Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65668
Title: 虧格數和非正則數均為二的一般形曲面的研究
Surfaces of general type with p_g=q=2
Authors: Hsin-Ku Chen
陳星谷
Advisor: 陳榮凱
Keyword: 一般形曲面,曲線乘積同源,阿貝爾曲面,
surface of general type,isogenus to product,abelian surface,
Publication Year : 2012
Degree: 碩士
Abstract: 這篇文章主要是在探討代數曲面的分類理論。特別地我們考慮虧格數與非正則數均為二的一般形曲面,到目前為止,對於這一種曲面的分類還是不完全的。我所做的事是在於真正構造出實際的例子。在這篇文章中我們考慮兩種構造曲面的方法。第一種做法是考慮與兩條曲線乘積同源的曲面。這一類的曲面有一些好的性質,所以在討論上是相對容易的。佩納吉尼做出了一張列表,把這類的曲面完全分類完畢了。第二種做法是去考慮在阿貝爾的曲面上的有限覆蓋。陳榮凱與黑肯利用阿貝爾曲面上的三次覆蓋造出了一個例子。我依循他們的做法,利用阿貝爾曲面上的四次覆蓋造出了另外一個這樣的曲面。
This article is about the classification of algebraic surfaces. We focus on the surfaces of general type with pg = q = 2. This kind of surfaces are not completely classified yet.We construct several examples in this article.In this paper I discuss two methods for constructing a surface of general type with pg = q = 2. The first one is by considering a surface which is isogenus to a product of curves. This kind of surfaces is rather easy to work out. Penegini gives a complete list of such surfaces. The other way to construct a surface with given invariant is to consider a finite covering of an abelain surface. Chen and Hacon construct a surface with K2 = 5
by considering a triple cover of an abelian surface. Using the similar method, I construct a quadruple covering over an abelian surface to get a surface with K2 = 6.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65668
Fulltext Rights: 有償授權
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-101-1.pdf
  Restricted Access
311.18 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved