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中文摘要 

  人工超常材料雍有自然界天然材料所沒有之電磁行為。這些特殊現象導致了

新的物理機制與工程應用。以物理角度而言，我們可用一等效材料參數來表示。 

一旦等效參數確立，即可代入組成率方程式並研究其波傳行為。 

  本論文即已組成率為基礎下探討不一樣之波傳行為。由馬克斯威方程式，我

們解析推導出色散關係、共振模態、阻抗與波因廷向量。之後考慮單一介面之波

傳問題並利用模態解出反射與穿透係數。其中，針對其中一種非等效性材料:假

對掌性材料做波傳研究。本研究發現到在假對掌性材料中波傳模態為兩個橢圓偏

振且這兩個不同橢圓模態可分別導致負折射與後退波。最後並用數值高斯光束模

擬來驗證此現象。 
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Abstract 

  Meta-materials are man-made structures which exhibit unusual electromagnetic 

response. Such extraordinary responses give rise to new physical insights and 

engineered applications. The most common way to describe this kind of material is by 

defining effective material parameters connected to constitutive relations. Once 

constitutive relations are obtained, the wave propagating properties could be explored 

through basic electromagnetic theory. 

  In this thesis we investigate wave propagation based on different sets of 

constitutive relations. Dispersion relation, eigenwaves, impedance together with 

Poynting vector are derived. Also we derive reflection and transmission coefficients 

through a single planer interface. In particular, we study plane wave propagation in a 

special kind of bi-anisotropic medium: pseudochiral medium. It is found that two 

elliptic eigenwaves appear in pseudochiral material and allow us to realize negative 

refraction or backward wave. Finally, Gaussian beam propagation is conducted to 

verify our results. 
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Chapter 1 Introduction 

Artificial meta-material having simultaneously negative parameters has drawn 

enormous attention since the first experimental fabrication by Smith [1] in 2000. The 

theoretical study of such medium was first presented by Veselago in 1967 and the 

term left-handed material was used to describe this kind of material. Significant 

physical phenomena and applications include negative refraction [2], backward wave 

[3], negative Goos-Hanchen shift [4], and the realization of perfect lens [5]. In 2004, 

Pendry shows that negative refraction could also be realized by isotropic chiral 

material [6] and its potential applications are then investigated by many researchers 

[7-9]. More recently, many more complex bi-anisotropic materials are widely 

theoretical studied to verify the possibility of negative refraction and backward wave 

[10-14]. 

Plane wave propagation through inhomogeneous media have long been an 

important topics in electromagnetic. Bassiri [15] dealt with reflection and 

transmission coefficients (R,T) of chiral medium in 1988. Later Tretyakov [16] 

studied R,T for general bi-anisotropic medium using transmission line theory. It is 

seen that impedance or admittance play crucial role in R T formulations. 

In the present thesis, we study harmonic plane wave propagation in various 

complex media by scalar wave function with time convention exp( )i t . Dispersion 

relations, eigenwave, impedance as well as Poynting vector are clearly derived for 

each case. Reflection and transmission coefficients through inhomogeneous media are 

also derived analytically and relations to negative refraction or backward waves are 

discussed. We present a general formula with obvious physical insight and compare 

with the existing works. Furthermore, we investigate the wave propagation properties 

in pseudochiral material, in which wave characteristics may differ from those we have 

known in other bi-anisotropic media. Finally, Gaussian beam propagation simulations 

are also demonstrated to easily clarify the phenomenon of negative refraction. 
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Chapter 2 Constitutive Relations 

2.1 Constitutive equations 

Effects of wave propagation through a linear, isotropic and homogenous medium 

have been widely studied based on Maxwell equation. Basic remarks include the 

wave vector, electric field and magnetic field are perpendicular to each other and form 

a right-handed system; dispersion relation relates the material’s dielectric or magnetic 

susceptibility so that the index of refraction could be defined to estimate the wave 

velocity. Many materials, however, are anisotropic in nature. Anisotropy is taken into 

consideration by assuming different behaviors in each direction, in which the physical 

quantity produced is no longer constant but depends upon the direction. Another 

characteristic electromagnetic property is the cross effect or chirality, in which the 

electric and magnetic flux are influenced by magnetic and electric field. These two 

significant phenomena destroy the symmetry of constitutive relations and in general, 

could be written as: 

 
 

 

 

 

D E H

B H E

 (2.1)

  

where     are dielectric and magnetic tensors and ,    are responsible for cross 

coupling. The term bi-anisotropy is used to describe materials with chiral property.  

  Note that constitutive relations could be expressed by other forms. Eq. (2.1) is 

called Condon-Tellegen relation. However, in different problems, the same name is 

given to parameters which are not exactly the same. Another form of constitutive 

relations are given by Post, Jaggard and Mickelson [17], which reads 

 
1

 

 


 

 

D E B

H B E

 (2.2) 

Another relations focusing on the nonlocal behavior is given by Drude, which are 

called Drude-Born-Fedorov relations by Lakhtakia. 

 
 

 

  

  

   

   

D E E H

B H H E

 (2.3) 

One of the relations is adopted depending on which electric and magnetic quantities 

are used. However, different sets of relations could be related to each other and the 

results are given by Sihvola and Lindell [18]. Throughout this thesis, we use 

Condon-Tellegen relation Eq.(2.1) to analyze our problem.  
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2.2 Lossless, reciprocal medium 

Restricting ourselves to lossless media, from conservation of energy we see that 

dielectric and magnetic tensors must be symmetric. Lossless implies there is no 

absorption during wave propagation and that every tensor element is real. According 

to coordinate transformation, every real symmetric matrix could be diagonalized as 

the form  

0 0

0 0

0 0

0 0

0 0

0 0

x

y

z

x

y

z



 





 



 
 


 
 
 

 
 

  
 
 

              (2.4) 

 

      

 

The above coordinate axis is referred to principal coordinate axis, which means that 

all off-diagonal elements are zero. Let us consider chiral medium. Chirality structure is 

often encountered in biochemistry. Assuming lossless and reciprocity still hold, from 

conservation of energy we must have 

 
T

    (2.5) 

 
*

   (2.6) 

which means that     must be an imaginary number.  
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Chapter 3 Anisotropy medium  

3.1 Dispersion relation 

Confine ourselves to anisotropy medium but ignore the cross coupling effect due to 

chirality. Most materials possess certain degree of anisotropy and could be broadly 

categorized in terms of: cubic, uniaxial and biaxial as listed in Table 1 

 

 Cubic Uniaxial Biaxial 

Principal axis 
0 0

0 0

0 0







 
 
 
 
 

 

0 0

0 0

0 0

x

x

z







 
 
 
 
 

 

0 0

0 0

0 0

x

y

z







 
 
 
 
 

 

Material Diamond Quartz Mica 

Table 1 

In general, from Eqs. (2.1)&(2.4), constitutive equations have the form: 

 

0 0

0 0

0 0

x

y

z







 
 

  
 
 

D E   (3.1) 

 

0 0

0 0

0 0

x

y

z







 
 

  
 
 

B H  (3.2) 

Insert (5) (6) into Maxwell equations. The following eigenvalue equation is obtained: 

 
1

[( ) ( ) ] 0 


    p I p I E  (3.3) 

/ 1/ ( sin cos )x zk k     p k e e
 

where  denotes angle of wave vector to z axis. 

For nontrivial E, the determinant of the bracket must be zero, which gives two 

dispersion relations. 

 

 
2 2

2x z
y

z x

k k
 

 
   (3.4) 

                 02 2 2 2s i n c o s s i n c o s

x z y x z y

x z x z

k k
     


       

 
 

 (3.5) 
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where                          2 2

0 0 0k     

and 
2 2

2x z
y

z x

k k
 

 
   (3.6) 

                02 2 2 2s i n c o s s i n c o s

x z y x z y

x z x z

k k
     


       

 
 

 (3.7) 

From above derivation two wave numbers could be obtained and both of them depend 

not only on the medium parameters but on propagation direction. To examine our results, 

simply set x y z     and x y z     such that two wave numbers are identical and 

is not a function of propagation direction, which is an isotropic medium and confirm 

with elementary electromagnetic theory. 

3.2 Eigenmodes solution 

Via dispersion relation two wave numbers have been found in term of  . However, 

further derivations show that it is easier to express wave number in way of xk because 

it is assumed that xk  is a known quantity in later problems. Let us rewrite wave 

numbers and solve eigenvalue problem for Eq.(3.3). Physically, the corresponding 

eigenvectors indicate the modes.   

From (3.4)                    

 

2

x z y x x

z

z

p
p

   




  (3.8) 

 

                            
( 1 , 0 , )x x

z z

p
E

p




 E

                    
 (3.9) 

From (3.6)                  

 

2

x z y x x

z

z

p
p

   




  (3.10) 

 (0,1,0)EE  (3.11) 

3.3 Impedance analogy 

 Once electric polarized mode is known, Maxwell equations give the relation between 

magnetic field and electric field. Transverse impedance is defined as the ratio of 

transverse electric field to magnetic field. 
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1 1 11 1
( )  

 

  

     H B k E k I E      (3.12) 

For TM mode (1,0, )z z

x x

p
E

p




 E  

                      

2 2x
z x

x z z x z
y o

y z y

p p
E k E k

H E
p





 




   (3.13) 

 

2 /x y x x zTM x z

y x x

pE p

H

   


 


    (3.14) 

For TE mode (0,1,0)EE  

 

2 /x y x x z z
x

x x

p p
H

   

 

 
   (3.15) 

 x
z

z

p
H


  

 
yTE x

x z

E

H p





   (3.16) 

3.4 Poynting vector 

Time average Poynting vector indicate the direction of energy flow and is significant 

when considering plane wave refraction in inhomogeneous media. 

TM mode from Eq.(3.9) 

 2

x

zx

y

z z

x

k

S
H

S k





 
 

     
  
 
 

S  (3.17) 

TE mode from Eq.(3.11) 

 2

x

zx

z z

x

k

S
E

S k





 
 

     
  
 
 

S  (3.18) 

3.5 Reflection and transmission in inhomogeneous media 

Wave vector, dispersion relations, impedance and poynting vectors are derived to 

solve reflection and refraction problem with inhomogeneous media. Consider a plane 

wave from a dielectric material entering an anisotropic medium as follow in Fig 1: 
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Fig 1 

The incident electric and magnetic field could be written as 

  cos sinim x z ie yE E   iE e e e  (3.19) 

 0 0/ / ( cos sin )im y ie x zE E         
i

H e e e  (3.20) 

where imE  and ieE  refer to the magnitude of TM and TE incidence respectively. 

Impedance 0  is defined with respect to incident medium. Similarly, the reflected 

electric and magnetic field could be written as 

(cos sin )rm x z re yE E     
r

E e e e                  (3.21) 

0 0/ / (cos sin )rm y re x zE E         
r

H e e e         (3.22) 

To find the reflection and transmission coefficients rmE and reE  it is assumed that 

the refracted modes are unity in magnitude so that R and T could be regarded directly 

as the amplitude ratio with respect to incidence field. Therefore, transmitted electric 

and magnetic fields are expressed as  

 ( )x x
te y tm x z

z z

p
E E

p




   

t
E e e e  (3.23) 

 ( )te tm
x z yTE TM

E E
A

 
   tH e e e  (3.24) 

where 

2 /x y x x zTM

x

p   





  and 

2 /

TE x

x y x x zp




   



 denote TE and TM 

modes impedance respectively. 

  Now apply Maxwell boundary condition to obtain reflection and refraction 

coefficients. 
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0

0

0

c o s

c o s

2 c o s

c o s

TM

rm imTM

TM

tm imTM

E E

E E

  

  

 

  









                    (3.25) 

0

0

0

cos

cos

2 cos

cos

TE

re ieTE

TE

te ieTE

E E

E E

  

  

 

  









                     (3.26) 

  Follow through Eqs.(3.25)&(3.26), the reflection and transmission coefficients with 

respect to incident angle could be obtained. Certain examples are shown for  

2.25x z  
 

2.25x z     in Fig 2&Fig 3. 

 

 

Fig 2                              Fig 3               

3.6 Negative refraction and backward wave 

  Many interesting phenomenon emerge when electromagnetic waves incident from a 

dielectric material to an anisotropic medium. Two of which are negative refraction 

and backward wave. The definitions of negative refraction and backward wave have 

been given elsewhere [3]. In brief, negative refraction could be defined when the 

wave vector in the transmitted medium has an opposite direction with respect to the 

wave vector along interfacial direction and a plane wave is said to be backward wave 

if the wave vector has a negative projection onto the Poynting vector. Now suppose 

permittivity and permeability tensor are along principal axis as defined by Eq.(2.4) 

and could be negative. Reflection and transmission coefficients, however, could not 

totally obey Eqs.(3.25)& (3.26) due to the choice of sign of wave vector zk in Eq.(3.4) 

or (3.6) and need to be derived in terms of incidence wave vector ik . Detailed 
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derivations and physical insight have been studied by I.V.Lindell, S.A.Tretyakov et,al 

[3] and P.A.Belov [14]. The following shows result for case with 2.25x   

2.25z   in Fig 4.  

 

Fig 4 

3.7 Slab problem 

3.7.1 Layered media 

  Layered media with multiple interfaces have been an important issue in 

electromagnetic due to its wide range of application. One of which is to determine the 

reflection and refraction coefficients and then retrieve material properties by inverse 

scattering technique. Consider a plane wave normally incident upon a layered 

structure ABC. Following the method used in[19],the expressions for the fields could 

be written as 

In medium A: (z<-d) 

 

1

1

1

1

( )

( )

( )

( )

1

1

ik z d

i i

ik z d

i i

A

ik z d

r r

ik z d

r r

A

E E e x

H E e y

E E e x

H E e y









 

 










 (3.27) 

In medium B: (-d<z<0) 

 

2 2

2 2
1

ik z ik z

B Bt Br

ik z ik z

B Bt Br

B

E E e E e x

H E e E e y






 

   

 (3.28) 

In medium C: (z>0) 
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3

3
1

ik d

C t

ik d

C t

C

E E e x

H E e y





 (3.29) 

where the wave component BtE and BrE  in medium B are forward and backward 

wave respectively. Using Maxwell’s boundary conditions requiring tangential 

components of electric and magnetic fields be continuous at two interfaces, we have 

At z=-d 

 
   

2 2

2 2

( )

1 1

ik d ik d

i r Bt Br

ik d ik d

i r Bt Br

A B

E E E e E e

E E E e E e
 





  

  
 (3.30) 

At z=0 

 
 

1 1

Bt Br t

Bt Br t

B C

E E E

E E E
 

 

 
 (3.31) 

Solve four unknowns based on four equations, we get 

 

    

     
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2 1 3 2 2 1 3 2

2

2 1 3 2 2 1 3 2

2 3

2

2 1 3 2 2 1 3 2

2 2 3

2

2 1 3 2 2 1 3 2

2 2 3

2

2 1 3 2 2 1 3 2

( )

4

( )

( ) cos( ) ( )sin( )

( )

( ) cos( ) ( )sin(

ik d

r ik d

ik d

t ik d

Br

Bt

e
E

e

e
E

e

i
E

i k d k d

i
E

i k d k

       

       

 

       

  

    

  

    

    


    


    

 


  




   )d

 (3.32) 

Although the above formulas are based on dielectric material, lossy medium is also 

applicable if impedance is in term of complex value. Our result can still be verified by 

transmission line theory. 

3.7.2 Effective medium for periodic grating structure 

  Consider a plane wave normally incident to a periodic grating structure with 0i   

as below in Fig 5 
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Fig 5 Periodic grating structure in one (a) and two (b) dimensions. Substrate is 

silver and the coating film is silver-air array with height h and periodicity d. 

 

Suppose the dimension of geometry structure is much smaller than the excitation 

wavelength. Such material is termed metamaterial and for one dimension periodicity, 

could be characterized as uniaxial anisotropic medium with effective longitudinal and 

transverse permeability.  

 
  / /

x

m a

y z m a

d

d c c

d c c

d d


 

   


 


  

 (3.33) 

where             

m : permeability of silver 

a : permeability of air. 

We investigate the metamaterial absorption behavior with regard to wavelength of 

incident wave as well as height of the structure and check whether effective theory is 

valid. Let incident wavelength range from 300-1000nm and height from 0-1000nm. 

We scan for absorption spectrum. Using Eq.(3.33) as layer B impedance, we 

demonstrate that the smaller periodicity d compared to wavelength, the better the 

effective medium in Fig 6 resemble real structure Fig 7. 

 

(a)                                    (b) 
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Fig 6 Absorption spectrum of effective medium using c=0.1d (a) and c=0.2d (b). 

Note that effective material parameter only depend on volume fraction of air and 

silver, regardless of absolute value of d. 

 

(a)                                      (b) 

      

                (c)                                      (d) 

Fig 7 Absorption spectrum of real structure with c=0.1d while d=10nm (a), 

d=50nm (b), d=100nm (c) and d=300nm (d). 
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Chapter 4 Chiral medium 

4.1 Dispersion relation 

  Consider bi-isotropic chiral medium with cross coupling but ignore the effect of 

anisotropy. Isotropic implies the physical property doesn’t depend on direction. 

Therefore, the material parameters in constitutive relations could be regarded as scalar 

quantities, which have the following forms 

                    

0 0 0 0

0 0 0 0

0 0 0 0

i

i

i

 

 

 

   
   

    
   
   

D E H    (4.1) 

 

0 0 0 0

0 0 0 0

0 0 0 0

i

i

i

 

 

 

   
   

    
   
   

B H E  (4.1) 

Follow the same procedure as in anisotropic case and assume wave vector lie on x-z 

plane. Using Eqs. (4.1) and (4.1) into Eq.(3.3), two wave vectors are given by 

  1k      (4.2) 

  2k       (4.3) 

Note that the wave vectors in the isotropic chiral medium are not function of 

direction angle, which is quite different from anisotropy cases considered in the 

previous chapter. For nonchiral materials ( 0  ), the two propagation vectors 

coincide and become  , which is well known in the elementary electromagnetic 

theory. 

4.2 Eigenmodes solution 

  Once the eigenvalue is obtained, we could go for the eigenvector and determine the 

wave propagation modes in the material. Based on the results given by Eqs.(4.2)

&(4.3), two eigenvectors could be obtained. 

For  1k    
 

 1 (cos , , sin )E i  E  (4.4) 

For  2k     
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 2 (cos , , sin )E i   E  (4.5) 

From above derivation it can be easily seen that two circularly polarized wave 

serve as modes for corresponding two wave vectors. The speeds of right circular 

polarized mode (RHCP) and left circular polarized mode (LHCP) are different due to 

parameter . Note that TE and TM modes cannot be taken as eigenvectors in chiral 

medium, which is different from dielectric material. 

 

4.3 Impedance analogy 

  Impedance could be obtained similar to Eq.(3.12). For bi-isotropic material, the 

results are even simpler. 

 
1

0

0

z

x

xz
y

z

x

ki

E
kkk I i

E

E
k i



 


 

   



 



 
 
  

      
        

   
  

 
 

H E AE  (4.6) 

Inserting Eqs.(4.4)&(4.5) into Eq.(4.6), impedance could be obtained.  

For  1k      (RHCP) 

   1
1

1

cos , , sini i i


 
 

    
E

H  

 1





  (4.7) 

For  1k      (LHCP) 

   2
2

2

cos , , sini i i


 
 

   
E

H  

 2





  (4.8) 

Note that sin , cosx zk k k k    in above derivation and two eigenmodes share the 

same impedance. This could be seen as the result of isotropic medium. 
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4.4 Poynting vector 

  Time-averaged Poynting vector is defined as 
*1

Re
2

   S E H  

For  1k      (RHCP) 

2 2

sin

( )
cos

xx

z z

x

pS
E E

S p

p

  




  




   
   

                     

S  (4.9) 

For  2k      (LHCP) 

 2

sin

cos

x

z

S
E

S











 
 

        
 
 

S  (4.10) 

Isotropic material shows that the direction of energy flow is the same as direction of 

wave vector, which means the energy and momentum flows are parallel. 

4.5 Reflection and transmission in inhomogeneous media 

  Consider plane wave problem in inhomogeneous layered medium. An incident 

plane wave from isotropic medium causes reflection and transmission phenomenon 

when passing through the interface. Suppose an incident wave can be decomposed 

into TE and TM modes, which can be written as 

  cos sinim i x i z ie yE E   iE e e e  (4.11) 

0 0

( cos sin )im ie
y i x i z

E E
 

 
   

i
H e e e              (4.12) 

where subscripts m and e refer to TM and TE incidence. Reflected wave, however, are 

not TE or TM wave as in the nonchiral case. Instead, the reflected wave need to be 

expressed as the elliptical wave form: 

 

0

(cos sin )

1
( (cos sin ))

r r y r i x i z

r r y r i x i z

E E

E E

 

 






  

   

E e e e

H e e e
 (4.13) 

Transmitted waves are the linear combination of the two circularly polarized waves, 

which has the form: 
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 1 1 1 2 2 2( cos sin ) ( cos sin )ik z x ik z x

t tR tLe e
    

 E E E  (4.14) 

where 

 
1 1 1

2 2 2

(cos sin )

(cos sin )

t tR x z y

t tL x z y

E i

E i

 

 

  

  

E e e e

E e e e
 (4.15) 

1tE and 2tE correspond to right and left circular wave respectively. Note that when 

oblique incidence is taken into account, two polarized wave have different refracted 

angles due to different values of wave number. Here 1 and 2 denote refracted 

angles with respect to RHCP and LHCP. With impedance, magnetic field has the form 

 1 1 1 2 2 2( cos sin ) ( cos sin )

1 2

ik z x ik z x

t t t

i i
e e

Z Z

    
 H E E  (4.16) 

where impedance Z



  

With Maxwell boundary condition, reflection and refracted coefficients could be 

obtained. 

Reflection coefficients: 

 
11 12

21 22

r i
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     
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 (4.17) 

where  
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   

   

  
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  

    


    

   

   0 2cos 

 (4.18) 

Transmitted coefficients: 

 
1 11 12

2 21 22

it

it

EE T T

EE T T

    
     
    

 (4.19) 
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 (4.20) 

where 

1 2 1 2

1 2
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   
 

Our results are identical to that given by Bassiri [15] using Post-Jaggard relations. 

Here 12 21 12 21, , ,R R T T  are cross polarizations due to the nature of the circular wave and 

denominator in each coefficient could be viewed as TM TE coupling. In other words, 

because both circular waves could be seen as a linear combination of TE and TM 

wave with phase difference 90 degree, two circular eigenmodes appear and linear 

polarizations are no longer independent basis. However, physical meaning is obvious 

if we regard chiral materials as a generalization of isotropic material. Suppose 0  , 

two wave vectors degenerate and only repeated mode exists. From Eqns.(4.18) and 

(4.20) we reproduce reflection and transmission formula, given by 
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 (4.21) 

 

11

12

21

22

( )

( )

( )

( )

Te

Te Te

Te

Tm Tm

Te

Te Te

Te

Tm Tm

iZ
T

Z

Z
T

Z

iZ
T

Z

Z
T

Z























 (4.22) 

where 0 0cos , cos , cos , cosTm Te Tm Te

t i i tZ Z Z Z           . Cross reflection 

coefficients vanish and transmitted coefficients are derived for circular modes. Note 

that in an isotropic medium, both linear and circular polarized modes could serve as 
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basis. 

Reflection and transmission coefficients as function of incidence angle are plotted 

below in Fig 8 through (d) for case of free space entering chiral with parameters 

4, 2, 0.5       

 

 

  

Fig 8 Reflection and transmission coefficients with respect to incident angle of a      

plane wave incident from free space to a chiral medium with 4, 2, 0.5      

 

We see that reflection cross coefficient 12 21R R  so that reciprocity theorem is 

satisfied while transmitted cross coefficient 12 21T T . 

Two circular waves determine the field pattern in transmitted medium. Fig 9 shows 

the schematic diagram of wave propagating from free space to a chiral medium and 

Fig 10 is the real TE field component (perpendicular to plane of incidence) for an TE 

oblique incident plane wave with incident angle 040i   coming from free space to 

a chiral material with 2, 0.6     . 

Fig 9 (a) shows that the left hand space is the total field of incident and reflected wave 

while the two circular waves combine for the right hand space. For nonchiral case, 

2, 0     , two eigenwaves degenerate and only one transmitted wave is 
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observed as expected from basic electromagnetic in Fig 9(b).  

 

 

Fig 9 Schematic plot of wave propagation to a chiral (a) and nonchiral (b) medium. 

Incident wave (blue) split into two circular waves (black and red) while in nonchiral 

case only one transmitted wave observed.  

 

 

Fig 10 Electric field pattern of a plane wave incident from free space to an 

inhomogeneous media. (a) Chiral medium results in two circular waves 

interaction.( 1 240 , 14.3 , 27.3i     ) (b) Dielectric medium ( 2, 0     ) 

with single mode. 

 

4.6 Negative refraction 

  Special attentions should be given to the left circularly polarized wave in the light 

of  2k      , which shows that a negative wave number may emerge when 

the chiral effect is stronger and negative refraction is possible [9, 20]. Because only 

the left circularly polarized wave accounts for the negative refraction, the transmitted 

coefficients correspond to 1tE  must be small compared with 2tE . After some efforts 

of observation it is concluded that if the incidence wave is a left circular wave, the 
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transmitted coefficients may vanish for the right circularly polarized wave in some 

special cases. We derive criteria as follow: 

Suppose LHCP incidence wave: 

  cos sini iL i x y i zE i   E e e e  (4.23) 

 
0

(cos sin )iL
i i x y i z

E
i i 


  H e e e  (4.24) 

Refracted wave could be decomposed to RHCP and LHCP components: 

    cos sin cos sinr rR i x y i z rL i x y i zE i E i        E e e e e e e  (4.25) 
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 


     H e e e e e e  (4.26) 

Transmitted wave in chiral medium has the same form as (4.14) and(4.15). By 

Maxwell boundary conditions reflection and transmission problem could be given 

based on LHCP incidence mode. 
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 (4.27) 

Special case is conducted for 1r r    and 2  , it is seen that 0tRE   and 

1tLE   while both reflected waves vanish. In this case wave number 2 0k k   so 

that angle of incidence is the same as transmitted but twists in negative x direction. 

Schematic diagram is plotted in Fig 11 and the electric field is shown below in Fig 12 
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Fig 11 Schematic plot of plane wave with negative refraction. The incident   

wave is left circular wave(blue) and only left transmitted circular emerge bur 

twist downward. 

 

 

Fig 12 Real field pattern while negative refraction occur. 

 

Although the wave vector (4.3) shows direct implication for negative refraction, 

however, it is only valid when material is isotropic. Another perspective toward 

negative refraction is to determine the sign of zk  based on direction of energy flow 

as in anisotropic case. In reflection and refraction problem energy must flow toward 

positive z direction such that refraction occurs, which is indicated by z component of 

Poynting vector. The sign and magnitude of xk  is already determined through phase 

matching condition so it is convenient to re-derive eigenmode and Poynting vector in 

terms of xk . Following the same procedure as above, we could get: 

Dispersion relation:  

  
2

2

z xp p        (4.28) 

Eigenmodes: 

For  
2

2

z xp p      (LHCP) 
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 
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 
 
 

 (4.29) 

Impedance:   

 Z i



  (4.30) 

Magnetic field: 
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Poynting vector: *1
Re

2
   S E H  
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xx

z z
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pS
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S p
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 

 

 
 

   
    

   
 
 

S  (4.32) 

  From above derivation it is easily seen that if   , zk must be negative so z 

component of Poynting vector is positive while x component is negative. This is the 

phenomenon of negative refraction. In this approach Poynting vector is first taken into 

account and the sign of zk  is determined by (4.32) instead of(4.10). Eqn.(4.32) 

demonstrates how Poynting vector relates to wave vector so in the following sections 

when negative refraction is being considered, we write Poynting vector in term of zk  

rather than involve the transmitted angle. 
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Chapter 5 Bi-anisotropic medium 

Although anisotropic and bi-isotropic media have been studied in the previous 

sections, we now go further to more general linear media, namely, bi-anisotropic 

media. Bi-anisotropic is introduced by giving more freedom to material parameters in 

constitutive tensors such that electromagnetic wave characteristic is quite different 

from conventional material. 

5.1 Anisotropic dielectric medium 

  Let us consider dielectric tensors along principal axis while keep chirality isotropic. 

This can be done by putting the same toroidal helix in uniaxial or biaxial crystal. 

Constitutive equations are in the form of Eq.(5.1). 
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 (5.1) 

Simply suppose ,x z x z      so that it could be considered as uniaxial case in y 

direction. Although chirality is still independent of direction , the wave propagation 

may vary due to non-scalar tensors. More general case has been derived by 

Semchenko [21], but the results are too complicated in term of transmitted angles. In 

the present section we demonstrate how it differs from bi-isotropic chiral medium by 

using wave vector xk , which is different from [21]. 

 

5.1.1 Dispersion relations 

Follow the same steps as before, two relations could be given: 

  2 2 2 1

2
x z z y y zp p            (5.2) 

  2 2 2 1

2
x z z y y zp p            (5.3) 

 

where  

     24 y z y z z y y z               (5.4) 
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5.1.2 Eigenmode solutions 

For mode Eq.(5.2) 

 1, , x

z

p
i

p
 



 
  
 

E  (5.5) 

For mode Eq.(5.3) 

 1, , x

z

p
i

p
 



 
  
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E  (5.6) 

where  
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

    
 


 (5.7) 

Here  denote transverse ratio of electric fields. Note that the eigen-waves are 

elliptic waves rather than circular waves and this is the consequence of anisotropy 

effect. 

 

5.1.3 Admittance analogy 
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  , ,TE TMY Y A   H  (5.9) 

where  
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The upper index TE and TM refer to ratio of transverse x and y component of 

magnetic fields to x component of electric field and lower index indicates two 

separate eigenmodes. Note that the sign of TEY is specially arranged to solve later 
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problem. 

 

5.1.4 Reflection and transmission in layered media 

Incident field: 
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By Maxwell’s boundary condition, reflection and refracted coefficients are obtained: 
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 (5.14) 
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 (5.15) 

Here we have derived analytical form of R T in terms of admittance and angle 

transverse ratio   for the most general elliptic polarization. The formula (5.14)

&(5.15) could be simplified for less complicated case. 

 

5.2 Uniaxially omega medium 

Considering a general uniaxially bi-anisotropic media which is composed of 

symmetric chiral and anti-symmetric omega dyadic and choosing z axis as 

longitudinal direction, constitutive relations are written in the forms [16]. 
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 (5.16) 

where , ,t t t   denote transverse parameters in x-y plane and  represents omega 

electromagnetic coupling. 

The dispersion relation together with eigenwave solutions have been solved by 

various authors [22-24] . However, the results are rather complicated due to emerging 

elliptic polarized waves so that analytical simplification is only valid in special cases. 

Reflection and transmission in layered media is also considered in [16], but the 

analytical solution is also limited to certain cases. In the present study we analyze 

from the simplest case and discuss some optical behavior instead of solving Eqn.(5.16) 

directly. 

  Consider an omega media whose magnetoelectric dyadic is anti-symmetric as 

Eqn.(5.17). The medium could be realized by adding omega shape inclusions in x-z 

direction [16] and have been studied theoretically by in [25]; potential applications are 
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also studied in [26] . However, the clear reflection and transmission coefficients in 

layered media are still not presented. In this section we start from the dispersion 

relation and give exact formula as well as numerical results. 
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 (5.17) 

Eq.(5.17) Constitutive relations correspond to omega medium. Note that  and 

 may be not uniaxial     

5.2.1 Dispersion relation 

Following the same procedure as anisotropic cases, dispersion relations are given 

below 

  2 2 2 2

x x z z z x yk k          (5.18) 

  2 2 2 2

z z x x z y xk k          (5.19) 

Note that the above results satisfy the duality transformation , ,        . 

5.2.2 Eigenmode solutions 

 2 2 2 2

x x z z z x yk k         : 
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 2 2 2 2

z z x x z y xk k         : 

  0,1,0E  (5.21) 

which are TM and TE modes respectively. It could be seen that when  =0, Eqn.(5.20) 

corresponds to anisotropic case while when x z  , it is reduced to isotropic case. 
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5.2.3 Impedance analogy 
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where 
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For TE mode 

2 2

x x z x z y

z

z

p
p

     



  
 ,  0,1,0E  

 
1

x y

TE

H E
Z

  (5.25) 
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TMZ Eq.(5.24) and TEZ Eq(5.26) are the impedances relating the ratio of transverse 

electric and magnetic field for TM and TE modes respectively. Our results are 

identical to that of Tretyakov [25] derived by another method. 

5.2.4 Poynting vector 

  Poynting vector is defined as *1
Re

2
   S E H  
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TE mode 

  0,1,0E  (5.30) 
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5.2.5 Reflection and transmission in layered media 

Consider plane wave problem in layered structure with host medium being 

bi-anisotropic omega medium. Since eigenwaves are TE and TM fields, TE and TM 

can be decoupled separately. Incident wave is expressed as: 
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Transmitted wave: 
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where TM  and TE are given by Eqns.(5.24) and(5.26). 
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Reflection and transmission coefficients could be obtained by Maxwell’s boundary 

conditions requiring tangential components of fields be continuous. 
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It is shown that the expressions are the same as anisotropic medium Eqs.(3.25)

&(3.26). Although chirality is considered, we have decoupled R T for TM and TE 

incident due to linearly polarization. We conclude that omega medium with  

anti-symmetric tensor is somewhat like anisotropic material and the influence of 

chirality only change the direction of TE and TM modes. To confirm further, if we set 

0  , the formula are totally the same as Section Chapter 3 

 

5.3 Uniaxial chiral medium 

Let us assume longitudinal chiral material without omega coupling. Eqn.(5.16) is 

simplified as: 
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 (5.37) 

Dispersion relation, eigenmodes solutions as well as Poynting vector have been 

obtained in [10, 27, 28]. Further discussion of mode and energy propagation is also 

discussed [10]. However, the author doesn’t give formula for reflection and refraction 

coefficients when inhomogeneous media is encountered. Here we give formula and 

numerical results. 

5.3.1 Dispersion relations 
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where 
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5.3.2  Eigenmode solutions 
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Unlike omega chiral material, the eigenwaves are two elliptic waves rather than 

linearly polarized waves. In other words, TE and TM modes cannot be decoupled. 

5.3.3 Admittance analogy 
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Now we define transverse admittances representing the ratio of transverse electric 

fields and magnetic fields. Due to elliptic waves, four quantities are given: 
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where 
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Note that in Eq.(5.45) the sign of TEY is specially arranged to solve later problem. 

5.3.4 Poynting vector 

Poynting vector is defined as *1
Re

2
   S E H  

 

 

 

2

2

2

2

x t t

zx

x

z t t

z

p

pS
E

S

p

  



  







 
 

   
    

   
 
 

S  (5.48) 

5.3.5 Reflection and transmission in layered media 

Consider plane wave problem in layered structure with host medium being uniaxial 

chiral medium. Since eigenwaves are elliptic waves, TE and TM cannot be decoupled 

separately. Follow the same procedure as before, incident wave is expressed as: 
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where   is the ratio of y component to x component of electric fields 
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where admittances are given by Eqs.(5.46) and (5.47). note that   is ratio of 

transverse electric fields while Y  are admittances relating transverse electric and 

magnetic fields. 

  Let us apply boundary conditions to determine reflection and transmission 

coefficients: tangential components must be continuous. 
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11 12

21 22

it

it

EE T T

EE T T





    
     
    

 

 

 
     

 
     

 
     

11

12

21

2 cos cos

cos cos cos cos

2 cos cos

cos cos cos cos

2 cos cos

cos cos cos cos

TM

TM TE TM TE

TE

TM TE TM TE

TM

TM TE TM TE

iY Y Y
T

Y Y Y Y Y Y Y Y

Y Y Y
T

Y Y Y Y Y Y Y Y

iY Y Y
T

Y Y Y Y Y Y Y Y

 

     

  

     

 

     



     

 

     



     

 


    




    




    

 
     22

2 cos cos

cos cos cos cos

TE

TM TE TM TE

Y Y Y
T

Y Y Y Y Y Y Y Y

  

     

 

     




    

 (5.54) 
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5.4 Pseudochiral material 

Pseudochiral material has drawn highly attention recently. Unlike chiral and omega 

chiral materials, psedochiral has symmetric cross coupling tensor. The symmetry of 

cross polarization cause the phenomenon of plane wave propagation even complicated. 

In general, the constitutive relations have the forms 
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where     satisfies reciprocity condition of Eqns.(2.5) and (2.6). 

 

5.4.1 Dispersion relation 

  Confine ourselves to a special case of pseudochiral material which has only cross 

effect along principle z direction. Constitutive relations could be written as: 
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Follow through the same steps as before, two dispersion relations are obtained. 
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where  
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In terms of  , dispersion relation is given by 
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Here   are functions of xk , which implies that there are two terms of xk  in 

dispersion relations. A small change of materials’ parameters may cause significant 

change of wave vector. Three cases of equifrequency surface with respect to wave 

vectors are plotted in Fig 13 (1)-(4) 

(1)                              (2) 

 

              (3)                                 (4) 

 

Fig 13  Equiphase diagrams for two eigenmodes (mode1 for   and mode2 for 

 ) with material parameters 2    and   0.4, 0.8, 1.2 for (1),(2),and (3) 

while   0 for (4). Note that eigenwaves degenerate in (4). 

 

The dispersion relations curve show physical significance that the present of   
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influence the wave vector strongly. For isotropic case both wave vectors are circular 

shapes while when   gets larger, the curves are shaped to trapezium for mode1 and 

petal-like for mode2. Furthermore, the petal-shape curve indicates negative wave 

propagation because the gradient of the frequency or energy may twist in opposite 

direction compared to wave vector. Unlike hyperbolic curve given from anisotropy 

medium, we get a petal-like curve that gives rise to negative refraction. 

 

5.4.2 Eigenmode solutions 
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5.4.3 Admittance analogy 
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Inserting Eqs.(5.65)&(5.66) into Eq.(5.68) and comparing each component, we get 
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where admittance is defined: 
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Impedance is defined: 
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5.4.4 Poynting vector 

Poynting vector is defined as *1
Re

2
   S E H  

 
x

x z r

z

S
p p

S











 
   

    
   

 

S  (5.72) 

 

5.4.5 Reflection and transmission in layered media 

Consider plane wave problem in layered structure with host medium being uniaxial 

chiral medium. Since eigenwaves are elliptic waves, TE and TM cannot be decoupled 

separately. Follow the same procedure as before, incident wave is expressed as: 

 cos sini i x i z i yE E    iE e e e  

0 0

( cos sin )
i i

y i x i z

E E
 

 
   

i
H e e e  

Reflected wave: 

(cos sin )r r y r i x i zE E    E e e e  

0

1
( (cos sin ))r r y r i x i zE E  


   H e e e  

Transmitted waves: 

 t t x y z t x y z

x z r x z r

E i E i
p p p p

 
 

 
 

   

   

   
        

   
E e e e e e e  (5.73) 

 
1 1

t t x y z t x y z

x z r x z r

i E i i E i
p p p p

 
 

   
 

   

   

   
         

   
H e e e e e e  (5.74) 

Again let us apply boundary conditions to determine reflection and transmission 

coefficients: tangential components must be continuous. 
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 (5.77) 
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Fig 14. R,T curve with respect to incident angle with host medium 

5, 1, 0.4     . Note that T11 and T21 is imaginary. 

 

Note that Eqs.(5.76)&(5.77) can be deduced from Eqs.(5.53)&(5.54) by letting 

,TM TEY Y Y Y   or from Eqs.(4.18)&(4.20) by setting / cosi  . This implies 

the present case is an elliptic polarization which simultaneously posses certain degree 

of symmetry because transverse admittance is identical. Chiral medium can be seen as 

isotropic depending on its symmetric tensors whereas uniaxial medium is seen as 

anisotropic. We conclude that pseduchiral medium is anisotropic by its dispersion 

relations, however, due to simplified , ,   , it shows symmetry in admittance 

analogy. In our analysis, we find that the reflected wave is always linear polarized, 

which is the consequence of   is the same for both transmitted waves. In 

isotropic-chiral material, reflected wave is only linear polarized when Brewster’s 

angle is considered. Reflection of anisotropic medium is linear polarized, however, 

the transmitted wave is decoupled linear polarized wave. Pseudochiral material, could 

be regarded as in between, whose reflected wave is always linear while refracted 

waves are elliptic polarized. Observing RT solution given by Eqs.(5.76)&(5.77), the 

results are quite similar to that of isotropic host medium but T shows cross coupling. 

This results are identical to the phenomenon discussed. In general, we conclude that 

constitutive relations alone determine the characteristic of the waves, which is shown 

in Table 2 

 

Host medium Refracted 

polarization 

Reflected 

polarization 

Wave number 
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anisotropic Linear Linear 
2 2

2

2 2
2

x z
y

x z

x z
y

x z

k k

k k

 
 

 
 

 

 

 

Isotropic-chiral Circular  Elliptic  
 k      

pseduochiral Elliptic  Linear  2 2 2
k


  




 
   

 
 

Bi-anisotropic Elliptic Elliptic  

Table 2 

5.4.6 Negative refraction 

We have investigated many electromagnetic characteristic of pseudo-chiral material. 

One remarkable phenomenon includes negative refraction occurs for one eigenmode 

even if all material parameters are positive and at the same time the reflected wave is 

always linear polarized, which satisfies Brewster angle in Bassiri’s paper [15]. Here 

we demonstrate how this happen. 

 

Fig 15.Shematic diagram of a plane wave from free space which is incident 

on an angle of 30 degree to a pseudo-chiral material. Two refracted waves are 

shown by mode1 (red line) and mode2 (black line). Note that material 

parameters are 2, 1.2      with 1 230 , 14.8 , 20.43i        
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(a) mode1 

 

(b) mode2 

Fig 16. Each eigenmode and corresponding Poynting vector. From (a) it is 

shown that Poynting vector (black line) is pointed downward, which is negative 

refraction, while in (b) Poynting vector (red line) is pointed upward showing 

positive refraction. Note that reflected wave is linearly polarized. 
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Fig 17. Electric field pattern for Ey component. In the right half plane two 

refracted elliptic waves combine for the electric field while in the left half 

plane the result is the combination of reflected and incident waves 

 

Now we want to design an impedance matching condition such that one of the 

transmitted waves is vanished. The same method has been performed in dealing with 

negative refraction in isotropic media in the previous section. Note that a circular 

incident wave may cause reflected wave even if impedance matching condition is 

satisfied. Using the same parameter 2, 1.2      and 
1 230 , 14.8 , 20.43i       , 

however, a right circular wave (RHCP) is given as incident wave. Mode2 is vanished 

according to Eq.(5.77). The schematic and field pattern are shown in Fig 18. 

 

(a) 
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(b) 

 

 

                                 (c) 

Fig 18 Schematic diagram for a circular wave (blue) under impedance match 

condition 0 0/ /    . Plot (a) shows the direction of Poynting vector with 

its corresponding mode and (b) shows it is an elliptic transmitted wave 

(red).(c) is the electric field pattern. Note that mode2 is not produced.    

 

If a left circular wave (LHCP) is incident under the same condition, mode1 is not 

produced. This time a positive refraction wave is obtained. 

 

5.4.7 Conditions of negative refraction and backward wave 

In this section we discuss the condition of negative refraction and backward wave in 

detail by examining two eigenwaves derived in Eq.(5.64). To investigate the possible 
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phenomenon of negative refraction, isofrequency contour is plotted with respect to 

zk   below in Fig 19 

 

Fig 19 Isofrequency contour with respect to two eigenwaves in pseudochiral 

medium with parameters 3, 1     . Note that red and blue curves 

correspond to zk   and zk   waves respectively. 

 

Without loss of generality, let us focus on the upper half space where 0xk  . Point A, 

at which group velocity lies directly along the z axis, gives the condition of negative 

refraction for zk  wave. This point could be evaluated by letting 0xS  , which 

corresponds to 0z zE H  in Eqs.(5.65)&(5.66). 

 xk   (5.78) 

While frequency is below this point, zk  wave gives rise to negative refraction, which 

could be easily seen by normal vector of the isofrequency. zk  wave, however, 

corresponds to positive refraction at this region. For point B, at which 0zk   , gives 

us the condition for backward wave. Above this point, in order to keep Poynting 

vector pointing to positive z direction, zk   must be selected for negative sign. 

Letting 0zk    in Eq.(5.64), we get 

 2

xk      (5.79) 

Point C defines the maximum value of xk . If xk  exceeds this point, then both waves 
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become enavenscent wave. In fact, point C could be obtained by setting 
z zk k  , 

which yields 

 
xk    (5.80) 

Therefore, it is concluded that points A,B,and C provide us with conditions of 

negative refraction or backward wave. If xk  , then negative refraction can be 

found in 
zk  wave and positive refraction in 

zk   wave. When 2

xk      , 

both eigenwaves support positve refraction. If 
xk  is further larger such 

that 2

xk      , we still have two positive refraction eigenwaves but 

backward wave occurs for
zk  mode. Three different regions are indicated in Fig 19. 
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Chapter 6 Gaussian Beam wave 

6.1 Beam propagation through dielectric interface 

  So far we have focused on plane wave propagation in various complex media, 

however, plane wave means the wave is on the whole plane and two transmitted 

waves are not easy to observe because what we see is the mixed profile of the field 

such as Fig 10&Fig 17. If we want to see two split beams as predicted in chiral 

medium, a bounded incident beam having Gaussian variation in its cross section is 

used to simulate laser beam. Following the method used in [29], suppose a Gaussian 

profile of electric field is incident at z=-h with angle  , which takes the form: 

    
2

, exp cos / siniE x h x w ikx     
 

 (6.1) 

The above distribution produces a radiant field which can be represented by Fourier 

representation. 
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 
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k z h jk z jk x dk
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   
 (6.3) 

where 2 2 2 2

0 0 1 1,x z x zk k k k k k    . When incident upon a dielectric interface, 

reflected and transmitted fields are produced. Reflected field could be represented by 

the Fourier superposition spectrum of reflected wave propagating in minus z direction 

and the amplitude is that of incident wave multiply    0expx zR k ik h .  xR k is given 

by the result in plane wave analysis and  0exp zik h is needed to satisfy phase matching 

condition.  

      2 2

0( , )expr x x xE IFT R k k z h j k k z h        (6.4) 

Similarly, the transmitted field could be represented by Fourier superposition of the 

refracted wave propagating in positive z direction with amplitude is that of incident 

wave multiply    0expx zT k ik h  

      1 0( , )expt x x z zE IFT T k k z h j k z k h      (6.5) 
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For dielectric interface, reflection and refraction coefficient is easily obtained for TE 

wave. 

 

1 0 0 1

0 1 1 0

1 0
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

 (6.6) 

In Fourier spectrum analysis, cos  must be expressed in term of xk  to include all 

value of 
xk  in the integral representation. Substitute 2 2cos 1 /i x ik k    into 

Eq.(6.6) , we have 
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 (6.7) 

The magnetic field could also be expressed as the Fourier integral representation 

shown by [30]. 
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where 0

0 0

,z xk k

 


represent 0 0sin ,cos   respectively. 
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Time averaged energy flow or Poynting vector, could be expressed as:  

 2 2 2

x y zS S S S    (6.11) 

where  
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* *

* *

* *

1
Re

2

1
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2

1
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2

x y z z y
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z x y y x

S E H E H

S E H E H

S E H E H

   

   

   

 

Matlab simulation has been performed to simulate Gaussian beam propagating 

through dielectric interface as shown in Fig 20~Fig 23. 

 

Fig 20 Electric field profile (left) and time averaged energy density (right) of an 

incidence Gaussian beam incident at angle 
0 30  with material 

parameters 0 0 1 11, 9       . 

 

Fig 21 Total reflection of an incident Gaussian beam at angle 0 30  with 

parameters 0 0 1 110, 1       . 
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Fig 22 Negative refraction and backward wave resulted by Gaussian beam 

incident from air to a host medium having simultaneously negative 

parameters 1 14, 1     . It is seen that the beam is twisted another side. 

 

Fig 23 Negative refraction occurs with host medium parameters 1 1 1    . In this 

case, refraction angle is the same as incidence angle. A slab of such material could 

be used to make perfect lens [5]. 

 

Note that in case of negative refraction, 2 2

iz xk k k   or 2 2cos 1 /i x ik k    in 

Eqs.(6.6). 

6.2 Beam propagation through chiral interface 

  If dielectric material is replaced by chiral material, two beam waves emerge. The 

reflection and transmission is given by Eqs.(4.21)&(4.22) to calculate the beam wave 

fields. Substitute
2 2

1cos i xk k   ,
2 2

1 1cos xk k   ,
2 2

2 2cos xk k   in Eqs(6.12)

&(6.13), where  1 2 2k      ,  2 2 2k       correspond to wave number 

of right and left circular waves respectively. 
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(6.13) 

 

Fig 24 A incident TE beam wave at angle 25i  propagate through a chiral 

medium with material parameters 1 11, 4, 1.3     . Two transmitted beams 

correspond to RHCP and LHCP respectively. 
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Fig 25 A right circular beam wave incident at angle 25i   under impedance 

match condition with parameters 1 1 2, 1     . Note that reflection and 

transmitted left circular waves vanish. The phenomenon is the same as discussed 

in plane wave. 

 

Fig 26 A left circular beam wave incident at angle 25i   under impedance 

match condition 1 1 1, 2     . Note that reflection and transmitted right 

circular vanish. The remaining transmitted left circular accounts for negative 

refraction and a slab of such material could be used to make perfect lens proposed 

by Pendry. 

 

6.3 Beam propagation through pseudochiral interface 

  Let us examine beam wave propagation through pseudochiral interface. Like chiral 

material, two eigenwaves emerge in host medium. The reflection and transmission 

coefficients for calculating electric field have been derived in Eqs.(5.76)&(5.77).  

Parameter     2 2 2 2/ xk           is necessary for evaluating each 

coefficient. Matlab simulation is shown below: 
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Fig 27. Beam propagation through pseudochiral medium with material parameters 

2, 1, 0.6      at incidence angle 30  . Right handed elliptic wave 

produces negative refraction while left handed elliptic wave produces positive 

refraction. 

 

Fig 28. Normal incidence through pseudochiral medium with material parameters 

2, 1   , 0.6  . Two splitting transmitted waves occur. 

 

Fig 29. Normal incidence through pseudochiral medium with material parameters 

2, 1   , 0.8  . Two splitting transmitted waves occur, however, transmitted 

angle is larger as   gets larger. 

 

  It is clearly noted that two splitting beams occur under normal incidence. Such 

unusual characteristic can be explained by the singular point of isofrequency contour 

plot under normal incidence. The similar intersecting point could also be found in 

some modulated photonic crystal structure[31], which leads to undetermined group 

velocity. According to Notomi, at this point the propagation of light is very sensitive 

to direction of the wave vector so a slight change of the incident direction may cause 

opposite direction of group velocity.  

  To further investigate such splitting behavior, we put dispersion relation Eq.(5.64) 
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into Eq.(6.3). The following analytical field expression could be obtained: 

  

 

 
2 2

2
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2 2 2

exp exp 1
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2 2 2
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z z

z z z z z

w x z
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q q

xz xz x z xz x z
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q q q q q




    

 
    

 

              
            
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 (6.14) 

where 

 2 2

0

0

2
, 1 ,z

j z
q w h

h


         (6.15) 

and erfi is imaginary error function. The above equation gives us analytical result of 

beam propagation under normal incidence. It is seen that the two error functions 

produce beam steering. If cross polarized factor 0  , then Eq.(6.14) become 

formula of beam propagation in ordinary dielectric medium. 
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Chapter 7 Conclusion 

  In conclusion, in this work we derive dispersion relations, eigenwaves together 

with Poynting vector of wave propagation in bi-anisotropic medium in analytical form. 

Reflection and transmission through a planer interface is also formulated. In particular, 

we explore the wave propagation in pseudochiral material and the condition of 

negative refraction and backward waves are discussed. Due to symmetry embedded in 

chirality parameter in pseudochiral structure, reflected wave is always linearly 

polarized either in TE or TM incidence. Furthermore, it is shown that negative 

refraction and backward wave could be found in two separate eigenwaves. Such 

material could be made by simply adding omega shape inclusions in host medium and 

provides another route to realization of negative refraction. 
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