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Abstract

Meta-materials are man-made structures which exhibit unusual electromagnetic
response. Such extraordinary responses give rise to new physical insights and
engineered applications. The most common way to describe this kind of material is by
defining effective material parameters connected to constitutive relations. Once
constitutive relations are obtained, the wave propagating properties could be explored
through basic electromagnetic theory.

In this thesis we investigate wave propagation based on different sets of
constitutive relations. Dispersion relation, eigenwaves, impedance together with
Poynting vector are derived. Also we derive reflection and transmission coefficients
through a single planer interface. In particular, we study plane wave propagation in a
special kind of bi-anisotropic medium: pseudochiral medium. It is found that two
elliptic eigenwaves appear in pseudochiral material and allow us to realize negative
refraction or backward wave. Finally, Gaussian beam propagation is conducted to

verify our results.

Keywords: Meta-material, Negative refraction, Backward wave, Pseudo-chiral
medium, Anisotropic complex medium.
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Chapter 1  Introduction

Artificial meta-material having simultaneously negative parameters has drawn
enormous attention since the first experimental fabrication by Smith [1] in 2000. The
theoretical study of such medium was first presented by Veselago in 1967 and the
term left-handed material was used to describe this kind of material. Significant
physical phenomena and applications include negative refraction [2], backward wave
[3], negative Goos-Hanchen shift [4], and the realization of perfect lens [5]. In 2004,
Pendry shows that negative refraction could also be realized by isotropic chiral
material [6] and its potential applications are then investigated by many researchers
[7-9]. More recently, many more complex bi-anisotropic materials are widely
theoretical studied to verify the possibility of negative refraction and backward wave
[10-14].

Plane wave propagation through inhomogeneous media have long been an
important topics in electromagnetic. Bassiri [15] dealt with reflection and
transmission coefficients (R,T) of chiral medium in 1988. Later Tretyakov [16]
studied R, T for general bi-anisotropic medium using transmission line theory. It is
seen that impedance or admittance play crucial role in R T formulations.

In the present thesis, we study harmonic plane wave propagation in various
complex media by scalar wave function with time convention exp(—iwt) . Dispersion
relations, eigenwave, impedance as well as Poynting vector are clearly derived for
each case. Reflection and transmission coefficients through inhomogeneous media are
also derived analytically and relations to negative refraction or backward waves are
discussed. We present a general formula with obvious physical insight and compare
with the existing works. Furthermore, we investigate the wave propagation properties
in pseudochiral material, in which wave characteristics may differ from those we have
known in other bi-anisotropic media. Finally, Gaussian beam propagation simulations
are also demonstrated to easily clarify the phenomenon of negative refraction.



Chapter 2  Constitutive Relations

2.1 Constitutive equations

Effects of wave propagation through a linear, isotropic and homogenous medium
have been widely studied based on Maxwell equation. Basic remarks include the
wave vector, electric field and magnetic field are perpendicular to each other and form
a right-handed system; dispersion relation relates the material’s dielectric or magnetic
susceptibility so that the index of refraction could be defined to estimate the wave
velocity. Many materials, however, are anisotropic in nature. Anisotropy is taken into
consideration by assuming different behaviors in each direction, in which the physical
quantity produced is no longer constant but depends upon the direction. Another
characteristic electromagnetic property is the cross effect or chirality, in which the
electric and magnetic flux are influenced by magnetic and electric field. These two
significant phenomena destroy the symmetry of constitutive relations and in general,
could be written as:

D= iE + e§=H 2.1)
B=uH+CE

where ¢ 5 are dielectric and magnetic tensors and s are responsible for cross

coupling. The term bi-anisotropy is used to describe materials with chiral property.
Note that constitutive relations could be expressed by other forms. Eq. (2.1) is

called Condon-Tellegen relation. However, in different problems, the same name is

given to parameters which are not exactly the same. Another form of constitutive

relations are given by Post, Jaggard and Mickelson [17], which reads

D=¢E+&B 2

=-1 =
H=ux B+(E
Another relations focusing on the nonlocal behavior is given by Drude, which are
called Drude-Born-Fedorov relations by Lakhtakia.

D=z (E+VxE)+ZH
B=pu(H+AVxH)+CE

One of the relations is adopted depending on which electric and magnetic quantities

(2.3)

are used. However, different sets of relations could be related to each other and the
results are given by Sihvola and Lindell [18]. Throughout this thesis, we use

Condon-Tellegen relation Eqg.(2.1) to analyze our problem.



2.2 Lossless, reciprocal medium

Restricting ourselves to lossless media, from conservation of energy we see that
dielectric and magnetic tensors must be symmetric. Lossless implies there is no
absorption during wave propagation and that every tensor element is real. According
to coordinate transformation, every real symmetric matrix could be diagonalized as
the form

(& 0 0
e=|0 g 0
0 0 g
w0 o (2.4)
u= 0 pu 0
0 0 4

The above coordinate axis is referred to principal coordinate axis, which means that
all off-diagonal elements are zero. Let us consider chiral medium. Chirality structure is
often encountered in biochemistry. Assuming lossless and reciprocity still hold, from
conservation of energy we must have

—

(2.5)

W I
Il

|
Nl

(2.6)

ol

£

which means that :‘z —? must be an imaginary number.



Chapter 3  Anisotropy medium

3.1 Dispersion relation

Confine ourselves to anisotropy medium but ignore the cross coupling effect due to
chirality. Most materials possess certain degree of anisotropy and could be broadly
categorized in terms of: cubic, uniaxial and biaxial as listed in Table 1

Cubic Uniaxial Biaxial
Principal axis . 0 0 £ 0 0 & 0 0
0 ¢ O 0 ¢ O 0 ¢ O
0 0 ¢ 0 0 g 0 0 g
Material Diamond Quiartz Mica
Table 1
In general, from Egs. (2.1)&(2.4), constitutive equations have the form:
e 0 0
D=0 & OIE (3.1)
D40 R
#e 00
B=0 u 0|H (3.2)
0 0 g

Insert (5) (6) into Maxwell equations. The following eigenvalue equation is obtained:

=1 =
[(PxD)epr  «(px1)+&]-E=0 (3.3)
p=k/w=1/o(ksinbe, +kcos6be,)
where 6 denotes angle of wave vector to z axis.
For nontrivial E, the determinant of the bracket must be zero, which gives two
dispersion relations.

k? k2

“—+t =0y, (3.4)

£.& L £ E
k = kT Sy 35
w\/gxsiﬁ0+gz cda 0\/gx dne . & O

4



2 2
where Ky” = 0" 1y,
and

2 2
ke + L =o’s (3.6)
M, By

y
MM £ HKE,

k: y =k y 37

a)\/,uxsiﬁ6’+,uz céa 0\/,ux HAauy , & 3.7

From above derivation two wave numbers could be obtained and both of them depend

not only on the medium parameters but on propagation direction. To examine our results,
simply set & =¢&,=¢, andy, =4, = i, such that two wave numbers are identical and
is not a function of propagation direction, which is an isotropic medium and confirm
with elementary electromagnetic theory.

3.2  Eigenmodes solution

Via dispersion relation two wave numbers have been found in term of 6. However,
further derivations show that it is easier to express wave number in way of Kk, because
it is assumed that k, is a known quantity in later problems. Let us rewrite wave
numbers and solve eigenvalue problem for Eq.(3.3). Physically, the corresponding
eigenvectors indicate the modes.

From (3.4)
2D 2
by Jﬂ_p 9
gZ
E-E(1, 0 2P (3.9)
gZ Z
From (3.6)
_ 2
P, =J Hullafy ~ B (3.10)
H,
E=E(0,1,0) (3.11)

3.3 Impedance analogy

Once electric polarized mode is known, Maxwell equations give the relation between
magnetic field and electric field. Transverse impedance is defined as the ratio of
transverse electric field to magnetic field.



=-1 =—ll 1 =-1
H=u B=u —kxE==(u -kxIE (3.12)
w w

For TM mode E = E(1,0,—%2P2)

p.? _'_i p.?
H=Dke Bk & g (3.13)
wOH, P4y

== =2 (3.14)

For TE mode E=E(0,10)

’ :\/uxgy— P, —p,

. = (3.15)
H 1,
H, =
Hy
E 2
g =—t =t (3.16)
HX pZ

3.4  Poynting vector

Time average Poynting vector indicate the direction of energy flow and is significant
when considering plane wave refraction in inhomogeneous media.
TM mode from Eq.(3.9)

S
=2 )| @)

TE mode from Eq.(3.11)

sz[ssz “He |2 (3.18)

3.5 Reflection and transmission in inhomogeneous media

Wave vector, dispersion relations, impedance and poynting vectors are derived to
solve reflection and refraction problem with inhomogeneous media. Consider a plane
wave from a dielectric material entering an anisotropic medium as follow in Fig 1:



E1’“”1

Fig 1
The incident electric and magnetic field could be written as

E, =E,,(coste, —sinte,)+E.e, (3.19)

H, =E,/n,-e,+E,/n,(-cosf-e, +sind-e,) (3.20)

where E;,, and E, refer to the magnitude of TM and TE incidence respectively.
Impedance 7, is defined with respect to incident medium. Similarly, the reflected
electric and magnetic field could be written as

E, =E, (cosd-e, +sind-e,)+E e, (3.21)

H, =-E,/n,-e, +E_./n,(cosd-e, +sind-e,) (3.22)

To find the reflection and transmission coefficients E, and E. it is assumed that
the refracted modes are unity in magnitude so that R and T could be regarded directly
as the amplitude ratio with respect to incidence field. Therefore, transmitted electric
and magnetic fields are expressed as

E =E, -, +E, (6~ 2 re)) (3.23)
H, = ETt; (e, +Aez)+%-ey (3.24)
n n
s i, —ple e
where 1™ =\l by~ PGl & and 7" = ' denote TE and TM
& Jue, - plu ] 1,

modes impedance respectively.
Now apply Maxwell boundary condition to obtain reflection and refraction
coefficients.



_ " -mco8

E = )
rm ™ im
n" +mn,co8
2n™ co@ (3.25)
Em=—= ———2Em
n" +mn,co¥
E _ n'" cosf-n, |
* p,+ntcosd ©
27" cos @ (3.26)
E —

te ie

7, +n"" cosé

Follow through Egs.(3.25)&(3.26), the reflection and transmission coefficients with
respect to incident angle could be obtained. Certain examples are shown for
=g,=225 ¢, =-¢,=225 inFig 2&Fig 3.

&y

ex=2.25 £7=-2.25 =225 £7=225

L i /L' 08 = M T )
S g / = SR
R 4 g /
06} Sy i o 06+ ~ /1
S 7 N /
05t N E 0sf Nd
/N N/
04r JE R, 04r L
\ 4\
03t \ T 03r / <
02} ) N 02} I N
01r ’L/ g 01 h// i
e
0 " 0 {)‘/
e P
o1t /,a/@ 1 ot g
,er’@/ X )"r__e/@’

0 : 028 - —

] 05 1 15 a 0s 1 15

Fig 2 Fig 3

3.6 Negative refraction and backward wave

Many interesting phenomenon emerge when electromagnetic waves incident from a
dielectric material to an anisotropic medium. Two of which are negative refraction
and backward wave. The definitions of negative refraction and backward wave have
been given elsewhere [3]. In brief, negative refraction could be defined when the
wave vector in the transmitted medium has an opposite direction with respect to the
wave vector along interfacial direction and a plane wave is said to be backward wave
if the wave vector has a negative projection onto the Poynting vector. Now suppose
permittivity and permeability tensor are along principal axis as defined by Eq.(2.4)
and could be negative. Reflection and transmission coefficients, however, could not
totally obey Egs.(3.25)& (3.26) due to the choice of sign of wave vector k,in Eq.(3.4)
or (3.6) and need to be derived in terms of incidence wave vector k;. Detailed

8



derivations and physical insight have been studied by I.V.Lindell, S.A.Tretyakov et,al

[3] and P.A.Belov [14]. The following shows result for case with ¢, =2.25

g, =—2.25in Fig 4.

07

06

05

0.4

03

02

0.1

01

0.20—=
0

3.7  Slab problem

3.7.1 Layered media

=225 £2=225

ﬁ T B )
~
T, &
3

Layered media with multiple interfaces have been an important issue in
electromagnetic due to its wide range of application. One of which is to determine the
reflection and refraction coefficients and then retrieve material properties by inverse
scattering technique. Consider a plane wave normally incident upon a layered
structure ABC. Following the method used in[19],the expressions for the fields could

be written as

In medium A: (z<-d)

In medium B: (-d<z<0)

In medium C: (z>0)

ik,z —ikyz
Eg =Ege™ +Ege X

H, = _[EBteikzz _ EBre—ikzz} y

Ei — Eieik1(z+d)x
1

Hi - Eieikl(u—d) y

Ma

Er — Ere—ikl(2+d) X

-1

Ma

1

s

H - Erefikl(Zer) y

(3.27)

(3.28)



E. =Ee"'x

: 3.29
H. = S Ee"’y (3.29)
Tc

where the wave component Egand E; in medium B are forward and backward

wave respectively. Using Maxwell’s boundary conditions requiring tangential
components of electric and magnetic fields be continuous at two interfaces, we have
At z=-d
(E, +E,)=E,e™" +E,e""
1 1

— Ei_Er - E efikzd_E I’eikzd
77A( ) 778( i ° )

(3.30)

At z=0
Eq +Eq =E
1 1 (3.31)
_[EBt - EBr] =—E
B C
Solve four unknowns based on four equations, we get

2ik,d

E — (772 _771)(773 +772)+(772 +771)(773 —772)6
(772 +771)(773 +772)+(772 _771)(773 —7]2)6
- e
(7 + 1) (122 +1,) + (1, =) (112 =11, ) €
E, =- —in, (17, —15) _
r i, (17, +15) cos(k,d) + 7722 +(mm5) sin(k,d)
_ i77, (17, +715)
i, (i, + 1) 08(k,d) + " + (177,)sin(k,d)

2ik,d

2ik,d

(3.32)

Bt

Although the above formulas are based on dielectric material, lossy medium is also

applicable if impedance is in term of complex value. Our result can still be verified by
transmission line theory.

3.7.2 Effective medium for periodic grating structure

Consider a plane wave normally incident to a periodic grating structure with 6 =0
as below in Fig 5

10



Fig 5 Periodic grating structure in one (a) and two (b) dimensions. Substrate is
silver and the coating film is silver-air array with height h and periodicity d.

Suppose the dimension of geometry structure is much smaller than the excitation
wavelength. Such material is termed metamaterial and for one dimension periodicity,
could be characterized as uniaxial anisotropic medium with effective longitudinal and
transverse permeability.

d
(d—Z)/8m+C/8a (3.33)
Ep=tE ~C,9m+£,9a
& d d

where

&,, - permeability of silver

&, permeability of air.
We investigate the metamaterial absorption behavior with regard to wavelength of
incident wave as well as height of the structure and check whether effective theory is
valid. Let incident wavelength range from 300-1000nm and height from 0-1000nm.
We scan for absorption spectrum. Using Eg.(3.33) as layer B impedance, we
demonstrate that the smaller periodicity d compared to wavelength, the better the
effective medium in Fig 6 resemble real structure Fig 7.

1000

1000
900 900
800 800
700 700

600

h{nm)

500

hinrn)
o
=

400

300

200

100

" B0
A{nm)

300
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Fig 6 Absorption spectrum of effective medium using ¢=0.1d (a) and ¢=0.2d (b).

Note that effective material parameter only depend on volume fraction of air and
silver, regardless of absolute value of d.

1000

1000

800 800

600 600

height

400

height

400

200

600 800 1000
wavelength(nm)
1000 1000
-
i}
£
o
=

height

400

|\

200 e

waeeglengﬂw(nm) e e
(d)
Fig 7 Absorption spectrum of real structure with ¢=0.1d while d=10nm (a),
d=50nm (b), d=100nm (c) and d=300nm (d).
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Chapter 4 Chiral medium

4.1  Dispersion relation

Consider bi-isotropic chiral medium with cross coupling but ignore the effect of
anisotropy. Isotropic implies the physical property doesn’t depend on direction.
Therefore, the material parameters in constitutive relations could be regarded as scalar
quantities, which have the following forms

e 00 iy 0 O
D=0 & O|E+| 0 iy O|H (4.1)
0 0 ¢ 0 0 iy

u 0 0 iy 0 O
B=0  0OH-|0 iy O]|E (4.1)
0 0 u 0 0 iy

Follow the same procedure as in anisotropic case and assume wave vector lie on X-z
plane. Using Egs. (4.1) and (4.1) into Eq.(3.3), two wave vectors are given by

kl:a)(y+ ,ug) (4.2)

K, :a)(—7+ ,ug) (4.3)

Note that the wave vectors in the isotropic chiral medium are not function of
direction angle, which is quite different from anisotropy cases considered in the
previous chapter. For nonchiral materials (=0), the two propagation vectors
coincide and become w,/ 1& , which is well known in the elementary electromagnetic
theory.

4.2  Eigenmodes solution

Once the eigenvalue is obtained, we could go for the eigenvector and determine the
wave propagation modes in the material. Based on the results given by Eqgs.(4.2)
&(4.3), two eigenvectors could be obtained.

For klza)<7/+ ,ug)
E, =E(cosd,i,—sinb) (4.4)

For k2=a)(—7/+ ,ug)

13



E, =E(cosé,—i,—sin6) (4.5)

From above derivation it can be easily seen that two circularly polarized wave
serve as modes for corresponding two wave vectors. The speeds of right circular
polarized mode (RHCP) and left circular polarized mode (LHCP) are different due to
parameter . Note that TE and TM modes cannot be taken as eigenvectors in chiral
medium, which is different from dielectric material.

4.3 Impedance analogy

Impedance could be obtained similar to Eq.(3.12). For bi-isotropic material, the
results are even simpler.

A
_ - A E
=-1 = = 1 _ X
H=u {kXI§JE:AE: e s s E, (4.6)
» op pop ||
L
ou  p

Inserting Eqs.(4.4)&(4.5) into Eq.(4.6), impedance could be obtained.
For k, :a)<7+ ,ug) (RHCP)

H, :—i\/g(cose,i,—sin 0)=—i5
H h

m == 4.7)
&g

For k1=a)( ,ug—y) (LHCP)

H, = i\/g(cosa,—i,—sin 0)= i
H 7,

7, == (4.8)
&

Note that k, =ksiné,k, =kcosé@ in above derivation and two eigenmodes share the
same impedance. This could be seen as the result of isotropic medium.

14



4.4  Poynting vector
Time-averaged Poynting vector is defined as (S) = % Re[Ex H*]

For k1=a)(7/+ ,ug) (RHCP)

Jue +y H

S 0 Zsin@
S =( *j: x 2| ‘¢ E? (4.9)
S (e
z pz( ,Ll8+]/) ECOSH
P, &

For k2=a)( yg—y) (LHCP)

S \/Zsine
s:[ xj: e g (4.10)

Jad cosé@

&
Isotropic material shows that the direction of energy flow is the same as direction of
wave vector, which means the energy and momentum flows are parallel.

4.5 Reflection and transmission in inhomogeneous media

Consider plane wave problem in inhomogeneous layered medium. An incident
plane wave from isotropic medium causes reflection and transmission phenomenon
when passing through the interface. Suppose an incident wave can be decomposed
into TE and TM modes, which can be written as

E, =E,, (cosde, —sinde,)+E.e, (4.11)
E E .

H, =—"e, +—=(-cosde, +sinbe,) (4.12)
o o

where subscripts m and e refer to TM and TE incidence. Reflected wave, however, are
not TE or TM wave as in the nonchiral case. Instead, the reflected wave need to be
expressed as the elliptical wave form:

E, =E, e, +E,(cosfe, +singe,)

rl

4.13
Hrzi(_E e, +E,, (cosde, +sinbe,)) N
n

=y
0

Transmitted waves are the linear combination of the two circularly polarized waves,
which has the form:

15



Et — EtReikl(zcosal+xsin61) + EtLeikz(zc0562+xsin62) (414)
where

E,, = Eg(cosée, —sinde, +ie )

EZ = Eti (cos leex —sin ;zez —ieyy) (4.19)
E,and E,,correspond to right and left circular wave respectively. Note that when
oblique incidence is taken into account, two polarized wave have different refracted
angles due to different values of wave number. Here 6, and 6, denote refracted
angles with respect to RHCP and LHCP. With impedance, magnetic field has the form

—i

Ht — ? Etleikl(zcosel+xsin91) +% Etzeikz(zcosﬁz+xsin 6,) (416)

where impedance Z = \/Z
&

With Maxwell boundary condition, reflection and refracted coefficients could be

obtained.
[EH}Z[RM RHJEEH] 1)
Erlr R21 Rzz Ei||

Reflection coefficients:
(ZTmZ +ﬂTm2)(ZTe1 _nTel) + (ZTml +77Tml)(zT62 _nTQZ)
(ZTmZ +77Tm2)(ZTel+f7T61)+(ZTml +nTml)(ZT92 +77T62)
) —2i77Tm (ZTml _ZTmZ)
(ZTmZ +77Tm2)(ZTel+77TE1)+(ZTm1+7]Tml)(ZTez +77Te2)
Ry = T_e12 inTr:eSZTml _TfleZ)Tml Tez | Te2
™+ N2+ )+ @+ N2 +n)
~ (ZTmZ _nTmZ)(ZTel +77Tel) + (ZTml _ﬂTml)(ZTez +77Te2)
2~ (ZTmZ +77Tm2)(zTel +77Tel)+(ZTml+77Tm1)(ZTez +77Te2)
where
Z™ =7c0s6,2™ =7¢0s6,, 2™ =7 =Z cos@

n™=n"=n,c0s0,n"™" =n,c086,,n" = 1,080,

Ey _ T, Ty = 4.19
[Ezj_£T21 T22] EiH @19
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where

Ry =

Ry

(4.18)

Transmitted coefficients:



T B —ZiZTe(T]Tm2+ZTm2)
1 (ZTmZ+77Tm2)(ZTel+nTe1)+(ZTml+77Tm1)(ZT92 +77T62)

T, = Tmz . Tm2 Te12 ZTeTElz - +?r: 2) Tmiy > Te2 | . Te2
2™+ N2+ )+ (2 + N2+ ™) (4.20)
Ty = Tm2 . Tm2 Te?iZTeTS? - +§nT1m1) Tmiyy > Te2 | . Te2
™+ N2+ )+ (2 + N2 +n ™)
zzTe(ZTel +77Tel)

T. =
22 (ZTmZ +77Tm2)(ZTe1 +77Te1)+ (ZTml +77Tm1)(ZTe2 +77Te2)
where
Z™ =Zcos@,2™ =Zcosh, 2™ =Z" =ZcosO

77Tm1 _ nTmZ =17, COSQ“UTel =17, COS 91’ 77Te2 =17, COS 92

Our results are identical to that given by Bassiri [15] using Post-Jaggard relations.
HereR,,R,,,T,,,T,, are cross polarizations due to the nature of the circular wave and
denominator in each coefficient could be viewed as TM TE coupling. In other words,
because both circular waves could be seen as a linear combination of TE and TM
wave with phase difference 90 degree, two circular eigenmodes appear and linear
polarizations are no longer independent basis. However, physical meaning is obvious
if we regard chiral materials as a generalization of isotropic material. Suppose y =0,
two wave vectors degenerate and only repeated mode exists. From Eqns.(4.18) and
(4.20) we reproduce reflection and transmission formula, given by

(ZTe _77Te)
R, =Ry =0 (4.21)
B (ZTm _nTm)
22 (ZTm +77Tm)
_izTe
T, =
1 (ZTe +77Te)
ZTe
T12 R —
ZTm Tm
( o ) (4.22)
4
21 (ZTe +77Te)
ZTe

T,=——

22 (ZTm +T7Tm)
where Z™ =Zcos6,Z™ =Zcos&,n™" =n,cos8,n" =n,cosd, . Cross reflection
coefficients vanish and transmitted coefficients are derived for circular modes. Note

that in an isotropic medium, both linear and circular polarized modes could serve as

17



basis.

Reflection and transmission coefficients as function of incidence angle are plotted
below in Fig 8 through (d) for case of free space entering chiral with parameters

e=4,u=2,y=05
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Fig 8 Reflection and transmission coefficients with respect to incident angle of a
plane wave incident from free space to a chiral medium withe =4, u=2,7=0.5

We see that reflection cross coefficient R, =R,, so that reciprocity theorem is
satisfied while transmitted cross coefficient T, #T,, .

Two circular waves determine the field pattern in transmitted medium. Fig 9 shows
the schematic diagram of wave propagating from free space to a chiral medium and
Fig 10 is the real TE field component (perpendicular to plane of incidence) for an TE
oblique incident plane wave with incident angle & =40° coming from free space to
a chiral material with y=¢=2,7=0.6.

Fig 9 (a) shows that the left hand space is the total field of incident and reflected wave
while the two circular waves combine for the right hand space. For nonchiral case,

e=u=2,y=0, two eigenwaves degenerate and only one transmitted wave is
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observed as expected from basic electromagnetic in Fig 9(b).

Fig 9 Schematic plot of wave propagation to a chiral (a) and nonchiral (b) medium.
Incident wave (blue) split into two circular waves (black and red) while in nonchiral
case only one transmitted wave observed.

Fig 10 Electric field pattern of a plane wave incident from free space to an
inhomogeneous media. (a) Chiral medium results in two circular waves
interaction.(6 =40",6, =14.3",0, = 27.3") (b) Dielectric medium (e=u=2,y=0)

with single mode.

4.6 Negative refraction

Special attentions should be given to the left circularly polarized wave in the light
of k, = a)(—y+ /,zg), which shows that a negative wave number may emerge when
the chiral effect is stronger and negative refraction is possible [9, 20]. Because only
the left circularly polarized wave accounts for the negative refraction, the transmitted
coefficients correspond to E, must be small compared with E,, . After some efforts

of observation it is concluded that if the incidence wave is a left circular wave, the
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transmitted coefficients may vanish for the right circularly polarized wave in some
special cases. We derive criteria as follow:
Suppose LHCP incidence wave:

E, =E, (cosfe, —ie, —sinde,) (4.23)
E. . . .

H, =—=i(cosde, —ie, —sinde,) (4.24)
o

Refracted wave could be decomposed to RHCP and LHCP components:
E, =E,(cosfe, +ie, —singe, )+ E, (cosfe, —ie, —singe, ) (4.25)

r

o o
Transmitted wave in chiral medium has the same form as (4.14) and(4.15). By

H="E_ (cos e, +ie, —sin 49iez)+L E, (cosde, —ie,—sinde,) (4.26)

Maxwell boundary conditions reflection and transmission problem could be given

based on LHCP incidence mode.

3 (Z —1y)(Z +1n,)cos6 (cosé, +cosb,)

271,000 + 2Z17,c056,c056), + (Z* +17,7)c0sH(cOSH, + 0SB, )
2Zn,(cosé, +cosé, )(cose, —cosb,)

© 2Z7,c08°0, + 221,086,080, + (27 +17,°)c0s6, (COSH, + €SB, )

_ 2Z(Z —n,)cosé.(cosd, —cosb, )

 271,c0807 + 2Z17,6056,0086, + (Z2 +17,2)c056, (COSY, + €050, )

3 2Z(Z +n,)cosé, (cosd + cosb,)

 271,60862 +2Z1,c056,6086, + (Z2 + 17,7 )c0s6, (COSH, + €056,

R

rL —

(4.27)

tR

tL

Special case is conducted for x4, =¢, =1 and y=2,itisseenthat E; =0 and

E, =1 while both reflected waves vanish. In this case wave number k, =-k, so
that angle of incidence is the same as transmitted but twists in negative x direction.
Schematic diagram is plotted in Fig 11 and the electric field is shown below in Fig 12
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Fig 11 Schematic plot of plane wave with negative refraction. The incident
wave is left circular wave(blue) and only left transmitted circular emerge bur
twist downward.

Fig 12 Real field pattern while negative refraction occur.

Although the wave vector (4.3) shows direct implication for negative refraction,
however, it is only valid when material is isotropic. Another perspective toward
negative refraction is to determine the sign of k, based on direction of energy flow
as in anisotropic case. In reflection and refraction problem energy must flow toward
positive z direction such that refraction occurs, which is indicated by z component of
Poynting vector. The sign and magnitude of k, is already determined through phase
matching condition so it is convenient to re-derive eigenmode and Poynting vector in
terms of Kk, . Following the same procedure as above, we could get:

Dispersion relation:

p. = i\/ .2+ (7 + e ) (4.28)
Eigenmodes:

For p, =\[p,? +(y/ze —7) (LHCP)

—p, / py
i £ —
e_| W) 29)
Py
1
Impedance:
Z= i\/Z (4.30)
&
Magnetic field:
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_pZ/px

iy —
H=i |2 il ue) wan
& px
1
Poynting vector: (S) = % Re[Ex H*]
Jiz-y
S p
S:( XJ: ~ |Ff (4.32)
5| pfue-p)
Py

From above derivation it is easily seen that if » > ﬁ k, must be negative so z
component of Poynting vector is positive while x component is negative. This is the
phenomenon of negative refraction. In this approach Poynting vector is first taken into
account and the sign of k, is determined by (4.32) instead of(4.10). Eqn.(4.32)
demonstrates how Poynting vector relates to wave vector so in the following sections
when negative refraction is being considered, we write Poynting vector in term of k,
rather than involve the transmitted angle.
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Chapter 5 Bi-anisotropic medium

Although anisotropic and bi-isotropic media have been studied in the previous
sections, we now go further to more general linear media, namely, bi-anisotropic
media. Bi-anisotropic is introduced by giving more freedom to material parameters in
constitutive tensors such that electromagnetic wave characteristic is quite different

from conventional material.

5.1 Anisotropic dielectric medium

Let us consider dielectric tensors along principal axis while keep chirality isotropic.
This can be done by putting the same toroidal helix in uniaxial or biaxial crystal.
Constitutive equations are in the form of Eq.(5.1).

e 0 0 y 0 0
D=0 ¢ O |E+il0O y OH
0 0 ¢ 0 0
2 4 (5.1)
u 0 0 -7. 0 O
B=0 u O0|H+i|j0 -y 0 |E
0 0 g 0 0 -y

Simply suppose ¢, =¢,, 1, = 1, SO0 that it could be considered as uniaxial case iny
direction. Although chirality is still independent of direction , the wave propagation
may vary due to non-scalar tensors. More general case has been derived by
Semchenko [21], but the results are too complicated in term of transmitted angles. In

the present section we demonstrate how it differs from bi-isotropic chiral medium by
using wave vector k,, which is different from [21].

5.1.1 Dispersion relations

Follow the same steps as before, two relations could be given:

p.+p. =7 +%(82uy +E,u, )+ p (5.2)
po+p, 2=y +%(8zuy ARy (5.3)

where
p=\ar (e, +5,) (1, +a,)+ (e, ~ 2,00, (5.4)
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5.1.2 Eigenmode solutions
For mode Eq.(5.2)

E, =(1,z+1— p*j (5.5)

Z+

For mode Eq.(5.3)

E - (1, - Zui] (5.6)

where

p| 277 (py + a1, )+ 1, (10,8, —2,18,) |
20,7 (4, +1,)

X =

(5.7)
Here y denote transverse ratio of electric fields. Note that the eigen-waves are

elliptic waves rather than circular waves and this is the consequence of anisotropy
effect.

5.1.3 Admittance analogy

&y Tl g
_ X /’lX ILlX E
—1 >4 == Y . X
Hep | XX Zle—RE=|R 7 Rl (5.8)
@ B My Mg
o B |
My My
H, =(F7."5. Y, A) (5.9)
where
prle,m —&,u,)
Y, = R (5.10)
2y (uy + 11,
e, +E (,u +2u )ip
M2 - (5.11)

2(y +44,) P,

The upper index TE and TM refer to ratio of transverse x and y component of
magnetic fields to x component of electric field and lower index indicates two
separate eigenmodes. Note that the sign of Y™ is specially arranged to solve later
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problem.

5.1.4 Reflection and transmission in layered media

Incident field:
E, =E,(cos@e, —sinde,)+E e,
E :
H, =—"e, +i(—cos¢9ieX +sinde,)
o o
Reflected field:
E, =E e, +E,(cosbe, +sinbe,)

H, :i(—E e, +E, (cosée, +sinde,))
n

i~y
0

Transmitted field:

E, =E, (ex + 1.l —piezj+ =g (ex -y ie, — Py eZJ (5.12)
z+p+ pz—p—

H, =E, (-Y.5ie, +Y.™e, )+E_(Y ie +Y ™e,) (5.13)

By Maxwell’s boundary condition, reflection and refracted coefficients are obtained:

EHE B
Er” R21 R22 EI“

(Y+Y.™cos6 ) (7Y cos6 Y. )+(Y +Y ™ cosq )( .Y cos6, -V, )
C(Y Y™ cosd ) (.Y cosd +Y )+ (Y +Y ™ cosd ) (2.Y cos, +Y.)
2( 7. = 2.Y,”)Y cosé),

(Y+Y,™ cosd ) (.Y cosd +Y®)+(Y+Y ™ cosg,)( 2.Y cosd, +Y,")
2i(Y,™ -Y.™)Y cosg
(Y+Y,™ cosd ) (.Y cosd +Y."®)+(Y +Y™ cosg,)( .Y cosd, +Y.")
. (Y=Y.™cos,)(x.Y cos +Y™)+(Y -Y.™ cosd) )( 1.Y cos, +Y,”)
Z (Y +Y.™cos)( .Y cosd +Y.T )+ (Y +Y.™ cosd, ) (.Y cosd, +Y,)

(EH] _ [Tn T j( Eu]
Etf T21 T22 Ei||

R, =
(5.14)

R21
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~2i¥ cos 6, (Y +Y.™ cosd),)

(Y+Y,™ cosd )(x.Y cosf +Y.")+(Y +Y ™ cosd )(2.Y cos6, +Y,")
2Y cos 6, (Y™ + y.Y cos 6 )

(Y+Y.™ cosd )(x.Y cosd +Y")+(Y +Y.™ cosd, )( 2.Y cosd, +Y,")
- 2i¥ cos 6, (Y +Y,™ cos g )

TV +Y,Mcos6)(2.Y cosf +Y.T )+ (Y +Y ™ cosd )( .Y cosd, +Y.)
2Y cos, (Y, + .Y cos6) )

(Y+Y.™ cosd)(x.Y cosg+Y)+(Y +Y™ cosd) )(2.Y cosd, +Y,")

Tl 1

Tl 2

(5.15)

T22 =

Here we have derived analytical form of R T in terms of admittance and angle
transverse ratio y for the most general elliptic polarization. The formula (5.14)
&(5.15) could be simplified for less complicated case.

5.2  Uniaxially omega medium

Considering a general uniaxially bi-anisotropic media which is composed of
symmetric chiral and anti-symmetric omega dyadic and choosing z axis as
longitudinal direction, constitutive relations are written in the forms [16].

L S 0] 7. kK O
D=0 & O |E+i|-x » O0|H
0.7 Oy Oh ¥y,
(5.16)
# 0 0 7 K 0
B=0 x O|H+i|l-« -y, 0 [E
0 0 H, 0 0 7

where ¢,, 1, 7, denote transverse parameters in x-y plane and x represents omega
electromagnetic coupling.

The dispersion relation together with eigenwave solutions have been solved by
various authors [22-24] . However, the results are rather complicated due to emerging
elliptic polarized waves so that analytical simplification is only valid in special cases.
Reflection and transmission in layered media is also considered in [16], but the
analytical solution is also limited to certain cases. In the present study we analyze
from the simplest case and discuss some optical behavior instead of solving Egn.(5.16)
directly.

Consider an omega media whose magnetoelectric dyadic is anti-symmetric as
Egn.(5.17). The medium could be realized by adding omega shape inclusions in x-z
direction [16] and have been studied theoretically by in [25]; potential applications are
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also studied in [26] . However, the clear reflection and transmission coefficients in

layered media are still not presented. In this section we start from the dispersion
relation and give exact formula as well as numerical results.

& 0 0 0O O
D=0 & O |E+i|j-y 0 O|H
0 0 g 0 0O
(5.17)
u 0 0 0O y O
B={0 x O |H+ij-y 0 O|E
0 0 g 0 0O

Eq.(5.17) Constitutive relations correspond to omega medium. Note that ¢ and
/_4 may be not uniaxial

5.2.1 Dispersion relation

Following the same procedure as anisotropic cases, dispersion relations are given
below

ek’+ek’=als, (gx,uy —7/2) (5.18)
2 2 2 2
:uzkz THK =0l (Syﬂx_y )

(5.19)
Note that the above results satisfy the duality transformation & - —u, 4 —>—-¢,& > ¢ .

5.2.2 Eigenmode solutions

ek’+ek?=al¢, (gx,uy —7/2) :
E =[1,0,pr_j (5.20)
&,(p, +iy)
1K+ k2 =t (8,0 —77):

E=(0,10) (5.21)

which are TM and TE modes respectively. It could be seen that when » =0, Eqn.(5.20)
corresponds to anisotropic case while when &, =g, , it is reduced to isotropic case.
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5.2.3 Impedance analogy

0 _pz+|7/ O
. Hx E
=-1 = 5 1 — X
H=p {kz)l—fJE_AE_ —pz# AN % E,
y y E
0 Py 0
K,

—ple. —yie +e.¢ _
For TM mode pZ:\/ P & 77 &5 Zﬂy, Ez[l,O,LpX_J
&,(p, +iy)

where

L
™
&y :uygz gxluy gx/uy

PR =P e,

For TE mode p, , E=(0,1,0)
T
i=te
ZTE
where
2 2 H
7 = |H 12 [P A4
&y 1 Px EyHy  EyHy \l‘gyﬂx

H, gy

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

Z., Eq.(5.24) and Z.. Eq(5.26) are the impedances relating the ratio of transverse

electric and magnetic field for TM and TE modes respectively. Our results are

identical to that of Tretyakov [25] derived by another method.
5.2.4 Poynting vector

Poynting vector is defined as (S)= % Re[E X H*}

TM mode;

EZE_M’OJJ

&Py
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Fiz[O,_gZ,Oj
P,

&
S N
Sz( ] P
S, £, p,
&P,
TE mode
E=(0,10)
H:{uy—pz’o,&j
Hy H,
Py
S
S:( j Z
& P,
Hy

5.2.5 Reflection and transmission in layered media

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

Consider plane wave problem in layered structure with host medium being

bi-anisotropic omega medium. Since eigenwaves are TE and TM fields, TE and TM

can be decoupled separately. Incident wave is expressed as:

E, =E, (cosfe, —sinde, )+E.e,

H, = 5ey +E(—cos(9ieX +sinde,)
o o
Reflected wave:
E, =E e, +E,(cosbe, +sinbe,)

H, :i(—E e, +E, (cosée, +sinde,))
y/

i~y
0

Transmitted wave:

E, =E, ex—‘_gx¢eZ +Eteey
& (iy+p,)

E, - Eert
— m Ete te A
H, = €y T et e,

n n Py
where ™ and 7' are given by Eqns.(5.24) and(5.26).
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Reflection and transmission coefficients could be obtained by Maxwell’s boundary
conditions requiring tangential components of fields be continuous.
_n™—n,cosf

E = _
rm ™ m
n" +n,cos0
2n™ cos@ (5-35)
Etm = ™ - Eim
n" +mn,c0s0
£ =77TE0056?—770 _
* n,+ntcos® °
21" cos @ (5.36)
E —

te ie

M, +1'" cosé
It is shown that the expressions are the same as anisotropic medium Egs.(3.25)
&(3.26). Although chirality is considered, we have decoupled R T for TM and TE
incident due to linearly polarization. We conclude that omega medium with
anti-symmetric tensor is somewhat like anisotropic material and the influence of
chirality only change the direction of TE and TM modes. To confirm further, if we set
y =0, the formula are totally the same as Section Chapter 3

5.3  Uniaxial chiral medium

Let us assume longitudinal chiral material without omega coupling. Eqn.(5.16) is
simplified as:

& 040 0 0 O
D=|0 ¢ O|E+i|0 O O |H
0 0 g 0 0 y,
(5.37)
4 0 0 00 O
B={0 g« 0 H+i|0O 0 0 |E
0 0 H, 00 e

Dispersion relation, eigenmodes solutions as well as Poynting vector have been
obtained in [10, 27, 28]. Further discussion of mode and energy propagation is also
discussed [10]. However, the author doesn’t give formula for reflection and refraction
coefficients when inhomogeneous media is encountered. Here we give formula and
numerical results.

5.3.1 Dispersion relations
k 2
k,? + px = 0’ ue, (5.38)

where
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2 2
R (ﬂ_] A7 (5.39)
2| & M & M) Euth
5.3.2  Eigenmode solutions
2
For p,, =& — Py
P.
E+:[l, /a S ] (5.40)
pz+(p+/'lt_luz) pz+p+
2
For pZ_:,utgt—lo—X
o)

J72A — P,

E - (1, , ] (5.41)
P, (ot —11,) P,_p.

Unlike omega chiral material, the eigenwaves are two elliptic waves rather than
linearly polarized waves. In other words, TE and TM modes cannot be decoupled.

5.3.3 Admittance analogy

e L
— ('l = . =
Hep | -fle=AE=|R o | g (5.42)
w “, 4y |
L
Hoo M,
H 2
Hi=£ —iy ,i,'ﬁﬁJ (5.43)
(pi/ut_luz) pzi pxpzi
where
2
-——7 _o=b (5.44)
(Pt —11,) .

Now we define transverse admittances representing the ratio of transverse electric

fields and magnetic fields. Due to elliptic waves, four quantities are given:

H,, =%Y,E,
T e (5.45)

™
H yE Yi Exi

where
31



+
yE-__ T (5.46)
(pott,— 11,)
™ _ &
y™M o S (5.47)
- pzi

Note that in Eq.(5.45) the sign of Y is specially arranged to solve later problem.
5.3.4 Poynting vector

Poynting vector is defined as (S)= % Re[E x H*]

px (/utﬂiz + gt )
S, p.p;’ )
S= = E, (5.48)
(SZJ (,utﬂiz-i-gt)
P,

5.3.5 Reflection and transmission in layered media

Consider plane wave problem in layered structure with host medium being uniaxial
chiral medium. Since eigenwaves are elliptic waves, TE and TM cannot be decoupled
separately. Follow the same procedure as before, incident wave is expressed as:

E, =E, (cosfe, —sinbe,)+E e,

EiH E'J_ H
H, =—-e, +—=(-cosfe, +singe,)
o o
Reflected wave:
E, =E, e, +E,(cosbe, +singe,)
1 :
H, =—(-E g, +E, (cose, +sinbe,))
o

Transmitted waves:

E,=E. [ex +7.1e, —Lez}r E._ (ex -y le, —Lezl (5.49)
P.P. P, P

where

+
T (5.50)

Xe™=
P+ (ptlut —H, )
where y, is the ratio of y component to x component of electric fields

H, =E, (-Y.ie, +Y,™e )+ E_(Y Fie, +Y.™e,) (5.51)
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where admittances are given by EQs.(5.46) and (5.47). note that y is ratio of

transverse electric fields while Y are admittances relating transverse electric and
magnetic fields.

Let us apply boundary conditions to determine reflection and transmission
coefficients: tangential components must be continuous.

(Ei, +E, )cos6=E,, +E_
Eie + Eri = ( Et+Z+ - Et—Z—)i
(E,. —E)Yocos0 =(-Y."E_ +Y_°E__)i

e

£ 2
E, R, R, LE,

(Y+Y.™cosd)( .Y cosO-Y)+(Y +Y.™ cosd)( z.Y cosO-Y.")
R (Y+Y.™cosd)(7.Y cosO+Y " )+(Y+Y.™ cosd)(z,Y cosf+Y,”)
2i( 7Y - 7 Y. )Y coso
Y +Y,™cosO)( 7Y cos@+YF)+(Y +Y™ cosd)(x.Y cosf+Y.")
2i(Y.™ Y™ )Y cosg
© (Y Y™ cos0)( 7Y cos@+Y")+(Y +Y™ cos0)( .Y cosO+Y,)

(Y-Y,™cos) (.Y cosO+Y ™ )+(Y Y. cos6)(z.Y cos+Y,")
(Y+Y.™cosf)(z.Y cosO+Y™)+(Y +Y.™ cosd)( .Y cosO+Y.”)

(EHJ _ (Tn T j( Euj
EI— T21 T22 E'”
~2i¥ cosO(Y +Y_™ cos0)
(Y+Y,™ cosd)(x.Y cosO+Y.")+(Y +Y.™ cosd)(1.Y cosO+Y,)

(5.52)

R, = (
(5.53)

RZZ

Tll

2Y cosO(Y ™ + 7Y cosd)

(Y+Y,™ cosd)( 1Y cos@+Y.")+(Y +Y.™ cosd)(1.Y cosO+Y,)
- 2i¥ cosO(Y +Y,™ cos0)

© (Y +Y,™ cosd)(£.Y cos@+Y )+ (Y +Y ™ cosg)(2.Y cosO+Y.™)
2Y cos(Y,” + z,Y cos0)

(Y+Y,™ cosd)( 1Y cos@+Y." )+(Y +Y."™ cos@)( 1.Y cosO+Y,")

T12

(5.54)

T22
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5.4 Pseudochiral material

Pseudochiral material has drawn highly attention recently. Unlike chiral and omega
chiral materials, psedochiral has symmetric cross coupling tensor. The symmetry of
cross polarization cause the phenomenon of plane wave propagation even complicated.
In general, the constitutive relations have the forms

D:iE+§=H (5.55)
B=uH+ZE
_ 0 & &
&= 6621 0 6623 (5-56)
Sa Sn O
_ _ 0 & &
g=—6=- 6521 0 6623 (5-57)
Sai S 0

where :Zz —g=“ satisfies reciprocity condition of Eqns.(2.5) and (2.6).

5.4.1 Dispersion relation

Confine ourselves to a special case of pseudochiral material which has only cross
effect along principle z direction. Constitutive relations could be written as:

e 00 0 0 -y

D=|0 ¢ O|E+| O O O |H (5.58)
0 0 ¢ -y 0 O
u# 0 0 0 0 iy

B={0  0O/H-|0 0 O|E (5.59)
0 0 u iy 0 0

Follow through the same steps as before, two dispersion relations are obtained.

2
p’+p,’ =(/4«9—y2)+;p+ (5.60)

2
P+ P’ =(u8—72)+Ep (5.61)

34



where

p. =072\ 0 (b - o) (7" - ) (5.62)

In terms of @, dispersion relation is given by

2 f 21, 2
o = [+ k; f zl(gﬂ)y) (5.63)

pe—y
2

k" =,[1- Lj a)z,ug—kzikXL

| (ﬂg V "

Here p, are functions of k,, which implies that there are two terms of k, in

(5.64)

dispersion relations. A small change of materials’ parameters may cause significant
change of wave vector. Three cases of equifrequency surface with respect to wave
vectors are plotted in Fig 13 (1)-(4)

{a) o contour for mode 1 {b) @ contour for mode 2 {a) o contour for mode 1 {b) @ contour for mode 2
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Fig 13 Equiphase diagrams for two eigenmodes (model for p_ and mode2 for
p.) with material parameterse = =2 and y=0.4, 0.8, 1.2 for (1),(2),and (3)
while y =0 for (4). Note that eigenwaves degenerate in (4).

The dispersion relations curve show physical significance that the present of y
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influence the wave vector strongly. For isotropic case both wave vectors are circular
shapes while when y gets larger, the curves are shaped to trapezium for model and
petal-like for mode2. Furthermore, the petal-shape curve indicates negative wave
propagation because the gradient of the frequency or energy may twist in opposite
direction compared to wave vector. Unlike hyperbolic curve given from anisotropy
medium, we get a petal-like curve that gives rise to negative refraction.

5.4.2 Eigenmode solutions

For model p2+p,? :(yg—y2)+£p+
LE

E. = (1, i ZL] (5.65)
pX pz+pr+

Formode2 p2+p,’ =(,ug—j/2)+£p7
LE

Ey = [1, i ZL] (5.66)
px pz—pr—
where
110 (u=7")
e = - =X
PyPrs \/(72 —,ug)( p’ —,ue)
Pys = Py _:ugyz (5.67)

Pre =F(p. — 1ep,’)
o, ="+ p2)p.~ 2P P,
5.4.3 Admittance analogy

0 X I
_ - o H
=-1 = = _ X
H=u [k;'§]E=AE= ;ﬂ 0 w‘; E, (5.68)
E
iy ke oo |
po o

Inserting Eqs.(5.65)&(5.66) into Eq.(5.68) and comparing each component, we get

H, = ii\/g[l,iiz,—a* j (5.69)
IU px pzipri

where admittance is defined:
36



= |2 (5.70)
Y7,

Z, = \/Z (5.71)
&

Impedance is defined:

5.4.4 Poynting vector

Poynting vector is defined as (S)= % Re[E x H*]

S X0,
S, = {S] =| PP, (5.72)
‘ X

5.4.5 Reflection and transmission in layered media

Consider plane wave problem in layered structure with host medium being uniaxial
chiral medium. Since eigenwaves are elliptic waves, TE and TM cannot be decoupled
separately. Follow the same procedure as before, incident wave is expressed as:

E, =E, (cosfe, —sinfe,)+E e,

H, =5e

: +i(—c056?ieX +sinde,)
o o
Reflected wave:

E, =E, e, +E,(cosbe, +singe,)

H =1 (E
n

€, + E, (cosbe, +sinbe,))
0

Transmitted waves:

. O . O
E,=E.|e +x.e ——*ezj+E_[ex—;(_|e ——ezj (5.73)
t [ " oPA t ’

.1 . o .1 .
H,=-1—E_|e +yle, — . e2}+|—E_£ex—;{_|e -
oy ( L pPLp N !

eZJ (5.74)

Again let us apply boundary conditions to determine reflection and transmission
coefficients: tangential components must be continuous.

xFz-rrr-
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E.+E., = ( E.x.-E 1 )i

(Ej +E,)cos6=E, +E_

Y, (E,, —E; )cos@=Y(-E, +E_)i

Yo ( B - Eru) =Y (Et+Z+ + EI—Z—)

ErJ_ _ Rll R12 EiJ-
[E”J_(Rﬂ RzzjiEillj
_(#Yocos0-Y)
Y (Y, cos0+Y)

R1

0
=0
(Y — xY cosd)
2 (Y, + Y cos)

(EHJ 8 (Tn lej(Euj
Et— T21 T22 Ei||
_ —iY;cosd
" (gY,cos0+Y)
Y, cos6&
N7 iy AN
(Y + 2Y cosd)
1Y cosd
% (gY,cos0+Y)
_ Y,cos6
270 LN e )
(Y, + 7Y cosd)

0.4

(5.75)

(5.76)

(5.77)

ok

01

02F

04
[

03F
02 1
01 1

03 o
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0.4

035} T22| |

Fig 14. R,T curve with respect to incident angle with host medium
£=5u=1y=0.4.Note that T11 and T21 is imaginary.

Note that EQs.(5.76)&(5.77) can be deduced from Eqgs.(5.53)&(5.54) by letting
Y™ =4Y,YE =Y or from Eqgs.(4.18)&(4.20) by setting y =i/cosé. This implies
the present case is an elliptic polarization which simultaneously posses certain degree
of symmetry because transverse admittance is identical. Chiral medium can be seen as
isotropic depending on its symmetric tensors whereas uniaxial medium is seen as
anisotropic. We conclude that pseduchiral medium is anisotropic by its dispersion
relations, however, due to simplified &, z,y, it shows symmetry in admittance
analogy. In our analysis, we find that the reflected wave is always linear polarized,
which is the consequence of y is the same for both transmitted waves. In
isotropic-chiral material, reflected wave is only linear polarized when Brewster’s
angle is considered. Reflection of anisotropic medium is linear polarized, however,
the transmitted wave is decoupled linear polarized wave. Pseudochiral material, could
be regarded as in between, whose reflected wave is always linear while refracted
waves are elliptic polarized. Observing RT solution given by Egs.(5.76)&(5.77), the
results are quite similar to that of isotropic host medium but T shows cross coupling.
This results are identical to the phenomenon discussed. In general, we conclude that
constitutive relations alone determine the characteristic of the waves, which is shown
in Table 2

Host medium Refracted Reflected Wave number
polarization polarization
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anisotropic Linear Linear k?> k>

Tt =0"y,

gX gZ

k? k? )

-+ =g,

He  H,
Isotropic-chiral Circular Elliptic

k= a)(«/,ug + }/)
pseduochiral Elliptic Linear o a)[,ug 2 +ﬂj

UE
Bi-anisotropic Elliptic Elliptic
Table 2

5.4.6 Negative refraction

We have investigated many electromagnetic characteristic of pseudo-chiral material.
One remarkable phenomenon includes negative refraction occurs for one eigenmode
even if all material parameters are positive and at the same time the reflected wave is
always linear polarized, which satisfies Brewster angle in Bassiri’s paper [15]. Here

we demonstrate how this happen.

i

Fig 15.Shematic diagram of a plane wave from free space which is incident
on an angle of 30 degree to a pseudo-chiral material. Two refracted waves are
shown by model (red line) and mode2 (black line). Note that material
parametersare ¢=u=2,y=12 with 6 =30,6,=14.8",6, =20.43
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(b) mode2
Fig 16. Each eigenmode and corresponding Poynting vector. From (a) it is
shown that Poynting vector (black line) is pointed downward, which is negative
refraction, while in (b) Poynting vector (red line) is pointed upward showing
positive refraction. Note that reflected wave is linearly polarized.
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Fig 17. Electric field pattern for Ey component. In the right half plane two
refracted elliptic waves combine for the electric field while in the left half
plane the result is the combination of reflected and incident waves

Now we want to design an impedance matching condition such that one of the
transmitted waves is vanished. The same method has been performed in dealing with
negative refraction in isotropic media in the previous section. Note that a circular
incident wave may cause reflected wave even if impedance matching condition is
satisfied. Using the same parameter ¢=p=2,7=12 and 6 =30,6,=14.8",6,=20.43,
however, a right circular wave (RHCP) is given as incident wave. Mode2 is vanished
according to Eq.(5.77). The schematic and field pattern are shown in Fig 18.
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(b)

(©)

Fig 18 Schematic diagram for a circular wave (blue) under impedance match

condition u/¢e =,/ ¢,. Plot (a) shows the direction of Poynting vector with
its corresponding mode and (b) shows it is an elliptic transmitted wave
(red).(c) is the electric field pattern. Note that mode2 is not produced.

If a left circular wave (LHCP) is incident under the same condition, model is not
produced. This time a positive refraction wave is obtained.

5.4.7 Conditions of negative refraction and backward wave

In this section we discuss the condition of negative refraction and backward wave in
detail by examining two eigenwaves derived in Eq.(5.64). To investigate the possible
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phenomenon of negative refraction, isofrequency contour is plotted with respect to
k,* below in Fig 19

10
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=
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_10 1 1 | | | 1 | | 1

Fig 19 Isofrequency contour with respect to two eigenwaves in pseudochiral
medium with parameters £=3,u=y=1. Note that red and blue curves
correspond tok,” and k,” waves respectively.

Without loss of generality, let us focus on the upper half space where k, > 0. Point A,
at which group velocity lies directly along the z axis, gives the condition of negative
refraction for k, wave. This point could be evaluated by letting S, =0, which
corresponds to E, =H, =0in Eqgs.(5.65)&(5.66).

k, =y (5.78)
While frequency is below this point, k," wave gives rise to negative refraction, which
could be easily seen by normal vector of the isofrequency. k,” wave, however,
corresponds to positive refraction at this region. For point B, at which k,” =0, gives
us the condition for backward wave. Above this point, in order to keep Poynting
vector pointing to positive z direction, k,” must be selected for negative sign.
Letting k,” =0 in Eq.(5.64), we get

K, = ue—y° (5.79)

Point C defines the maximum value of k. If k, exceeds this point, then both waves
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become enavenscent wave. In fact, point C could be obtained by setting k," =Kk, ,
which yields

Kk, = o\ ue (5.80)
Therefore, it is concluded that points A,B,and C provide us with conditions of
negative refraction or backward wave. Ifk, > @y, then negative refraction can be
found in k,"wave and positive refraction in k,~ wave. Whenawy <k, < C"W
both eigenwaves support positve refraction. If k, is further larger such
that wm <k, <wy, we still have two positive refraction eigenwaves but
backward wave occurs fork,” mode. Three different regions are indicated in Fig 19.

45



Chapter 6 Gaussian Beam wave

6.1 Beam propagation through dielectric interface

So far we have focused on plane wave propagation in various complex media,
however, plane wave means the wave is on the whole plane and two transmitted
waves are not easy to observe because what we see is the mixed profile of the field
such as Fig 10&Fig 17. If we want to see two split beams as predicted in chiral
medium, a bounded incident beam having Gaussian variation in its cross section is
used to simulate laser beam. Following the method used in [29], suppose a Gaussian
profile of electric field is incident at z=-h with angle &, which takes the form:

Ei(x,—h)zexp[—(xcoselw)z+ikxsin 9} (6.1)

The above distribution produces a radiant field which can be represented by Fourier
representation.
¥ (k,z=-h)=FT(E)

= Iexp(—(xcosé’/w)2 +ikxsin G)exp(—jkxx)dx (6.2)

B exp(—(kX —ksin @) w? / 4cos? 0)

cosé

E (x,2) = IFT (W(K,,z =—h)exp( jky,z))
1 | i (6.3)
= EI\P(kX’ z =—h)exp( jk,,z)exp( jkx)dk,

where [k, —k.2 =k, [k —k? =k, . When incident upon a dielectric interface,

reflected and transmitted fields are produced. Reflected field could be represented by
the Fourier superposition spectrum of reflected wave propagating in minus z direction
and the amplitude is that of incident wave multiply R(k, )exp(iky,h). R(k,)is given
by the result in plane wave analysis and exp(ikozh) is needed to satisfy phase matching

condition.
E = IFT (R(kx)‘P(kX, 2=—h)exp(~jyfkg =k (z—h))) (6.4)

Similarly, the transmitted field could be represented by Fourier superposition of the
refracted wave propagating in positive z direction with amplitude is that of incident
wave multiply T (k, )exp(iky,h)

E, = IFT(T(k,)W(k,,z=-h)exp(j(k,z+k,h))) (6.5)

46



For dielectric interface, reflection and refraction coefficient is easily obtained for TE

wave.
R ".COS 6, —1,C0s 06,
1, C0S G, +1, COS B,
T 217, €0s 6,
1, COS 6, +1, COS G,

(6.6)

In Fourier spectrum analysis, cos@ must be expressed in term of k, to include all
value of k, in the integral representation. Substitute cosé, = «fl—kxz /k? into
Eq.(6.6) , we have
R(k ): Ko, — 1K, _ lul\/koz -k’ _IUO\/klz —k,’
" lu”lk02 + ﬂokiz ,LLL\/koz — kx2 + ,Llo\/klz — kx2
2 ,‘fk Z_k?
T (kx) — 21”1k02 — H 0 X
Ko, + oK, g \Jkg? —k,2 + st [kE — K,
The magnetic field could also be expressed as the Fourier integral representation
shown by [30].

(6.7)

H, =IFT (‘P(kx,z =—h)%eXp(jx/k2 —kXZZ)j
J7)

0

(6.8)
HiZ=IFT(‘P(kX,z=—h) , exp(jﬂsz—kxzz)}
Wy
K,k : .
where —2% —*represent —sin@,,cosd, respectively.
Wy O,
HrX:IFT(‘P(kX,z=—h)R(kx)&exp(—ja/k02—kxzz)j
,
Ho (6.9)
HrZ:IFT(‘P(kX,z:—h)R(kX) , exp(-j koz—kxzz)J
Wy
H, = IFT (T (k) W(k,,z :-h)ﬁexp(j(klzukozh))j
o
(6.10)
k .
H, = IFT (T (k) ¥ (k,,z=—h) wﬂl exp(j(klzz+kozh))]

Time averaged energy flow or Poynting vector, could be expressed as:

<S>=1/SX2+Sy2+SZ2 (6.11)

where
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S, == Re[E,H,"~E,H, ]

L2
s, :%Re[EZHX*—EXHZ*]
s, =%Re[EXHy*—EyH;]

Matlab simulation has been performed to simulate Gaussian beam propagating
through dielectric interface as shown in Fig 20~Fig 23.
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Fig 20 Electric field profile (left) and time averaged energy density (right) of an
incidence  Gaussian beam incident at angle ¢,=30" with material
parameters s, = 1, = 14 =16, =9.
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Fig 21 Total reflection of an incident Gaussian beam at angle 6, =30" with

parameters g, =10, 1, = 14 = &, =1.
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Fig 22 Negative refraction and backward wave resulted by Gaussian beam
incident from air to a host medium having simultaneously negative
parameters ¢, =—4, 1, =—1. It is seen that the beam is twisted another side.
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Fig 23 Negative refraction occurs with host medium parameters g, = 1, =—1. In this
case, refraction angle is the same as incidence angle. A slab of such material could
be used to make perfect lens [5].

Note that in case of negative refraction, k, =—/k?—k ? orcosé, =—1-kz2/k? in

Eqgs.(6.6).
6.2 Beam propagation through chiral interface

If dielectric material is replaced by chiral material, two beam waves emerge. The
reflection and transmission is given by Egs.(4.21)&(4.22) to calculate the beam wave

fields. Substitutecos6, = k2 —k 2 ,cos6, =k —k,2,cos6, = [k, —k 2 in Eqs(6.12)

&(6.13), where k, = a)( &, +;/),k2 :a)(,fyzez —7/) correspond to wave number
of right and left circular waves respectively.
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(Z cosd, +m,cos6)(Z cos, —n,cos6;)+(Z cosé, +m,cos)(Z cos 6, -1, €0sb,)

fu= (Z cosé, +m,cos0)(Z cos b, +1,c086,) +(Z cos, +n,os 6 )(Z cosé, +1,c0s6,)
—2iZn, cos 6, (cos g, —cosb,)
o= (Z cos, +1,cos0)(Z cosé, +n,c0s6,)+(Z cos6, +n,c086,)(Z cosé, +1n,c0sb,)
R - -2iZn, cosé (cosb, —cosb,) (6.12)
% (Zcosb, +1,0086,)(Z cos b +17,c086,) + (Z cosd, +1,0086,)(Z cos 6, +177,C0s6,)
(Z cosé, —n,cos6,)(Z cosb, +n,086,) +(Z cos6, -1, cos 6, )(Z cos b, +1, €0s6,)
2 ™ (Z c0s8, +1,0086,)(Z 008, +17, C0S6,) + (Z 08, + 7, €058 )(Z c0s 8 +1,Cos )
T - —2iZ cos (17, cos 6, +Z cosb,)
" (Zcosd, +1,c080.)(Z cos 6, +1,0086,) +(Z cos 6, +1,c086,)(Z cos b, +1, cos b,)
T - 27 c0s 6 (Z cos b, +1,c0s6,)
% (Z cosB, +1,0086,)(Z c0s 6, +1,c086,) + (Z cos 6, +17,c0s 8 )(Z cos 6, +17, 0s6,)
T - 2iZ c0s 6 (17, c0s 6 +Z cos b)) (6.13)
% (Zcosb,+1,0086,)(Z cos b, +1,086,) + (Z cos 6, + 1,086, )(Z 06, +17, 0sH,)
T - 27 cos 6 (Z cosb, +n,c0s6,)
% (Zcosb, +1,0086,)(Z cos B, +1, 008 6,) + (Z cosé, +1,c0s 6 )(Z cos f, +1,C0s6,)
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Fig 24 A incident TE beam wave at angle & =25 propagate through a chiral
medium with material parameters ;4 =1,& =4,y =1.3. Two transmitted beams
correspond to RHCP and LHCP respectively.

300 q 50

100 B 100

150

o
S o

200

-
7

250

-400  -300 -200 -100 o 100 200 300 400 50 100 150 200 250 300 350 400 450 500

50



Fig 25 A right circular beam wave incident at angle 6 =25" under impedance
match condition with parameters ;4 =¢ =2,y =1. Note that reflection and
transmitted left circular waves vanish. The phenomenon is the same as discussed

in plane wave.
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Fig 26 A left circular beam wave incident at angle € =25 under impedance
match condition 1 =& =1y =2 . Note that reflection and transmitted right
circular vanish. The remaining transmitted left circular accounts for negative
refraction and a slab of such material could be used to make perfect lens proposed
by Pendry.

6.3 Beam propagation through pseudochiral interface

Let us examine beam wave propagation through pseudochiral interface. Like chiral
material, two eigenwaves emerge in host medium. The reflection and transmission

coefficients for calculating electric field have been derived in Egs.(5.76)&(5.77).

Parameter Zz(,ug—yz)/\/(,ug—)/z)(a)zyg—kxz) is necessary for evaluating each
coefficient. Matlab simulation is shown below:
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Fig 27. Beam propagation through pseudochiral medium with material parameters
e=2,u=1y=0.6 at incidence angle #=30". Right handed elliptic wave
produces negative refraction while left handed elliptic wave produces positive
refraction.
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Fig 28. Normal incidence through pseudochiral medium with material parameters
e=2,u=1,y=0.6. Two splitting transmitted waves occur.
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Fig 29. Normal incidence through pseudochiral medium with material parameters
e=2,u=1,y=0.8. Two splitting transmitted waves occur, however, transmitted
angle is larger as y gets larger.

It is clearly noted that two splitting beams occur under normal incidence. Such

unusual characteristic can be explained by the singular point of isofrequency contour

plot under normal incidence. The similar intersecting point could also be found in

some modulated photonic crystal structure[31], which leads to undetermined group

velocity. According to Notomi, at this point the propagation of light is very sensitive

to direction of the wave vector so a slight change of the incident direction may cause

opposite direction of group velocity.

To further investigate such splitting behavior, we put dispersion relation Eq.(5.64)
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into Eq.(6.3). The following analytical field expression could be obtained:

E = ZV(\qIZ exp(— X ;fzzlexp(jhm/l—;?zz)x

2cosh(27)z(zj+ j{exp(zyézJerfi[x_ﬂ]—expL_Zyzxz)erfi[XH/ZH
a, a, a, d, g,

(6.14)

q, = /W2+2i]ﬂz’ﬂ: jl_?z’hozw\jlu:g (6.15)

and erfi is imaginary error function. The above equation gives us analytical result of

where

beam propagation under normal incidence. It is seen that the two error functions
produce beam steering. If cross polarized factor y =0, then Eq.(6.14) become
formula of beam propagation in ordinary dielectric medium.
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Chapter 7 Conclusion

In conclusion, in this work we derive dispersion relations, eigenwaves together
with Poynting vector of wave propagation in bi-anisotropic medium in analytical form.
Reflection and transmission through a planer interface is also formulated. In particular,
we explore the wave propagation in pseudochiral material and the condition of
negative refraction and backward waves are discussed. Due to symmetry embedded in
chirality parameter in pseudochiral structure, reflected wave is always linearly
polarized either in TE or TM incidence. Furthermore, it is shown that negative
refraction and backward wave could be found in two separate eigenwaves. Such
material could be made by simply adding omega shape inclusions in host medium and

provides another route to realization of negative refraction.
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