Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66091
Title: 競爭擴散系統的行波解
Travelling Wave Solutions of Competition-Diffusion Systems
Authors: Chueh-Hsin Chang
張覺心
Advisor: 陳俊全(Chiun-Chuan Chen)
Keyword: 競爭擴散系統,異宿分歧,行波解,KPP型態方程,自由邊界問題,散佈速度,
competition-diffusion system,heteroclinic bifurcation,travelling waves,KPP type equation,free boundary problem,spreading speed,
Publication Year : 2012
Degree: 博士
Abstract: 這篇博士論文分為兩個部分,以考慮兩種由生態學而來的偏微分方程的行波解。第一部份我們考慮三個物種的競爭擴散系統。第二部分是考慮關於雙物種的自由邊界問題。
關於三個物種的競爭擴散系統,其行波解可以考慮為 R^6 中某向量場的異宿軌道 (heteroclinic orbit)。方程的參數在適當的假設下,我們利用異宿軌道的分歧理論來證明,三個物種的行波解可由兩個連接到某個相同平衡點(equilibrium)的雙物種行波解分歧出來。此三物種行波解的每一個部分都是正解。其波形為:其中一個物種連接某個正態(positive state)到零,另一物種連接零到某個正態,
第三物種為介於以上兩物種中間,在某個長區間內靠近某正態的脈衝(pulse)。我們對方程的參數,在哪些範圍會有三物種的行波解,找到了某些明確的表現形式,來作為此結果的具體應用。
關於雙物種競爭模型的自由邊界問題,最早是由 Mimura, Yamdada 及 Yotsutani 所提出。基於 Du 和 Lin 的散佈--消滅二分性(spreading-vanishing dichotomy)的結果,我們假設,當時間趨於無窮,自由邊界的散佈速度會趨於某個常數,而由此考慮對應於原自由邊界問題的的行波解問題。我們得出此問題的行波解的存在性與唯一性。
We divide the thesis into two parts to investigate the travelling wave of two types partial differential
equations coming from ecology. In Part 1, we consider the 3-species Lotka-Volterra competition-diffusion systems. In
Part 2, we consider a free boundary problem for a two-species competitive model.
For the 3-species Lotka-Volterra competition-diffusion system, a travelling wave solution can be considered as a heteroclinic orbit of a vector field in R^6. Under suitable assumptions on the parameters of the equations, we apply a bifurcation theory of heteroclinic orbits to show that a 3-species travelling wave can bifurcate from two 2-species waves which connect to a common equilibrium. The three components of the 3-species wave obtained are positive and have the profiles that one component connects a positive state to zero, one component connects zero to a positive state, and the third component is a pulse between the previous two with a long middle part close to a positive constant. As concrete examples of application of our result,
we find several explicit regions of the parameters of the equations where the bifurcations of 3-species travelling waves occur.
The free boundary problem for a two-species competitive model in ecology was proposed by Mimura, Yamada and Yotsutani. Motivated by the
spreading-vanishing dichotomy obtained by Du and Lin, we
suppose the spreading speed of the free boundary tends to a constant as time tends to infinity and consider the corresponding travelling wave problem. We establish the existence and uniqueness of a travelling wave solution for
this free boundary problem.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66091
Fulltext Rights: 有償授權
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-101-1.pdf
  Restricted Access
1.44 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved