請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63759完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 孫璐西(Lucy Sun Hwung) | |
| dc.contributor.author | Ying-Ting Chen | en |
| dc.contributor.author | 陳逸婷 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:18:24Z | - |
| dc.date.available | 2012-08-21 | |
| dc.date.copyright | 2012-08-21 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-17 | |
| dc.identifier.citation | 何承璋。2009。以Aβ聚集導致PC-12細胞氧化損傷之抑制與線蟲壽命延長為模式開發抗氧化與抗老化產品。國立台灣大學食品科技研究所。博士論文。台北市。
羅喬文。2008。食藥材萃出物及stilbenoisds化合物對Aβ聚集所導致的PC-12細胞凋亡之影響。國立台灣大學食品科技研究所。碩士論文。台北市。 蔡依潔。2011。數種天然物對大鼠初代皮質神經細胞的保護功效。國立台灣大學食品科技研究所。碩士論文。台北市。 侯怡卉。2010。數種天然物對於Aβ1-40引起的PC12及分化後PC12細胞死亡的保護功效。國立台灣大學食品科技研究所。碩士論文。台北市。 吳旻峰。2008。探討苯基偶氮苯磺胺類衍生物對Aβ1-42之結構相關神經毒性之影響。國立陽明大學生物藥學研究所。碩士論文。台北市。 Ahmed, M.; Davis, J.; Aucoin, D.; Sato, T.; Ahuja, S.; Aimoto, S.; Elliott, J.I.; Van Nostrand, W.E.; Smith, S.O. Structural conversion of neurotoxic amyloid-beta(1-42) oligomers to fibrils. Nat Struct Mol Biol. 2010 , 17, 561-7. Akiyama, H.; Barger, S.; Barnum, S.; Bradt, B.; Bauer, J.; Cole, GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy, S.G.; Griffin, W.S.; Hampel, H.; Hull, M.; Landreth, G.; Lue, L.; Mrak, R.; Mackenzie, I.R.; McGeer, PL.; O'Banion, M.K.; Pachter, J.; Pasinetti, G.; Plata-Salaman, C.; Rogers, J.; Rydel, R.; Shen, Y.; Streit, W.;Strohmeyer, R.; Tooyoma, I.; Van Muiswinkel, F.L.; Veerhuis, R.; Walker, D.; Webster, S.; Wegrzyniak, B.; Wenk, G.; Wyss-Coray, T. Inflammation and Alzheimer's disease. Neurobiol Aging. 2000, 21, 383-421 Alzheimer, A. Uber eine eigenartige Erkrankung der Hirnrinde. Allgemeine Z Psychiatrie Psychisch-Gerichtliche Med. 1907, 64, 146-148. Ashburn, T.T.; Han, H.; McGuinness, B.F.; Lansbury, P.T. Amyloid probes based on congo red distinguish between fibrils comprising different peptides. Chem. Biol. 1996, 3, 351-358. Bastianetto, S.; Ramassamy, C.; Dore, S.; Christen, Y.; Poirier, J.; Quirion, R. The Ginkgo biloba extract ( EGb 761) protects hippocampal neurons against cell death induced by beta-amyloid. Eur J Neurosci.2000, 6, 1882-90. Banker, G.; Goslin, K. In Culturing Nerve Cells, 2nd edition; Chapter 3. Culture of special cell types. Massachusetts institute of technology, Massachusetts,USA. 1998, 229-232. Behl, C.; Davis, J. B.; Lesley, R.; Schubert, D. Hydrogen peroxide mediates amyloid beta protein toxicity. Cell. 1994, 77, 817-827. Bernstein, S.L.; Dupuis, N.F.; Lazo, N.D.; Wyttenbach, T.; Condron, M.M.; Bitan, G.; Teplow, D.B.; Shea, J.E.; Ruotolo, B.T.; Robinson, C.V.; Bowers, M.T. Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer’s disease. Nat Chem. 2009, 1, 326-31. Broersen, K.; Rousseau, F.; Schymkowitz, J. The culprit behind amyloid beta peptide related neurotoxicity in Alzheimer's disease: oligomersize or conformation? Alzheimers Res Ther. 2010, 2, 12. Butterfield, D.A.; Boyd-Kimball, D. Amyloid β-peptide(1-42) contributes to the oxidative stress and neurodegeneration found in Alzheimer disease brain. Brain Pathol. 2004, 14, 426-32. Cao, Y. X.; Zhang, W; He, J.Y.; He, L.C.; Xu, C.B. Ligustilide induces vasodilatation via inhibiting voltage dependent calcium channel and receptor-mediated Ca2+ influx and release. Vascul Pharmacol. 2006, 45, 171-6. Carter, M.; Shieh, J. Guide to Research Techniques in Neuroscience. Chapter 13. Cell culture techniques. Elsevier, Massachusetts, USA. 2009, 281. Casserly, I.P.; Topol, E.J. Convergence of atherosclerosis and Alzheimer's disease: Cholesterol, inflammation, and misfolded proteins. Discov Med. 2004 , 4, 149-56. Chan, S.S.; Cheng, T.Y.; Lin, G. Relaxation effects of ligustilide and senkyunolide A, two main constituents of Ligusticum chuanxiong, in rat isolated aorta. J Ethnopharmacol. 2007, 111, 677-80. Chao, W.W.; Hong, Y.H.; Chen, M.L.; Lin, B.F. Inhibitory effects of Angelica sinensis ethyl acetate extract and major compounds on NF-κB trans-activation activity and LPS-induced inflammation. J Ethnopharmacol. 2010, 129, 244-9. Corder, E.H.; Saunders, A.M.; Strittmatter, W.J.; Schmechel, D.E. Gaskell, P.C.; Small, G.W. ; Roses, AD; Haines, J.L. ; Pericak-Vance, M.A. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science. 1993, 261, 921-923. Cruts, M.; Hendriks, L.;Van Broeckhoven C. The presenilin genes: a new gene family involved in Alzheimer’s disease pathology. Hum Mol Genet. 1996, 5, 1449-55. Dahlgren, K.N.; Manelli, A.M.; Stine, W. B. Jr ; Baker, L. K.; Krafft, G. A.; LaDu, M. J. Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. J Biol Chem. 2002, 35, 32046-53. Deng, S.; Chen, S.N.; Yao, P.; Nikolic, D.; van Breemen, R. B.; Bolton, J. L.; Fong, H. H.; Farnsworth, N. R.; Pauli, G. F. Serotonergic activity-guided phytochemical investigation of the roots of Angelica sinensis. J Nat Prod. 2006, 69, 536-41. Du, J.; Bai, B.; Kuang, X.; Yu, Y.; Wang, C.Y.; Ke, Y.; Xu, Y.; Tzang, A.H.; Qian, Z.M. Ligustilide inhibits spontaneous and agonists- or K+ depolarization- induced contraction of rat uterus. J Ethnopharmacol. 2006, 108, 54-8. Du, J.; Yu, Y.; Ke, Y.; Wang, C.; Zhu, L.; Qian, Z.M. Ligustilide attenuates pain behavior induced by acetic acid or formalin. J Ethnopharmacol. 2007, 1, 211-4. Edeas, M.; Khalfoun, Y.; Lazizi, Y.; Vergnes, L.; Labidalle, S.; Postaire, E.; Lindenbaum, A. Effect of the liposolubility of free radical scavengers on the production of antigen P24 from a HIV infected monocytic cell line. C R Seances Soc Biol Fil. 1995, 189, 367–73. Fernandez, M.A.; Saenz, M.T.; Garcia, M.D. Anti-inflammatory activity in rats and mice of phenolic acids isolated from Scrophularia frutescens. J Pharm Pharmacol. 1998, 10, 1183-6. Glenner,G.G.; Wong, C.W. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Bioph Res. Co.1984, 122,1131-1135. Goldgaber, D.; Lerman, M.I.; McBride, O.W.; Saffiotti,U. ; Gajdusek, D.C. Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer's disease. Science. 1987, 235, 877-880. Gorman, P.M.; Kim, S.; Guo, M.; Melnyk, R.A.; McLaurin, J.; Fraser, P.E.; Bowie, J.U.; Chakrabartty, A. Dimerization of the transmembrane domain of amyloid precursor proteins and familial Alzheimer'sdisease mutants. BMC Neurosci. 2008, 9, 17. Graf, E. Antioxidant potential of ferulic acid. Free Radical Biol. Med. 1992, 13, 435- 448. Grossman, M. Primary progressive aphasia: clinicopathological correlations. Nature Reviews Neurology. 2010, 6, 88-97 Grundke-Iqbal, I.; Iqbal, K.; Tung, Y.C.; Quinlan, M.; Wisniewski, H.M.; Binder, L.I. Abnormal phosphorylation of the microtubule-associated protein X (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA.1986, 83, 4913-4917. Haass, C.; Selkoe, D.J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide. Nat Rev Mol Cell Bio. 2007, 8, 101-112. Hensley, K.; Carney, J. M.; Mattson, M. P.; Aksenova, M.; Harris, M.; Wu, J. F.; Floyd, R. A.; Butterfield, D. A. A model for β-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer's disease. Proc Natl Acad Sci USA. 1994, 91, 3270–3274. Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science.2002, 297, 353-356 . Hardy, M.L. Herbs of special interest to women. J Am Pharm Assoc ( Wash ). 2000, 40, 234-42. Hardy, J. Toward Alzheimer therapies based on genetic knowledge. Annu Rev Med. 2004, 55, 15-25. Harper,J.D. Models of amyloid seeding in alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem. 1997, 66, 385–407. Hatano, R.; Takano, F.; Fushiya, S.; Michimata, M.; Tanaka, T.; Kazama, I.; Suzuki, M.; Matsubara, M.Water-soluble extracts from Angelica acutiloba Kitagawa enhance hematopoiesis by activating immature erythroid cells in mice with 5-fluorouracil-induced anemia. Exp Hematol. 2004, 32, 918-24. Hirabayashi, T.; Ochiai, H.; Sakai, S.; Nakajima, K.; Terasawa, K. Inhibitory effect of ferulic acid and isoferulic acid on murine interleukin-8 production in response to influenza virus infections in-vitro and in-vivo. Planta Med .1995, 61, 221–226 . Ho, C.C.; Kumaran, A.; Hwang, L.S. Bio-assay guided isolation and identification of anti-Alzheimer active compounds from the root of Angelica sinensis. Food Chem. 2009, 114, 246-252. Hou, Y. Z.; Zhao, G.R.; Yang, J.; Yuan, Y.J.; Zhu, G.G.; Hiltunen, R. Protective effect of Ligusticum chuanxiong and Angelica sinensis on endothelial cell damage induced by hydrogen peroxide. Life Sci. 2004, 75, 1775-86. Iwata, N.; Mizukami, H.; Shirotani, K.; Takaki,Y.; Muramatsu, S.; Lu, B.; Gerard, N.P.; Gerard, C.; Ozawa, K.; Saido. T.C. Presynaptic localization of neprilysin contributes to efficient clearance of amyloid-beta peptide in mouse brain. J Neurosci. 2004, 24, 991-8. Kagan, B.L. Amyloidosis and protein folding. Science. 2005 , 307, 42-3. Kamino, K.; Orr, H.T.; Payami, H.; Wijsman, E. M.; Alonso, M. E.; Pulst, S. M.; Anderson, L.; O'dahl, S.; Nemens, E.; White, J. A. Linkage and mutational analysis of familial Alzheimer disease kindreds for the APP gene region. Am J Hum Genet. 