Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66048
Title: 使用啟發式演算法求解最佳化實驗設計
Constructing Optimal Experimental Designs by Meta-heuristic Algorithms
Authors: Ming-Sian Wu
吳明賢
Advisor: 王偉仲(Wei-Chung Wang)
Keyword: 啟發式演算法,蝙蝠演算法,杜鵑鳥搜索演算法,基因演算法,模擬退火演算法,人工蜂群演算法,螢火蟲演算法,音諧搜索演算法,粒子群優化演算法,
Metaheuristic algorithm,bat-inspired algorithm,cuckoo search,genetic algorithm,simulated annealing,artificial bee colony algorithm,firefly algorithm,harmony search,particle swarm optimization,
Publication Year : 2012
Degree: 碩士
Abstract: 啟發式演算法被廣泛應用於解決許多最佳實驗設計問題。在本文中, 我們運用啟發式演算法求解四種最佳化試驗設計問題的例子。首先, 我們提出並說明這四個例子, 並簡述所使用於比較的演算法, 如蝙蝠演算法, 杜鵑鳥搜索演算法, 基因演算法, 模擬退火演算法, 人工蜂群演算法, 螢火蟲演算法, 音諧搜索演算法和粒子群優化演算法。介紹完後, 我們提出四種例子的比較數值結果並進一步作討論。最後, 從數值結果顯示與其他演算法相比較下, 杜鵑鳥搜索演算法和粒子群優化演算法有最佳的性能。這些數值研究僅針對此篇文章所提出的例
子, 可能並不適用於其他的例子。
Metaheuristic algorithms are widely used in solving many optimal experimental design problems. In this paper, we demonstrate the metaheuristic algorithms to construct four optimal experimental designs. First, we proposed the four examples for optimization design problems and presented the outlines of algorithm for comparison such as bat-inspired algorithm, cuckoo search, genetic algorithm, simulated annealing, artificial bee colony algorithm, firefly algorithm, harmony search and particle swarm optimization. After stated the algorithms, the numerical results of the comparison for the four examples are presented and discussed further. Finally, the conclusion suggested that cuckoo search and particle swarm optimization have the best performance in contrast with the other algorithms from the numerical results. The conclusions are drawn from the specific numerical studies and may not apply to other examples.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66048
Fulltext Rights: 有償授權
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-101-1.pdf
  Restricted Access
856.68 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved