Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地理環境資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6528
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林俊全(Jiun-Chuan Lin)
dc.contributor.authorShiuan-An Chenen
dc.contributor.author陳宣安zh_TW
dc.date.accessioned2021-05-17T09:14:25Z-
dc.date.available2012-08-17
dc.date.available2021-05-17T09:14:25Z-
dc.date.copyright2012-08-17
dc.date.issued2012
dc.date.submitted2012-08-15
dc.identifier.citationDBAR大氣研究資料庫,中央氣象局測站資料,http://dbar.ttfri.narl.org.tw [2012.6.7]
交通部中央氣象局,颱風資料庫,http://rdc28.cwb.gov.tw/data.php [2011.9.15]
交通部中央氣象局,氣候統計,http://www.cwb.gov.tw/V7/climate/dailyPrecipitation/dP.htm [2012.6.7]
王凱弘 (2005) 濁口溪流域至林邊溪流域河階地與地形演育之研究,國立高雄師範大學地理學系研究所碩士論文,2。
王鑫 (1986) 地形學,臺北:聯經,143-179。
李錦發 (2000) 五萬分之一臺灣地質圖 (18):東勢,臺北:經濟部中央地質調查所,8、42-77。
余嘉凌 (2004) 吊神山地區水文與地質特性之相關性研究,國立中央大學應用地質研究所碩士論文,36-84。
林朝棨 (1957) 臺灣地形,臺北:臺灣省文獻委員會,63-67。
林銘照 (2004) 集集921地震前後大安溪河川輸砂特性探討,臺南師範學院自然科學教育學系碩士班碩士論文,83-99。
莊文星 (2009) 中臺灣河川新地貌 (一) 大安溪峽谷,國立自然科學博物館館訊,258: 1-9。
郭育安 (2008) 大安溪峽谷與九二一大地震之關係!,地質,27 (1): 52-53。
張石角 (1993) 山坡地調查規劃、評估及其崩塌預測與治理 (初稿),行政院農業委員會專題研究,33-63。
張祖達 (2012) 礫石邊坡地形變遷特性之研究─以地面三維雷射掃描儀為例,國立臺灣大學地理環境資源研究所碩士論文,21-23。
鄒豹君 (1976) 小地形學,臺北:臺灣開明書店,65-120。
經濟部水利署地理資訊倉儲中心,水文年報歷年電子書,http://gweb.wra.gov.tw/wrhygis [2011.10.2]
齊士崢、宋國城、陳邦禮、謝孟龍、蔡衡、傅炯貴 (1998) 蘭陽溪上游沖積扇的地形演育,環境與世界,2: 137-150。
鄧天德 (1975) 大安溪流域之地理研究,中國文化學院地學研究所研究報告,2: 95-127。
鄭文昕、何信昌 (2008) 2008全臺最夯地質露頭part 1─大安溪「峽谷」地質現象全記錄,地質,27 (1): 44-51。
賴憶菁 (2009) 利用河道形貌分析構造的相對活動性:以大安溪流域為例,國立臺灣大學地質科學研究所碩士論文,37-52。
謝孟龍 (2005) 台灣山區五條河流現今岩盤下切速率的監測,行政院國家科學委員會專題研究計畫成果報告,7-23。
謝孟龍 (2007) 立霧溪岩盤下切速率的監測 (2/2) 研究成果報告 (完整版),行政院國家科學委員會專題研究計畫成果報告,7-13。
Abam, T. K. S. and Omuso, W. O. (2000) On river cross-sectional change in the Niger Delta, Geomorphology, 34: 111-126.
Burbank, D. W., Leland, J., Fielding, E., Anderson, R. S., Brozovic, N., Reid, M. R. and Duncan, C. (1996) Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas, Nature, 379 (8): 505-510.
Carlson, M. (1998) Knickpoint migration and tufa accretion in five South River tributaries, Central Virginia, Eleventh Keck Research Symposium in Geology Proceedings: Amherst College, Amherst, MA, 226-229.
Cooke, R. U. and Doornkamp, J. C. (1990) Geomorphology in Environmental Managemnet, New York: Oxdord University Press, 64, 141-200.
Florsheim, J. (2007) Fluvial and Geomorphological Processes, California Watershed Assessment Manual Volume II, 1-36.
Henck, A. C., Huntington, K. W., Stone, J. O., Montgomery, D. R. and Hallet, B. (2011) Spatial controls on erosion in the Three Rivers Region, southeastern Tibet and southwestern China, Earth and Planetary Science Letters, 303: 71-83.
Johnson, J. P. L., Whipple, K. X. and Sklar, L. S. (2010) Contrasting bedrock incision rates from snowmelt and flash floods in the Henry Mountains, Utah, Bulletin of the Geological Society of America, 122 (9/10): 1600-1615.
Kennedy, B. A. (1997) Classics in physical geography revisited, Progress in Physical Geography, 21 (3): 419-423.
Knighton, D. (1998) Fluvial Forms and Processes: A New Perspective, London: Hodder Education, 65-260.
Lee, J. C., Chu, H. T., Angelier, J., Chan, Y. C., Hu, J. C., Lu, C. Y. and Rau, R. J. (2002) Geometry and structure of northern surface ruptures of the 1999 Mw = 7.6 Chi-Chi Taiwan earthquake: influence from inherited fold belt structures, Journal of Structural Geology, 24: 173-192.
Leica (2009) Leica TPS1200+ Series High performance Total station, Heerbrugg, Switzerland: Leica Geosystems AG, 2-10.
Ouimet, W., Whipple, K., Royden, L., Reiners, P., Hodges, K. and Pringle, M. (2010) Regional incision of the eastern margin of the Tibetan Plateau, Lithosphere, 2 (1): 50-63.
Patton, P. C. (1988) Flood Geomorphology, New York: John Wiley & Sons, 51-64.
Phillips, J. D. (1991) Multiple modes of adjustment in unstable river channel cross-sections, Journal of Hydrology, 123: 39-49.
Richard, J. C., Stanley, A. S. and David, E. S. (1985) Geomorphology, New York: Methuen & Co., 278-315.
Safran, E. B., Bierman, P. R., Aalto, R., Dunne, T., Whipple, K. X. and Caffee, M. (2005) Erosion rates driven by channel network incision in the Bolivian Andes, Earth Surface Processes and Landforms, 30 (8): 1007-1024.
Schaller, M., Hovius, N., Willett, S. D., Ivy-Ochs, S., Synal, H. A. and Chen, M. C. (2005) Fluvial bedrock incision in the active mountain belt of Taiwan from in situ-produced cosmogenic nuclides, Earth Surface Processes and Landforms, 30: 955-971.
Schumm, S. A. and Lichty, R. W. (1965) Time space and causality in geomorphology, American Journal of Science, 263: 110-119.
Stock, J. D., Montgomery, D. R., Collins, B. D., Dietrich, W. E. and Sklar, L. (2005) Field measurements of incision rates following bedrock exposure: Implications for process controls on the long profiles of valleys cut by rivers and debris flows, Geological Society of America Bulletin, 117 (1): 174-194.
Thomas, D. S. G. and Allison, R. J. (1993) Landscape Sensitivity, West Sussex: John Wiley and Sons, 15-30.
Whipple, K. X. and Tucker, G. E. (1999) Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs, Journal of Geophysical Research, 108 (B8): 17,661-17,674.
Wilson, I. G. (1973) Equilibrium cross-section of meandering and braided rivers, Nature, 241: 393-394.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6528-
dc.description.abstract大安溪峽谷位在苗栗卓蘭與臺中東勢之間,為1999年九二一地震後構造抬升與河流回春作用下切產生的峽谷地形。峽谷最晚於2007年形成,長約1公里,寬約500公尺。由於河川系統的變遷相當複雜,過去對於短時間的構造抬升與河川侵蝕作用之了解十分有限,本區又有環境監測、管理的必要,因此本研究整理了氣象、水文資料,並透過分析航空照片、現地觀察與河道邊坡量測等方法,了解大安溪峽谷的河川地形變遷特性,並建立河道邊坡的變遷模式。
研究區河道兩側的邊坡坡度介於15.7至78.5度間,主流下蝕深度約10-15公尺。就長期變遷而言,地震後的構造抬升先使河川流路受阻、寬度從大約40公尺增加至100公尺以上;2003年後受到下蝕、側蝕與搬運作用影響,快速產生峽谷地形,河道寬度也減少至大約10到30公尺之間。就短期變遷而言,由於2011年7月至2012年5月的研究期間缺乏大規模降雨、流量事件,因此邊坡變遷規模並不大。邊坡頂部因為直接受到雨水侵蝕,且岩性多屬於泥岩與頁岩,因此侵蝕量較大,研究期間的最大平均侵蝕量可達0.74公尺;坡腳若位處於河水直接攻擊的位置,平均侵蝕量最多可達到0.39公尺,但若非位在河水直接攻擊的位置,則變化量沒有明顯突出;邊坡中段變化量差異大,侵蝕與堆積作用出現的位置大致受到坡度影響,而坡度可能間接受到岩性、岩層傾角所影響。邊坡後退的機制為,受到河水侵蝕與雨水沖蝕作用影響,砂、頁岩互層產生的差異侵蝕作用,使邊坡的砂岩層常突出於上、下方的頁岩層之外,最後因為失去支撐而隨重力作用崩落,連帶使得上、下方的頁岩層更容易崩落。
本研究最後根據現地觀察與測量分析結果,建立4種河道邊坡的變遷模式。不過,水力作用與岩石強度的計算、水面下地形的測量、地形變遷影響因子的權重分析,都有待後續研究進行更深入的探討。
zh_TW
dc.description.abstractThe position of Daan Gorge is between Zhuolan in Miaoli and Dongshi in Taichung, and it formed because of the tectonic uplifting of Chi-Chi Earthquake in 1999 and the erosion process of rejuvenation. This gorge formed before 2007, the length and width was about 1 km and 500 m respectively. Because the changes of river systems were very complex, and the understanding of tectonic uplifting and river erosion processes in short-term was limited, moreover, the environmental monitoring and managements of this area were necessary, so this research collected the meteorological and hydrological data first, then analyzed the characteristics of fluvial morphological changes of Daan Gorge by aerial photos, in-situ observations and channel cross-profile measurements. Finally, this research established the models of channel morphological changing of the channel slopes.
The slopes of channel sides were between 15.7 and 78.5 degree, and the depth of the main channel was about 10 to 15 m. As far as the long-term changes, this research figured out that the widths of channels were increased from about 40 m to more than 100 m first, because of the obstructing of tectonic uplifting; after 2003, it formed gorges quickly because of the process of deepening, widening and transportation, and the widths of channels were decreased to about 10 to 30 m. As far as the short-term changes, because there were no large rainfall and discharge events between the research period from July, 2011 to May, 2012, so the magnitudes of morphological changes were not large. On the top of the slopes, because they eroded directly by rainfall, and the rock types were mainly mudstone and shale, so the retreated ranges were larger, the largest average retreat range of the slopes were 0.74 m in the research period. At the bottom of the slopes, if they were in positions where the river eroded directly, the largest average retreat range would reached 0.39 m, but if they were not in positions where the river eroded directly, the changes were not large. In the middle parts of the slopes, the differences of the changes were large, and the positions of erosion and deposition processes were mainly controlled by slopes, but slopes may influenced by rock types and dip angles of rock formations indirectly. The mechanism of slope retreats was that after the river and rainfall eroding, the sandstone layers were often protrude the shale layers by differential erosion processes, therefore, the sandstone layers finally collapsed by gravity because of lacking support beneath, making the shale layers on the top and at the bottom of sandstone layers collapse easier.
This research finally established four types of channel slope changing models. However, the calculations of hydrological processes, the measurements of rock strengths and landforms under water level, and the weighed analyses of the impact factors of fluvial morphological changes all needed more analyses by further researches.
en
dc.description.provenanceMade available in DSpace on 2021-05-17T09:14:25Z (GMT). No. of bitstreams: 1
ntu-101-R99228001-1.pdf: 34926646 bytes, checksum: 3c7c4fb2aaaf6080eb679e3c3db130a8 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝.......................................................I
摘要......................................................II
目錄.......................................................V
圖目錄...................................................VII
表目錄....................................................IX
第一章 緒論................................................1
第一節 研究動機............................................1
第二節 研究目的............................................3
第二章 文獻回顧............................................4
第一節 河川地形變遷特性....................................4
第二節 構造作用與河川侵蝕作用..............................7
第三章 研究區概述.........................................12
第一節 研究區位置.........................................12
第二節 地形地質特性.......................................14
第三節 氣候概況...........................................21
第四節 水文特性...........................................28
第四章 研究架構與研究方法.................................36
第一節 研究架構...........................................36
第二節 研究流程...........................................38
第三節 歷年河道數化.......................................40
第四節 河道剖面繪製.......................................41
第五章 結果與討論.........................................50
第一節 大安溪峽谷河道數化結果.............................50
第二節 現地觀察結果.......................................60
第三節 河道橫剖面變遷.....................................73
第四節 河道地形變遷模式...................................93
第六章 結論與建議.........................................96
第一節 結論...............................................96
第二節 後續研究建議.......................................99
引用文獻.................................................101
附錄 大安溪峽谷各期航空照片..............................105
dc.language.isozh-TW
dc.title大安溪峽谷河川地形變遷之研究zh_TW
dc.titleThe Study on Fluvial Morphological Change of Daan Gorgeen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李建堂(Cheing-Tung Lee),任家弘(Chia-Hung Jen)
dc.subject.keyword河川地形變遷,大安溪峽谷,構造抬升,全測站儀,河道剖面,zh_TW
dc.subject.keywordFluvial Morphological Change,Daan Gorge,Tectonic Uplifting,Total Station,River Channel Profile,en
dc.relation.page106
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-08-16
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地理環境資源學研究所zh_TW
顯示於系所單位:地理環境資源學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf34.11 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved