Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6592
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林風(Phone Lin)
dc.contributor.authorHuai-Lei Fuen
dc.contributor.author傅懷磊zh_TW
dc.date.accessioned2021-05-17T09:15:02Z-
dc.date.available2014-08-28
dc.date.available2021-05-17T09:15:02Z-
dc.date.copyright2012-08-28
dc.date.issued2012
dc.date.submitted2012-08-13
dc.identifier.citationBibliograghy
[1] Apache HTTP Server. http://httpd.apache.org.
[2] ASUS EeePC. http://www.asus.com.
[3] Bing Maps. http://www.bing.com/maps.
[4] CO2 Meter. http://www.co2meter.com.
[5] GlobalSat GPS Receiver. http://www.globalsat.com.tw.
[6] Google Maps API. http://code.google.com/apis/maps/index.html.
[7] Google Maps. http://maps.google.com.
[8] MySQL. http://www.mysql.com.
[9] .NET Framework. http://www.microsoft.com/net.
[10] Zigbee. http://www.zigbee.org.
[11] ZTE. http://www.zte.com.cn/en.
[12] 3GPP. 3rd Generation Partnership Project; Technical Specification Group Terminals;
Technical realization of Cell Broadcast Service (CBS); (Release 1998). Technical
Report GSM TS 03.41, 3GPP, September 2000.
[13] 3GPP. 3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and
Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description;
Stage 2 (Release 10). Technical Report 3G TS 36.300, 3GPP, September 2010.
[14] 3GPP. 3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; UTRAN overall description (Release 10). Technical Report 3G
TS 25.401, 3GPP, March 2011.
[15] 3GPP. 3rd Generation Partnership Project; Technical Specification Group Services
and System Aspects; Service requirements for Machine-Type Communications
(MTC); Stage 1 (Release 11). Technical Report 3G TS 22.368, 3GPP, March
2011.
[16] 3GPP. 3rdGeneration Partnership Project; Technical Specification Group Services
and System Aspects; System Improvements for Machine-Type Communications;
(Release 11). Technical Report 3G TS 23.888, 3GPP, June 2011.
[17] Akyildiz, I.F. Pompili, D., Melodia, T. Underwater Acoustic Sensor Networks: Research
Challenges. Ad Hoc Networks (Elsevier) Journal, 3(3):257–279,March 2005.
[18] G. Bianchi. Performance analysis of the ieee 802.11 distributed coordination function.
IEEE Journal on Selected Area in Communications, 18(3):535–547,Mar 2000.
[19] F. Bouabdallah, N. Bouabdallah, and R. Boutaba. Toward reliable and efficient
reporting in wireless sensor networks. IEEE Transactions on Mobile Computing,
7(8):978–994, August 2008.
[20] F. Cali, M. Conti, and E. Gregori. Dynamic tuning of the ieee 802.11 protocol
to achieve a theoretical throughput limit. IEEE/ACM Transactions on Networking,
8(6):785–799, Dec 2000.
[21] M.L. Chaudhry. Transient solution for the number of busy servers for the discretetime
queue geomX/g/∞. The Indian Journal of Statistics, Series B, 62(2):290–302,
Aug 2000.
[22] Chen, M., Gonzalez, S., Vasilakos, A., Cao, H., and Leung, V.C.M. Body Area
Networks: A Survey. ACM/SpringerMobile Networks and Applications, 16(2):171–
193, August 2010.
[23] C.F. Chiasserini and M. Garetto. An analytical model for wireless sensor networks
with sleeping nodes. IEEE Transactions on Mobile Computing, 5(12):1706–1718,
December 2006.
[24] Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein C. Introduction to Algorithms.
MIT Press and McGrawHill, second edition, 2001.
[25] ETSI. Machine to Machine Communications (M2M); M2M Service Requirements
V1.1.1. Technical report, August 2010.
[26] ETSI. Machine toMachine Communications (M2M);M2MFunctional Architecture
V1.1.1. Technical report, October 2011.
[27] H.-L. Fu, H.-C. Chen, and P. Lin. APS: Distributed Air Pollution Sensing System on
Wireless Sensor and Robot Networks. Comput. Commun., 35(9):1141–1150, May
2012.
[28] Hanson, M.A., Powell, H.C., Barth, A.T., Ringgenberg, K., Calhoun, B.H., Aylor,
J.H., and Lach, J. Body Area Sensor Networks: Challenges and Opportunities.
Computer, 42(1):58–65, January 2009.
[29] Hartenstein, H. and Laberteaux, K.P. A Tutorial Survey on Vehicular Ad Hoc Networks.
IEEE Communications Magazine, 46(6):164–171, June 2008.
[30] CitySense - An Open, Urban-Scale Sensor Network Testbed, 2008.
http://www.citysense.net.
[31] IEEE. IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface
for Fixed and Mobile Broadband Wireless Access Systems. Technical Report
IEEE Std 802.16e, IEEE, February 2006.
[32] IEEE. IEEE Standard for Information Technology - Telecommunications and Information
Exchange between Systems Local and Metropolitan Area Networks - Specific
Requirements Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications. Technical report, March 2012.
[33] M. Khabazian and M. Ali. A performance modeling of connectivity in vehicular
ad hoc networks. IEEE Transactions on Vehicular Technology, 57(4):2440–2450,
2008.
[34] Lin, C.-K., Zadorozhny, V.I., Krishnamurthy, P.V., Park, H.-H., and Lee, C.-G. A
Distributed and Scalable Time Slot Allocation Protocol for Wireless Sensor Networks.
IEEE Transactions on Mobile Computing, 10(5):505–518, April 2011.
[35] Lin, Y.-B., and Yang, S.-R. A Mobility Management Strategy for GPRS. IEEE
Transactions on Wireless Communications, 2(6):1178–1188, November 2003.
[36] Lu, R., Li, X., Liang, X., Shen, X., and Lin, X. GRS: The Green, Reliability, and Security
of Emerging Machine to Machine Communications. IEEE Communications
Magazine, 49(4):28–35, April 2011.
[37] Center for Environmental Sensing and Modeling, 2008. http://censam.mit.edu.
[38] M. Mun, S. Reddy, K. Shilton, N. Yau, J. Burke, D. Estrin, M. Hansen, E. Howard,
R. West, and P. Boda. PEIR, the Personal Environmental Impact Report, as a
Platform for Participatory Sensing Systems Research. Proceedings of MobiSys’09,
pages 22–25, June 2009.
[39] R.N. Murty, G. Mainland, I. Rose, A.R. Chowdhury, A. Gosain, J. Bers, and
M. Welsh. CitySense: An Urban-Scale Wireless Sensor Network and Testbed. Proceedings
of IEEE HST Conference, pages 583–588, May 2008.
[40] R. Nelson. Probability, Stochastic Processes, and Queueing Theory. Springer-
Verlag, 1995.
[41] A.-C. Pang, Y.-B. Lin, and Y. Fang. Implicit deregistration with forced registration
for pcs mobility management. Wireless Network, 7(1):99–104, 2001.
[42] Park, M.K. and Rodoplu, V. UWAN-MAC: An Energy-Efficient MAC Protocol for
Underwater Acoustic Wireless Sensor Networks. IEEE Journal of Oceanic Engineering,
32(3):710–720, July 2007.
[43] Rao, H. C.-H., Chang, D.-F., and Lin, Y.-B. iSMS: An Integration Platform for Short
Message Service and IP Networks. IEEE Network, 15(2):48–55,March/April 2001.
[44] Rhee, I.,Warrier, A., Min, J., and Xu, L. DRAND: Distributed Randomized TDMA
Scheduling for Wireless Ad Hoc Networks. IEEE Transactions on Mobile Computing,
8(10):1384–1396, October 2009.
[45] S.M. Ross. Stochastic Processes, second ed. John Wiley & Sons, 1996.
[46] Shi, L. and Fapojuwo, A.O. TDMA Scheduling with Optimized Energy Efficiency
and Minimum Delay in ClusteredWireless Sensor Networks. IEEE Transactions on
Mobile Computing, 9(7):927–940, July 2010.
[47] Srivastava, R. and Koksal, C.E. Energy Optimal Transmission Scheduleing inWireless
Sensor Networks. IEEE Transactions on Wireless Communications, 9(5):1650–
1660, May 2010.
[48] Szczerba, R.J., Galkowski, P., Glicktein, I.S., and Ternullo, N. Robust Algorithm
for Real-time Route Planning. IEEE Transactions on Aerospace and Electronic
Systems, 36(3):869–878, July 2000.
[49] H. Takagi. Queueing Analysis - A Foundation of Performance Evaluation, Volumn
3: Discrete-Time Systems. North-Holland, Amsterdam, 1993.
[50] H.M. Taylor and S. Karlin. An Introduction to Stochastic Modeling. Academic
Press, 1998.
[51] Personal Environmental Impact Report, 2008.
http://urban.cens.ucla.edu/projects/peir.
[52] Wang, H., Agoulmine, N., and Jin, Y. Network Lifetime Optimization in Wireless
Sensor Networks. IEEE Journal on Selected Areas in Communications, 28(7):1127–
1137, September 2010.
[53] Wang, J., Li, D., Xing, G., and Du, H. Cross-Layer Sleep Scheduling Design in
Service-Oriented Wireless Sensor Networks. IEEE Transactions on Mobile Computing,
9(11):1622–1622, November 2010.
[54] Yang, S.-R., and Lin, Y.-B. Performance Evaluation of Location Management in
UMTS. IEEE Transactions on Vehicular Technology, 52(6):1603–1615, November
2003.
[55] Yun, Y. and Xia, Y. Maximizing the Lifetime ofWireless Sensor Networks withMobile
Sink in Delay-Tolerant Applications. IEEE Transactions on Mobile Computing,
9(9):1308–1318, September 2010.
[56] Zhong, H. and Xu, C.-H. Energy-EfficientWireless Packet Scheduling with Quality
of Service Control. IEEE Transactions on Mobile Computing, 6(10):1158–1170,
August 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6592-
dc.description.abstract次世代M2M通訊技術儼然成為物聯網(Internet of Things)的發展基礎。無須人力介入,龐大數量的機器能夠互相連結用以創造具高度自主性及智能的應用服務。在眾多的M2M應用服務中,最具發展潛力的應用即為「即時監控」(Real-time Monitoring),其目的是透過區域式的M2M通訊網路來確保即時資料能被持續監控。在即時監控應用中,最重要的研究議題為傳輸耗能和即時資料正確性的權衡。為了解決這個議題,本論文提出省電傳輸機制來減緩機器傳輸資料的耗能,同時之間確保即時資料的正確性。本論文總共提出兩個傳輸機制,包含分散式傳輸機制(Energy-efficient Distributed Reporting; EDR)和集中式傳輸機制(Energy-efficient Centralized Reporting; ECR)。此外,本論文也提出分析模型從省電性和資料正確性兩方面來研究傳輸機制之效能。再者,在本論文中,我們實作空氣汙染感測系統(Air Pollution Sensing System; APS)。APS系統為即時監控系統之雛形,用以監控都市區域的空氣品質。此系統已經建置於台灣大學中進行小規模的實測。zh_TW
dc.description.abstractMachine-to-Machine (M2M) communications have emerged as a new communication paradigm to support Internet of Things (IoT) applications. With little or even no human intervention, the interconnection among a large amount of machines enables highly autonomous and intelligent applications. Undoubtedly, the most promising M2M application is ``real-time monitoring', the goal of which is to ensure continuous surveillance via region-based M2M communications networks. One major issue for real-time monitoring is the energy-validity tradeoff, i.e., the tradeoff between the energy efficiency for machines and the validity of sensing reports. To deal with the energy-validity tradeoff for real-time monitoring applications, in this thesis, we propose energy-efficient reporting mechanisms, including Energy-efficient Distributed Reporting (EDR) and Energy-efficient Centralized Reporting (ECR), to mitigate energy consumption for machines while keeping the sensing data valid. We propose analytical models and simulation experiments to investigate the performance for the proposed mechanisms in terms of the power saving and the report validity. Furthermore, we develop a prototyping real-time monitoring system, namely the- Air Pollution Sensing (APS) system, to monitor the air quality in the urban environment. The APS system has been deployed in the campus of National Taiwan University for small-scale testing.en
dc.description.provenanceMade available in DSpace on 2021-05-17T09:15:02Z (GMT). No. of bitstreams: 1
ntu-101-D96922005-1.pdf: 7612271 bytes, checksum: 0db332f4735562307a119066b2ecdbb4 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsContents
Acknowledgement i
Chinese Abstract iii
English Abstract v
1 Introduction 1
1.1 Real-time Monitoring Applications . . . . . . . . . . . . . . . . . . . . . 2
1.2 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . 8
2 Problem Definition 9
3 EDR: Energy-efficient Distributed Reporting 13
3.1 Mechanism Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Analytical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.1 Derivation of Power Saving Probability Pps . . . . . . . . . . . . 20
3.2.2 Derivation of Outdated Monitoring Probability Pom . . . . . . . . 29
3.2.3 Calculation of p . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.4 Simulation Model Validation . . . . . . . . . . . . . . . . . . . . 38
3.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.1 Effects of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.2 Effects of Tsleep . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.3 Effects of K . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.4 Effects of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4 ECR: Energy-efficient Centralized Reporting 47
4.1 Mechanism Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Energy Minimization for Centralized Scheduling . . . . . . . . . . . . . 50
4.2.1 Assumptions and Notations . . . . . . . . . . . . . . . . . . . . 50
4.2.2 ILP Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.3 Problem Complexity . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.4 Greedy Scheduling Algorithm . . . . . . . . . . . . . . . . . . . 53
4.3 Performance on ILP and Greedy Approach . . . . . . . . . . . . . . . . . 54
5 APS: Air Pollution Sensing System 57
5.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.1.1 The Sensing Device . . . . . . . . . . . . . . . . . . . . . . . . 58
5.1.2 The Back-end Server . . . . . . . . . . . . . . . . . . . . . . . . 60
5.1.3 The User Device . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Software Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.1 The Software Architecture of The Back-end Server . . . . . . . . 62
5.2.2 The Software Architecture of The Sensing Device . . . . . . . . 71
5.3 Message Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.1 The Sensing Report Transmission Procedure . . . . . . . . . . . 74
5.3.2 The Sleeping Period Adjustment Procedure . . . . . . . . . . . . 77
5.3.3 The Navigation Service Procedure . . . . . . . . . . . . . . . . . 79
6 Conclusions and Future Work 83
Bibliography 85
A The Mathematical Proof 93
B The DCF of IEEE 802.11 95
Curriculum Vita 98
dc.language.isoen
dc.titleM2M通訊網路上即時監控之研究zh_TW
dc.titleReal-time Monitoring on Machine-to-Machine Communications Networksen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.coadvisor方玉光(Yuguang Fang)
dc.contributor.oralexamcommittee林一平(Yi-Bing Lin),楊竹星(Chu-Sing Yang),廖婉君(Wanjiun Liao),逄愛君(Ai-Chun Pang)
dc.subject.keywordM2M通訊,效能模型分析,即時監控,回報機制,zh_TW
dc.subject.keywordEnergy-validity tradeoff,machine-to-machine communications,performance modeling,real-time monitoring,reporting mechanism,en
dc.relation.page103
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-08-14
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf7.43 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved