請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65608完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝淑貞 | |
| dc.contributor.author | Hsin-Yi Chiu | en |
| dc.contributor.author | 邱欣怡 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:53:36Z | - |
| dc.date.available | 2012-07-27 | |
| dc.date.copyright | 2012-07-27 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-19 | |
| dc.identifier.citation | [1] Leung, D. Y.; Bieber, T. Atopic dermatitis. Lancet. 2003, 361, 151-160.
[2] Spergel, J. M. and Paller, A. S. Atopic dermatitis and the atopic march. J Allergy Clin Immunol. 2003, 112,128-139. [3] Leung, D. Y. Atopic dermatitis: the skin as a window into the pathogenesis of chronic allergic diseases. J Allergy Clin Immunol. 1995, 96, 302–318. [4] Leung, D. Y.; Diaz, L. A.; Leo, V.; Soter, N. A. Allergic and immunologic skin diseases. JAMA. 1997, 278, 1914–1923. [5] Linde, Y. W. Dry skin in atopic dermatitis. Acta Derm Venereol Suppl . 1992, 177, 9–13. [6] Leung, A. K.; Hon, K. L.; Robson, W. L. Atopic dermatitis. Adv Pediatr. 2007, 54, 241-273. [7] Lapidus, C. S.; Schwarz, D. F.; Honig, P. J. Atopic dermatitis in children: who cares? who pays? J Am Acad Dermatol. 1993, 28, 699–703. [8] Leung, D. Y.; Boguniewicz, M.; Howell, M. D.; Nomura, I.; Hamid, Q. A. New insights into atopic dermatitis. J Clin Invest. 2004, 113, 651-657. [9] Mutius, E. V. The environmental predictors of allergic disease. J Allergy Clin Immuno,2009, 105 , 9-19. [10] Halbert , A. R.; Weston, W. L.; Morelli, J. G. Atopic dermatitis: is it an allergic disease? J Am Acad Dermatol. 1995, 33, 1008–1118. [11] Sampson, H. A. Food allergy. Part 1: immunopathogenesis and clinical disorders. J Allergy Clin Immunol. 1999, 103, 717-728. [12] Cooper, K. D. Atopic dermatitis: recent trends in pathogenesis and treatment. J Invest Dermatol.1994, 102, 128–137. [13] Rystedt, L.; Stranngard, I. L.; Strannegard, O. Infections as contributing factors to atopic dermatitis. Allergy. 1989, 44, 79–83. [14] Weidinger, M. T.; Illig, T.; Baurecht, H.;.Irvine, A. D.; Rodriguez, A. D. Amalia , D. L.; Klopp, N.; Wagenpfeil, S.; Zhao, Y.; Liao, H.; Lee, S. P.; Colin , N.A.; Irwin, W. H.; McLean, D. S.;Novak, N. Loss-of-function variations within the filaggrin gene predispose for atopic dermatitis with allergic sensitizations. J Allergy Clin Immunol.2006, 118, 214-219. [15] Leung, A. K.; Hon, K. L.; Robson, W. L. Atopic dermatitis. Adv Pediatr. 2007, 54, 241-273. [16] Leung, D.Y.; Bhan, A. K.; Schneeberger, E. E.; Geha, R. S. Characterization of the mononuclear cell infiltrate in atopic dermatitis using monoclonal antibodies. J Allergy Clin Immunol. 1983, 71, 47-56. [17] Wollenberg, A.; Wetzel, S.; Burgdorf, W. H.; Haas, J. Viral infections in atopic dermatitis: pathogenic aspects and clinical management. J Allergy Clin Immunol. 2003, 112, 667-674. [18] Lever, R.; MacDonald, C.; Waugh, P.; Aitchison, T. Randomized controlled trial of advice on an egg exclusion diet in young children with atopic eczema and sensitivity to eggs. Pediatr Allergy Immunol.1998, 9, 13-19 [19] Li, X. M.; Kleiner, G.; Huang, C. K.; Lee, S. Y.; Schofield, B.; Soter, N. A.; Sampson, H. A. Murine model of atopic dermatitis associated with food hypersensitivity. J Allergy Clin Immunol. 2001, 107, 693-702. [20] Leung, D. Y.; Greaves, M. W. Allergic skin disease: a multidisciplinary approach. Arch Dermatol. 2002,138, 133-138. [21] Spergel, J. M.; Paller, A. S. Atopic dermatitis and the atopic march. J Allergy Clin Immunol. 2003, 112, 118-127. [22] Breuer, K.; Wittmann, M.; Bösche, B.; Kapp, A.; Werfe, T. Severe atopic dermatitis is associated with sensitization to staphylococcal enterotoxin B (SEB) Allergy. 2000, 55, 551–555 [23] Cox, H. E.; Moffatt, M. F.; Faux, J. A.;Walley, A. J.; Coleman, R.; Trembath, R. C.; Cookson, W. O.; Harper, J. I. Association of atopic dermatitis to the beta subunit of the high affinity immunoglobulin E receptor. Br J Dermatol. 1998, 138, 182-187 [24] Alan, D.; Irvine, M. D.; McLean, I. Filaggrin Mutations Associated with Skin and Allergic Diseases. N Engl J Med 2011, 365, 1315-1327 [25] Rogers, A. J.; Celedón, J. C.; Lasky, J. A.; Weiss, S. T.; Raby, B. A. Filaggrin mutations confer susceptibility to atopic dermatitis but not to asthma. J Allergy Clin Immunol. 2007, 120, 1332-1337. [26] Hamid, Q.; Boguniewicz, M.; Leung, D.Y. Differential in situ cytokine gene expression in acute versus chronic atopic dermatitis. J Clin Invest. 1994, 94, 870-876. [27] Chen, L.; Martinez, O.; Overbergh, L.; Mathieu, C.; Prabhakar, B. S.; Early up-regulation of Th2 cytokines and late surge of Th1 cytokines in an atopic dermatitis model. Clin Exp Immunol. 2004, 138, 375–387. [28] Hijnen, D.; Nijhuis, E.; Weller B. M.; Holstege, F.; Koerkamp, M. G.; Differential expression of genes involved in skin homing, proliferation, and apoptosis in CD4+ T cells of patients with atopic dermatitis. J Invest Dermatol. 2005, 125, 1149–1155. [29] Eric, B. Th2 Cytokines and Atopic Dermatitis. J Clin Cell Immunol. 2011, 10, 110. [30] Mayser, P.;Mayer, K.; Mahloudjian, M.; Benzing, S.; Krämer, H. J.; Schill, W. B.; Seeger, W.; Grimminger, F. A double-blind, randomized, placebo-controlled trial of n-3 versus n-6 fatty acid-based lipid infusion in atopic dermatitis. JPEN J Parenter Enteral Nutr. 2002, 26, 151-158. [31] Halliwell, R. E.; DeBoer, D. J. The ACVD task force on canine atopic dermatitis (III): the role of antibodies in canine atopic dermatitis. Vet Immunol Immunopathol. 2001, 81, 159-167. [32] Olivry, T.; Naydan, D. K.; Moore, P. F. Characterization of the cutaneous inflammatory infiltrate in canine atopic dermatitis. Am J Dermatopathol. 1997, 19, 477-486. [33] Masuda, K.; Sakaguchi, M.; Fujiwara, S.; Kurata, K.; Yamashita, K.; Odagiri, T.; Nakao, Y.; Matsuki, N.; Ono, K.; Watari, T.; Hasegawa, A.; Tsujimoto, H. Positive reactions to common allergens in 42 atopic dogs in Japan. Vet Immunol Immunopathol. 2000 , 73, 193-204. [34] DeBoer, D. J. Canine Atopic Dermatitis: New Targets, New Therapies. J. Nutr. 2004, 134, 2056-2061 [35] Fraser, M. A.; McNeil, P. E.: Gettinby, G. Studies of serum total immunoglobulin E concentrations in atopic and non-atopic dogs. Veterinary Record, 2003, 152, 159-163 [36] Marsella, R.; Olivry, T.; Maeda, S. Cellular and cytokine kinetics after epicutaneous allergen challenge (atopy patch testing) with house dust mites in high-IgE beagles. Vet Dermatol. 2006, 17, 111-120. [37] Willemse, T. Comparative aspects of canine and human atopic dermatitis. Semin Vet Med Surg, 1988 , 3, 255. [38] Marsella, R. and Girolomoni, G. Canine models of atopic dermatitis: a useful tool with untapped potential. J Invest Dermatol. 2009, 129, 2351-2357. [39] Vickery, B. P. Skin barrier function in atopic dermatitis. Curr Opinj Pediatr. 2007, 19, 89-93. [40] Dokmeci, E. and Herrick, C. A. The immune system and atopic dermatitis. Semin Cutan Med Surg. 2008, 27, 138-143. [41] Olivry, T.; Dean, G. A.; Tompkins, M. B., Dow, J. L.; Moore, P. F. Toward a canine model of atopic dermatitis: amplification of cytokine-gene transcripts in the skin of atopic dogs. Exp Dermatol. 1999, 8, 204-211. [42] Laurent M. Therapeutic perspectives in atopic dermatitis. Clinic Rev Allergy Immunol. 2010, 47, 267-271. [43] Campbell, K. L.; Dorn, G. P. Effects of oral sunflower oil and olive oil on serum and cutaneous fatty acid concentrations in dogs. Res Vet Sci. 1992 , 53, 172-178. [44] Marsella, R. Evaluation of Lactobacillus rhamnosus strain GG for the prevention of atopic dermatitis in dogs. Am J Vet Res. 2009, 70, 735-740 [45] Reid, G.; Jass, M.; Sebulsky, T. Potential uses of probiotics in clinical practice. Clin Microbiol Rev. 2003, 16, 658-672. [46] Cross, M. L.; Stevenson, L. M.; Gill, H. S. Anti-allergy properties of fermented foods: an important immunoregulatory mechanism of lactic acid bacteria? Int Immunopharmacol. 2001, 1, 891-901. [47] Prescott, S. L. and Björkstén, B. Probiotics for the prevention or treatment of allergic disease. Clin Exp Allergy. 2007, 30, 255-262. [48] Schiffrin, E. J.; Ouwehanda, A. C.; Kirjavainena, P. V.; Grönlundb, M. M.; Isolaurib, E.; Salminen, S. J. Adhesion of probiotic micro-organisms to intestinal mucus. Int Dairy. 1999, 9, 623-630. [49] Brassart, D.; Servin, A. L.; Rochat, F.; Donnet, A. Immune modulation of blood leukocytes in humans by lactic acid bacteria: criteria for strain selection. Am J Clin Nutr. 1997, 66, 515-520. [50] Samuli, R.; Marko, K.; Erika, I. New therapeutic strategy for combating the increasing burden of allergic disease: Probiotics—A Nutrition, Allergy, Mucosal Immunology and Intestinal Microbiota (NAMI) Research Group report. J Allergy Clin Immunol. 2005, 116, 31-37 [51] Kalliomäki, M.; Isolauri, E. Role of intestinal flora in the development of allergy. Curr Opin Clin Nutr Metab Care. 2003, 3, 15-20. [52] Romagnani, S. The increased prevalence of allergy and the hygiene hypothesis: missing immune deviation, reduced immune suppression, or both? Immunology. 2004 , 12, 352–363. [53] Eckburg, P. B.; Bik, E. M.; Bernstein, C. N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S. R.; Nelson, K. E.; Relman, D. A. Diversity of the Human Intestinal Microbial Flora. Science. 2005, 308, 1635-1638 [54] Pochard, P.; Gosset, P.; Grangette, C.; Andre, C.; Tonnel, A.B; Pestel, J.; Mercenier, A. Lactic acid bacteria inhibit TH2 cytokine production by mononuclear cells from allergic patients. J Allergy Clin Immunol. 2002, 110, 617-623. [55] Pochard, P.; Hammad, H.; Ratajczak, C.; Charbonnier-Hatzfeld , A. S.; Just, N.; Tonnel, A. B.; Pestel, J. Direct regulatory immune activity of lactic acid bacteria on Der p 1-pulsed dendritic cells from allergic patients. J Allergy Clin Immunol. 2005, 116, 198-204. [56] Samanya, M. and Yamauchi, K. Histological alterations of intestinal villi in chicken fed dried Bacillus subtilis var. natto. Comp Biochem Physiol. 2002, 133, 95-104. [57] Kosaka, T.; Maeda, T.; Nakada, Y.; Yukawa, M.; Tanaka, S. Effect of Bacillus subtilis spore administration on activation of macrophages and natural killer cells in mice. Vet Microbiol. 1998, 60, 215-225. [58] Sun, P.; Wang, J.Q.; Zhang, H.T. Effects of Bacillus subtilis natto on performance and immune function of preweaning calves. Jour Dairy Science, 2010, 93, 5851-5855 [59] Fujiwara, K.; Yamauchi, K.; Abe, H; Nakashima, K.; Yakabe, Y.; Otsuka, M.; Ohbayashi, Y.; Kato Y.; Namai, K.; Nakamura, Y. Effect of Bacillus subtilis var. natto. fermented soybean on growth performance, microbial activity in the caeca and cytokine gene expression of domestic meat type chicken. Jpn Poult Sci. 2009, 46, 116-122. [60] Olivry, T.; Marsella, R.; Iwasaki, T.; Muelle, R. Validation of CADESI-03, a severity scale for clinical trials enrolling dogs with atopic dermatitis. Vet Dermal. 2007, 18, 78-86. [61] Cravatt, B. F.; Simon, G. M.; Yates, J. R. The biological impact of mass-spectrometry-based proteomic. Nature. 2007, 450, 991-1000. [62] Issaq, H. J. and Veenstr, T. D. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE): advances and perspectives. BioTechniques. 2008, 44, 697-700. [63] Lundgren, D. H.; Hwang, S.I; Wu, L.; Han, D. K. Role of spectral counting in quantitative proteomics. Expert Rev. Proteomics. 2010, 7, 39-53. [64] Zhu, W. ; Smith, J. W.; Huang C. M. Mass Spectrometry-Based Label-Free Quantitative Proteomics. Jour of Biomed& Biotech. 2009, 2010, 1155-1161. . [65] Zybailov, B.; Coleman, M. K.; Florens, L.; Washburn, M. P. Correlation of relative abundance ratios derived from peptide ion chromatograms and spectrum counting for quantitative proteomic analysis using stable isotope labeling. Anal Chem. 2005, 77, 6218-6224. [66] Mann, M and Jensen, O. N. Proteomic analysis of post-translational modifications. Nature Biotech. 2003, 21, 255 – 261. [67] Aebersold, R. and Mann, M. Mass spectrometry-based proteomics. Nature. 2003, 422, 198-207. [68] Zhan, Y. and Jensen, O. N. Modification-specific proteomics: Strategies for characterization of post-translational modifications using enrichment techniques. Proteomics. 2009, 9, 4632-4641. [69] Landegren, U. F.; Vänelid, J.; Hammond, M.; Nong, R. Y.; Wu, D.; Ullerås, E.; Moghaddam, M. K. Opportunities for sensitive plasma proteome analysis. Anal. Chem., 2012, 84, 1824–1830. [70] Jin, W. H.; Dai, J.; Li, S. J.; Xia, Q. C.; Zou, H. F.; Zeng, R. Human plasma proteome analysis by multidimensional chromatography prefractionation and linear ion trap mass spectrometry identification. J. Proteome Res., 2005, 4, 613–619. [71] Zhan, Y. and Jensen, O. N. Modification-specific proteomics: Strategies for characterization of post-translational modifications using enrichment techniques. Proteomics. 2009, 9, 4632-4641. [72] Baumann, H.; Gauldie, J. Regulation of hepatic acute phase plasma protein genes by hepatocyte stimulating factors and other mediators of inflammation. Mol Mar Biol. 1990, 7, 47-59. [73] Hyka, N.; Dayer, J. M.; Modoux, C.; Kohno, T.; Edwards, C. K.; Pascale R. L.; Burger, D. Apolipoprotein A-I inhibits the production of interleukin-1βand tumor necrosis factor-α by blocking contact-mediated activation of monocytes by T lymphocyte. Blood, 2001, 97, 2381-2389. [74] Barter, P. T.; Rye. K. A. Molecular mechanisms of reverse cholesterol transport. Curr. Opin. Lipidol. 1996, 7, 82-87. [75] Burger, D.; Dayer, J. M. High-density lipoprotein-associated apolipoprotein A-I: the missing link between infection and chronic inflammation? Autoimmunity Reviews .2002, 2, 111-117. [76] Vaisar, T.; Pennathur, S.; Green, P. S.; Gharib, S. A.; Hoofnagle, A. N.; Cheung, M. C.; Byun, J.; Vuletic, S.; Kassim, S.; Singh, P.; Chea, H. Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J Clin Invest. 2007, 117, 746–756. [77] Banka, C. L. High density lipoprotein and lipoprotein oxidation. Curr. Opin. Lipidol. 1996, 7, 139-142. [78] Westhuyzen, J. The oxidation hypothesis of atherosclerosis: an update. Annals of Clin Immunol Newsletter, 1997, 27, 1-10. [79] Bonnefont, R. D.; Thérond, P.; Beaudeux, J. L.; Peynet, J.; Legrand, A.; Delattre. J. High density lipoproteins (HDL) and the oxidative hypothesis of atherosclerosis. Clin Chem Lab Med. 1999, 37, 939-48. [80] Epand, R. M.; Stafford, A.; Leon, B.; Lock, P.E.;Tytler, E.M.; Segrest, J. P; Anantharamaiah, G. M. HDL and apolipoprotein A-I protect erythrocytes against the generation of procoagulant activity. Arterioscler. Thromb. 1994, 14, 1775-1783. [81] Weerapan, K.; Kim, M. S.; Memon, R. A.; Shigenaga, J. K. Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. J. Lipid Res. 2004, 45, 1169-1196. [82] Pesonen, M.; Ranki, A.; Siimes, M. A.; Kallio, M. J. Serum cholesterol level in infancy is inversely associated with subsequent allergy in children and adolescents. A 20-year follow-up study. Clin Exp Allergy. 2008, 38, 178-184. [83] Schäfer, T.; Ruhdorfer, S.; Weigl, L.; Wessner, D.; Heinrich, J.; Döring, A. ; Wichmann, H. E.; Ring, J. Intake of unsaturated fatty acids and HDL cholesterol levels are associated with manifestations of atopy in adults. Clin Exp Allergy. 2003, 33, 1360-1367. [84] Kwang, D. K.; Lim, H. Y.; Lee, H. G.; Yoon, D. Y.; Choe, Y. K.; Choi, I.; Paik, S. G.; Kim, Y. S.; Yang, Y.; Lim, J. S. Apolipoprotein A-I induces IL-10 and PGE2 production in human monocytes and inhibits dendritic cell differentiation and maturation. Biochem Biophys Res Commun. 2005, 338, 1126-1136. [85] Michael, J. H.; Mohammad, H.; Mreyoud, A.; Plummer, B.; Wong, C.W.; Mooradian, A. D. Suppression of apolipoprotein AI gene expression in HepG2 cells by TNF α and IL-1β . Biochim. Biophys. Acta. 2003, 1623, 120-128. [86] Beers, A.; Haas, M. J.; Wong, C. W.; Mooradian, A. D. Inhibition of Apolipoprotein AI Gene Expression by Tumor Necrosis Factor α: Roles for MEK/ERK and JNK Signaling. Biochemistr. 2006, 45, 2408–2413. [87] Hyka, N.; Dayer, J. M.; Modoux, C.; Kohno, T.; Edwards, C. K.; Pascale R. L.; Burger, D. Apolipoprotein A-I inhibits the production of interleukin-1βand tumor necrosis factor-α by blocking contact-mediated activation of monocytes by T lymphocyte. Blood. 2001, 97, 2381-2389. [88] Hayden, M. S.; West, A. P.; Ghosh, S. NF-kappaB and the immune response. Oncogene. 2006, 25, 6758-6780. [89] Frank, P. G.; Marcel, Y. L. Apolipoprotein A-I: structure–function relationships. J. Lipid Res. 2000, 41, 853-872. [90] Berbée, J. G.; Havekes, L. M.; Rensen, P. C. Apolipoproteins modulate the inflammatory response to lipopolysaccharide. J Endotoxin Res. 2005, 11, 97-103. [91] Burger, D.; Dayer, J. M. High-density lipoprotein-associated apolipoprotein A-I: the missing link between infection and chronic inflammation? Autoimmun Rev. 2002, 1 , 111-117. [92] Gupta, H.; Dai, L.; Datta, G.; Garber, D. W.; Grenett, H.; Li, Y.; Mishra, V.; Palgunachari, M. N.; Handattu, S.; Gianturco, S. H.; Bradley, W. A.; Anantharamaiah, G. M.; White, C. R. Inhibition of lipopolysaccharide-induced inflammatory responses by an apolipoprotein AI mimetic peptide. Circ Res. 2005, 97, 236-243. [93] Fujiwara, N; Kobayashi, K. Macrophages in inflammation. Curr Drug Targets Inflamm Allergy. 2005, 4, 281-286. [94] Kim, J. B.; Han, A. R; Park, E. Y.; Kim, J. Y.; Cho, W.; Lee, J.; Seo, E. K.; Lee, K. T. Inhibition of LPS-induced iNOS, COX-2 and cytokines expression by poncirin through the NF-kappaB inactivation in RAW 264.7 macrophage cells. Biol Pharm Bull. 2007, 30, 2345-2351. [95] Celada, A.; Nathan, C. Macrophage activation revisited. Immunol Today. 1994, 15, 100-102. [96] Wallace, T. D.; Bradley, S.; Buckley, N. D.; Johnson, J. M. Interactions of lactic acid bacteria with human intestinal epithelial cells: effects on cytokine production. J Food Prot. 2003, 66, 466-472. [97] Hirotsugu, M.; Fang, H. E.; Tetsuo, F.; Hideo, H.; Masataka, H.; Koko, M. Cytokine Production by the Murine Macrophage Cell Line J774.1 after Exposure to Lactobacilli. Biochem Cell Biol.2002, 9, 1963-1966 [98] Korhonen, R.; Korpela, R.; Saxelin, M.; Mäki, M.; Kankaanranta, H.; Moilanen, E. Induction of Nitric Oxide Synthesis by Probiotic Lactobacillus rhamnosus GG in J774 Macrophages and Human T84 Intestinal Epithelial Cells. Inflammation. 2001, 25, 223-232 [99] Corthésy, B.; Gaskins, H. R.; Mercenier, A. Cross-talk between probiotic bacteria and the host immune system. J Nutr. 2007, 137, 781-790. [100] Walker, W. A. Mechanisms of Action of Probiotics. Clin Infect Dis.2008, 46 , 87-91 [101] Hua, M. C.; Lin, T. Y.; Lai, M. W.; Kong, M. S.; Chang, H. J.; Chen, C. C. Probiotic Bio-Three induces Th1 and anti-inflammatory effects in PBMC and dendritic cells. World J Gastroenterol. 2010, 28, 3529–3540. [102] Matsuzaki1, T.; Chin, J. Modulating immune responses with probiotic bacteria. Immunol. Cell Biol. 2000, 78, 67–73 [103] Schottelius, A. J.; Baldwin, A. S. A role for transcription factor NF-kB in intestinal inflammation. Int J Colorectal Dis. 1999, 14, 18-28 [104] Kim, Y. G.; Ohta, T.; Takahashi, T.; Kushiro, A.; Nomoto, K.; Yokokura, T.; Okada, N.; Danbara, H. Probiotic Lactobacillus casei activates innate immunity via NF-kappaB and p38 MAP kinase signaling pathways. Microbes Infect. 2006, 8, 994-1005. [105] Simon, T.; Victoria, M.; Zeynep, U.; Pestka, J. Ex vivo effects of lactobacilli, streptococci, and bifidobacteria ingestion on cytokine and nitric oxide production in a murine model. J Food Prot. 1999, 62, 162-169 [106] Maassen, C. B.; Van, H. N.; Balk, F.; Den, M. J.; Leer, R. J.; Laman, J. D.; Boersma, W. J.; Claassen, E. Strain-dependent induction of cytokine profiles in the gut by orally administered Lactobacillus strains. Vaccine. 2000, 22, 2613-2623. [107] Greenbaum, D.; Luscombe, N. M.; Jansen, R.; Qian, J.; Gerstein, M. Interrelating different types of genomic data, from proteome to secretome: oming in on function. Genome Res. 2001. 11, 1463-1468 [108] Monastyrskaya, K.; Babiychuk, E. B.; Draeger, A. The annexins: spatial and temporal coordination of signaling events during cellular stress. Cell Mol Life Sci. 2009, 66, 2623-2642 [109] Gerke, V.; Creutz, C. E.; Moss, S. E. Annexins: linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol. 2005, 6, 449-461. [110] Seaton, B. A.; Dedman, J. R. Annexins. Biometals. 1998, 11, 399-404. [111] Perretti, M.; Chiang, N.; La, M.; Fierro, I. M.; Marullo, S.; Getting, S. J.; Solito, E.; Serhan, C. N. Endogenous lipid- and peptide-derived anti-inflammatory pathways generated with glucocorticoid and aspirin treatment activate the lipoxin A4 receptor. Nat Med. 2002, 8, 1296-1302. [112] Christianne, B. M.; André , G. C.; Bonavita, B. L.; Diaz, P. M.; R.; Carvalho, P. J. ; Jose, R. J.; Flower, M. P.; Marco, A. A Novel Effect for Annexin 1-Derived Peptide Ac2-26: Reduction of Allergic Inflammation in the Rat. JPET. 2005, 313, 1416-1422 [113] Perretti, M.; Wheller, S. K.; Flower, R. J.; Wahid, S.; Pitzalis, C. Modulation of cellular annexin I in human leukocytes infiltrating DTH skin reactions. J Leukoc Biol 1999, 65, 583-589. [114] Vishwanatha, J. K.; Davis, R. G.; Rubinstein, I.; Floreani, A. Annexin I degradation in bronchoalveolar lavage fluids from healthy smokers: a possible mechanism of inflammation. Clin Cancer Res. 1998, 4, 2559-2564. [115] Mauro, P.; Jesmond, D. Exploiting the Annexin A1 pathway for the development of novel anti-inflammatory therapeutics. Br J Pharmacol. 2009, 158, 936–946. [116] D'Acquisto, F.; Perretti, M.; Flower, R. J. Annexin-A1: a pivotal regulator of the innate and adaptive immune systems. Br J Pharmacol. 2008, 155, 152-169. [117] Liu, F. T. Regulatory roles of galectins in the immune response. Int Arch Allergy Immunol. 2005, 136, 385-400. [118] Rabinovich, G. A.; Baum, L. G.; Tinari, N.; Paganelli, R.; Natoli, C.; Liu, F. T.; Iacobelli, S. Galectins and their ligands: amplifiers, silencers or tuners of the inflammatory response? Trends Immunol. 2002, 23, 313-320. [119] Hughes, R. C. Secretion of the galectin family of mammalian carbohydrate-binding proteins. Biochim Biophys Acta. 1999, 1473, 172-185. [120] Hughes, R. C. Galectins as modulators of cell adhesion. Biochimie. 2001, 83, 667-676. [121] Perillo, N. L.; Marcus, M. E.; Baum, L. G. Galectins: versatile modulators of cell adhesion, cell proliferation, and cell death. J Mol Med. 1998, 76, 402-412. [122] Rabinovich, G. A.; Rubinstein, N. Galectins: a novel family of proteins involved in the regulation of the immune response. Implications in immunopathological processes. Medicina. 2001, 61, 85-92. [123] Zuberi, R. I.; Hsu, D. K.; Kalayci, O.; Chen, H. Y.; Sheldon, H. K.; Yu, L.; Apgar, J. R.; Kawakami, T.; Lilly, C. M.; Liu, F. T. Critical role for galectin-3 in airway inflammation and bronchial hyperresponsiveness in a murine model of asthma. Am J Pathol. 2004, 165, 2045-2053. [124] Saegusa, J.; Hsu, D. K.; Chen, H. Y.; Yu, L.; Fermin, A.; Fung, M. A.; Liu, F. T. Galectin-3 is critical for the development of the allergic inflammatory response in a mouse model of atopic dermatitis. Am J Pathol. 2009, 174, 922-931. [125] Li, Y.; Komai, K. M.; Gilchrist, D. S.; Hsu, D. K.; Liu, F. T.; Springall, T.; Xu, D. Galectin-3 is a negative regulator of lipopolysaccharide-mediated inflammation. J Immunol. 2000, 15, 2781-2789. [126] Yamauchi, Y.; Kuroki, M.; Imakiire, T.; Uno, K.; Abe, H.; Beppu, R.; Yamashita, Y.; Shirakusa, T. Opposite effects of thrombospondin-1 via CD36 and CD47 on homotypic aggregation of monocytic cells. Matrix Biol. 2002, 21, 441-448. [127] Grimbert, P.; Bouguermouh, S.; Baba, N.; Nakajima, T.; Allakhverdi, Z.; Braun, D.; Saito, H.; Rubio, M.; Delespesse, G.; Sarfati, M. Thrombospondin/CD47 interaction: a pathway to generate regulatory T cells from human CD4+ CD25- T cells in response to inflammation. J Immunol. 2006, 177, 3534-3541. [128] Bornstein, P. Thrombospondins as matricellular modulators of cell function. J Clin Invest. 2001, 107, 929-934. [129] Gaurnier, H. A.; Rothman, V. L.; Dimitrov, S.; Tuszynski, G. P. The novel angiogenic inhibitor, angiocidin, induces differentiation of monocytes to macrophages. Cancer Res. 2008, 15, 5905-5914. [130] Mario, C.; Joanne, M.; Jeffrey, B.; Audrey, B.; Satya, P.; Raul, A. Thrombospondin-1 and Transforming Growth Factor Beta Are Pro-Inflammatory Molecules in Rheumatoid Arthritis. Transl Res. 2008, 152, 95–98. [131] Jacqueline, W.; Robert, S.; Gary J,; Jennifer, B.; Sarah A. M.; Tucker, C.; Mary, E. G. Novel Inhibitors of Cytokine-induced IκBα Phosphorylation and Endothelial Cell Adhesion Molecule Expression Show Anti-inflammatory Effects in Vivo. J. Biol. Chem. 1997, 272, 21096-21103. [132] Zeuzem, S. Gut-liver axis. Int J Colorectal Dis. 2000, 15, 59-82 [133] Kima, Y. G.; Ohtab,T.; Takahashib, T.; Kushirob, A.; Nomotob, K.; Yokokurab, T.; Okadaa, N.; Danbara, H. Probiotic Lactobacillus casei activates innate immunity via NF-κB and p38 MAP kinase signaling pathways . Microb Infect. 2006, 8, 994–1005 [134] Bäckhed, F.; Söderhäll, M.; Ekman, P.; Normark, S.; Richter, D. A. Induction of innate immune responses by Escherichia coli and purified lipopolysaccharide correlate with organ- and cell-specific expression of Toll-like receptors within the human urinary tract. Cell Microbiol. 2001, 3, 153-158. [135] Martin, D. B.; Gifford, D. R.; Wright, M. E.; Keller, A.; Yi, E.; Goodlett, D. R.; Aebersold, R.; Nelson, P. S. Quantitative proteomic analysis of proteins released by neoplastic prostate epithelium. Cancer Res. 2004, 64, 347-355. [136] Harles, N.; Serhan, N,; Thomas, E.; Choudhary, C.; Mann, M. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nature Reviews Immunology. 2008, 8, 349-361. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65608 | - |
| dc.description.abstract | 流行病學調查指出,過去二十年間,「異位性皮膚炎」的發生率及普及率在已開發國家大幅提升。已知此疾病的成因除了受基因調控外與西化的生活型態有密切關係,環境因子更是誘發此疾病的關鍵。研究顯示,體內正常的微生物菌叢在免疫調控與平衡上扮演重要的角色。由於衛生環境的改善、飲食習慣的改變以及抗生素廣泛使用等因素,大幅降低接觸外在微生物菌叢的機會,因此也提高了罹患免疫失衡疾病的機率。益生菌的免疫調節能力在動物與人體實驗上已被證實,但其調控的機轉仍待研究。本次報告內容是探討納豆菌(Bacillus subtilis var. natto)如何透過調控體內的免疫反應進而達到抑制臨床上犬異位性皮膚炎的症狀。本實驗室透過蛋白質體學的分析,發現犬隻在攝入108cfu/ml納豆菌(Bacillus subtilis var. natto),可誘發免疫細胞活化,進而抑制體內載脂蛋白A-I(Apolipoprotein A-I)的表現。藉由較低濃度的載脂蛋白A-I,可進一步維持或放大納豆菌所引發的促發炎現象,而達到抗過敏的效果。研究結果顯示納豆菌(Bacillus subtilis var. natto)可刺激免疫細胞活化進而影響載脂蛋白A-I的表現,並且分泌相關免疫調控蛋白來維持適當之免疫發炎反應以達到對急性期異位性皮膚炎之治療效果。 | zh_TW |
| dc.description.abstract | Atopic dermatitis (AD) is one of the most common skin diseases that affects children and adults worldwide and its prevalence has been steadily increasing during the past decades. According to the hygiene hypothesis, the decreased exposure of microorganism results in altered T helper cells balance, increasing prevalence and severity of AD. Therefore, probiotics, with their important immune-regulatory potential, has been regarded as a novel strategy for the intervention of atopic disease. In this study, the probiotics, Bacillus subtilis var. natto, has been used for alleviating the symptoms of AD in clinical canine patients. After more than 3 weeks of treatment, the plasma samples were withdrawn from the dogs with significant clinical improvement to execute the proteomics analysis. After the statistical and comparative analysis, we have pinpointed that the down-regulation of apolipoprotein A-I (apoA-I), might get involved in the molecular mechanism mediated by Bacillus subtilis var. natto. Our studies have demonstrated that Bacillus subtilis var. natto could regulate the expression of apoA-I by its immunostimulatory activities and the down-regulation of apoA-I might play roles in the enhancement of its stimulatory effects. Furthermore, we also identified some immunoregulatory proteins, anexin-1, galectin-3 and thromospondin-1 might contribute to anti-AD effects supported by probiotics. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:53:36Z (GMT). No. of bitstreams: 1 ntu-101-R99641004-1.pdf: 2293918 bytes, checksum: e83849ae3c226f002bed73fec140b2a1 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | CHAPTER 1 Literature Reviews 1
1.1 Atopic dermatitis 1 1.1-1 Introduction 1 1.1-2 Pathophysiology 6 1.1-3 Managements 9 1.2 Canine Atopic Dermatitis 11 1.2-1 Introduction 12 1.2-2 The similarity between canine AD and human AD 13 1.2-3 Management 16 1.3 Probiotics 1.3-1 Introduction 17 1.3-2 Bacillus subtilis var. natto 19 CHAPTER 2 Materials and Methods 20 2.1 Clinical canine AD experiment 20 2.1-1 Experiment design 20 2.1-2 Experimental material 20 2.1-2.1 Canine subjects recruitment 20 2.1-3 Experimental method 23 2.1-3.1 Probiotics treating protocol 23 2.1-3.2 Plasma specimen collection 23 2.2 Plasma proteomics analysis 24 2.2-1 Experiment design 24 2.2-2 Experimental material 24 2.2-2.1 Sample preparation and isolation 24 2.2-3 Experimental method 25 2.2-3.1 Quantitative proteomics analysis 25 2.2-3.2 Post-translational modification proteins analysis 28 2.2-3.3 Mass-spectrometry and database search 28 2.2-3.4 Comparative analysis and pathway mapping 28 2.3 In Vitro cell model system 30 2.3-1 Experiment design 30 2.3-2 Experimental material 30 2.3-2.1 Preparation of heat-killed microorganism 30 2.3-2.2 RAW264.7 macrophages cells culture 31 2.3-2.3 Preparation of conditioned media for nitric oxide assay 32 2.3-2.4 Preparation of serum-free conditioned media 32 2.3-3 Experimental method 33 2.3-3.1 Luciferase Assay 33 2.3-3.2 Nitric oxide (NO) Assay 34 2.3-3.3 TNF-α ELISA assay 35 2.3-3.4 Preparation of conditioned media for secretome analysis 36 CHAPTER 3 Results and Discussion 38 3.1Clinical canine AD dogs experiment 38 3.1-1 Clinical evaluation and case selection 38 3.1-2 Isolation of up-regulated proteins after probiotics treatment 39 3.1-3 Change of proteins expression profiles after probiotics treatment 40 3.1-4 PTMs proteins analysis and mapping 41 3.1-5 Hypothesized mechanisms 42 3.2 Validation of hypothesized mechanism in cell culture system 44 3.2-1 Murine macrophage cell model establishment 45 3.2-2 Pro-inflammatory response of probiotics 47 3.2-3 Analysis the cells immune responses under serum free condition 49 3.2-4 Proteomics analysis of conditioned medium 52 3.2-5 Identification of immunoregulatory proteins 53 CHAPTER 4 Conclusion 57 CHAPTER 5 Discussions 57 CHAPTER 6 References 62 Appendix Figure 1. The pathogenesis of atopic dermatitis (Chen et al., 2004) 8 Figure 2. General approaches of quantitative proteomics (Zhu et al., 2009) 27 Figure 3. Comparative analysis of proteins expression in 5 canine AD patients 29 Figure 4. Quantification analysis of proteins expression in 5 canine AD patients 40 Figure 5. Relative COX-2 gene expression profile 48 Figure 6. Nitrite (NO) induction profile 48 Figure 7. Relative iNOS gene expression profile under serum free condition 50 Figure 8. NO induction profile under serum free condition 51 Figure 9. TNF-α secretion profile under serum free condition 51 Figure 10. Quantitative analysis of B. subtilis var. natto-treated conditioned medium 52 Table 1. Clinical features of atopic dermatitis (Leung et al., 2007) 3 Table 2. Similarities between canine AD and human AD (Marsella et al., 2009) 12 Table 3. The table of CADESI-03 scoring scheme (Olivry et al., 2007) 22 Table 4. The clinical conditions of atopic dogs after probiotics treatment 38 Table 5. Ten differentially expressed protein 41 Table 6. Differentially expression of inflammation-associated proteins in conditioned medium 56 | |
| dc.language.iso | en | |
| dc.subject | 納豆菌 | zh_TW |
| dc.subject | 載脂蛋白A-I | zh_TW |
| dc.subject | 免疫調控蛋白 | zh_TW |
| dc.subject | 異位性皮膚炎 | zh_TW |
| dc.subject | 蛋白質體學 | zh_TW |
| dc.subject | Bacillus subtilis var. natto | en |
| dc.subject | apolipoprotein A-I | en |
| dc.subject | proteomics | en |
| dc.subject | atopic dermatitis | en |
| dc.subject | immunoregulatory proteins | en |
| dc.title | 益生菌在犬異位性皮膚炎之機制探討 | zh_TW |
| dc.title | The Mechanism Study of Probiotics on Canine Atopic Dermatitis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 廖辰中,羅翊禎,陳念榮 | |
| dc.subject.keyword | 異位性皮膚炎,納豆菌,蛋白質體學,載脂蛋白A-I,免疫調控蛋白, | zh_TW |
| dc.subject.keyword | atopic dermatitis,Bacillus subtilis var. natto,proteomics,apolipoprotein A-I,immunoregulatory proteins, | en |
| dc.relation.page | 77 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-19 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
