures which exhibit unusual electromagnetic response. Such extraordinary responses give rise to new physical insights and engineered applications. The most common way to describe this kind of material is by defining effective material parameters connected to constitutive relations. Once constitutive relations are obtained, the wave propagating properties could be explored through basic electromagnetic theory.
In this thesis we investigate wave propagation based on different sets of constitutive relations. Dispersion relation, eigenwaves, impedance together with Poynting vector are derived. Also we derive reflection and transmission coefficients through a single planer interface. In particular, we study plane wave propagation in a special kind of bi-anisotropic medium: pseudochiral medium. It is found that two elliptic eigenwaves appear in pseudochiral material and allow us to realize negative refraction or backward wave. Finally, Gaussian beam propagation is conducted to verify our results. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-17T09:16:00Z (GMT). No. of bitstreams: 1 ntu-101-R99543011-1.pdf: 2771985 bytes, checksum: d2815807865c4cb8bf004c6009dd197c (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iii Chapter 1 Introduction 1 Chapter 2 Constitutive Relations 2 2.1 Constitutive equations 2 2.2 Lossless, reciprocal medium 3 Chapter 3 Anisotropy medium 4 3.1 Dispersion relation 4 3.2 Eigenmodes solution 5 3.3 Impedance analogy 5 3.4 Poynting vector 6 3.5 Reflection and transmission in inhomogeneous media 6 3.6 Negative refraction and backward wave 8 3.7 Slab problem 9 3.7.1 Layered media 9 3.7.2 Effective medium for periodic grating structure 10 Chapter 4 Chiral medium 13 4.1 Dispersion relation 13 4.2 Eigenmodes solution 13 4.3 Impedance analogy 14 4.4 Poynting vector 15 4.5 Reflection and transmission in inhomogeneous media 15 4.6 Negative refraction 19 Chapter 5 Bi-anisotropic medium 23 5.1 Anisotropic dielectric medium 23 5.1.1 Dispersion relations 23 5.1.2 Eigenmode solutions 24 5.1.3 Admittance analogy 24 5.1.4 Reflection and transmission in layered media 25 5.2 Uniaxially omega medium 26 5.2.1 Dispersion relation 27 5.2.2 Eigenmode solutions 27 5.2.3 Impedance analogy 28 5.2.4 Poynting vector 28 5.2.5 Reflection and transmission in layered media 29 5.3 Uniaxial chiral medium 30 5.3.1 Dispersion relations 30 5.3.2 Eigenmode solutions 31 5.3.3 Admittance analogy 31 5.3.4 Poynting vector 32 5.3.5 Reflection and transmission in layered media 32 5.4 Pseudochiral material 34 5.4.1 Dispersion relation 34 5.4.2 Eigenmode solutions 36 5.4.3 Admittance analogy 36 5.4.4 Poynting vector 37 5.4.5 Reflection and transmission in layered media 37 5.4.6 Negative refraction 40 5.4.7 Conditions of negative refraction and backward wave 43 Chapter 6 Gaussian Beam wave 46 6.1 Beam propagation through dielectric interface 46 6.2 Beam propagation through chiral interface 49 6.3 Beam propagation through pseudochiral interface 51 Chapter 7 Conclusion 54 Reference 55 | |
| dc.language.iso | zh-TW | |
| dc.title | 超常材料在不同組成律下之負折射和後退波之研究 | zh_TW |
| dc.title | Investigation of Negative Refraction and Backward Wave in Metamaterial Based on Different Constitutive Relations | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳瑞琳 | |
| dc.contributor.oralexamcommittee | 張瑞麟,郭志禹 | |
| dc.subject.keyword | 超常材料,負折射,後退波,假對掌性材料,非等向性材料, | zh_TW |
| dc.subject.keyword | Meta-material,Negative refraction,Backward wave,Pseudo-chiral medium,Anisotropic complex medium, | en |
| dc.relation.page | 57 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2012-08-07 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf | 2.71 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