1992, 5, 998-1014. Kanski, J.; Aksenova, M. ; Stoyanova, A.; Butterfield D. A.. Ferulic acid antioxidant protection against hydroxyl and peroxyl radicaloxidation in synaptosomal and neuronal cell culture systems in vitro: structure– activity studies. J Nutr Biochem. 2002 ,13, 273–281 Kaul, A.; Khanduja, K.L. Polyphenols inhibit promotional phase of tumorigenesis: relevance of superoxide radicals. Nutr Cancer—an International Journal , 1998, 32, 81–85. Kawabata, K.; Yamamoto, T.; Hara, A.; Shimizu, M.; Yamada, Y.; Matsunaga, K.; Tanaka, T.; Mori, H.; Modifying effects of ferulic acid on azoxymethane- induced colon carcinogenesis in F344 rats. Cancer Lett. 2000 ,157,15–21. Kawahara, M.; Negishi-Kato, M. Link between Aluminum and the Pathogenesis of Alzheimer's Disease: The Integration of the Aluminum and Amyloid Cascade Hypotheses. Int J Alzheimers Dis. 2011, 8, 276393. Kawahara, M.; Negishi-Kato, M.; Sadakane, Y. Calcium dyshomeostasis and neurotoxicity of Alzheimer's beta-amyloid protein. Expert Rev Neurother. 2009, 9, 681-93. Kim, H. K.; Jeong, T. S.; Lee, M. K.; Park, Y. B.; Choi, M. S. Lipid lowering efficacy of hesperetin metabolites in high-cholesterol fed rats. Clin Chim Acta: Int J Clin Chem. 2003, 327, 129–137. Krieglstein, J.; Beck, T.; Seibert, A. Influence of an extract of Ginkgo biloba on cerebral blood flow and metabolism. Life Sci.1986, 39, 2327-2334. Kuang X., Du J.R., Chen Y.S., Wang J., Wang Y.N. Protective effect of Z-ligustilide against amyloid β-induced neurotoxicity is associated with decreased pro-inflammatory markers in rat brains. Pharmacol Biochem Be. 2009, 92, 635-641. Kumar, S.; Walter, J. Phosphorylation of amyloid beta (Aβ) peptides - a trigger for formation of toxic aggregates in Alzheimer's disease. Aging (Albany NY). 2011, 3, 803-12. LaFerla, F.M. Calcium dyshomeostasis and intracellular signalling in Alzheimer's disease. Nat. Rev. Neurosci. 2002, 3, 862-872. LaFerla, F.M.; Green, K. N.; Oddo, S. Intracellular amyloid-β in Alzheimer's disease. Nat. Rev. Neurosci. 2007, 8, 499-509. Lao, S.C.;Li, S.P.; Kan, K.K.W.; Wan, J.B.; Wang, Y. T.; Dong, T. T. X.; Tsim K. W. K. Identification and quantification of 13 components in Angelica sinensis (Danggui) by gas chromatography–mass spectrometry coupled with pressurized liquid extraction. Anal Chim Acta. 2004, 22, 131-137. Lau, C.B.; Ho, T.C.; Chan, T.W.; Kim, S.C.Use of dong quai (Angelica sinensis) to treat peri- or postmenopausal symptoms in women with breast cancer: is it appropriate? Menopause. 2005, 12, 734-40. Liang, M.J.; He, L.C.; Yang, G.D. Screening analysis and in vitro vasodilatation of effective components from Ligusticum chuanxiong. Life Sci. 2005, 78, 128. Lin, L.Z.; He, X.G.;Lian, L.Z.; King, W.; Elliott, J. Liquid chromatographic lectrospray mass spectrometric study of the phthalides of Angelica sinensis and chemical changes of Z-ligustilide. J Chromatogr A. 1998, 810, 71-79. Liu, S. P.; Dong, W.G.; Wu, D. F.; Luo, H. S.; Yu, J. P. Protective effect of Angelica sinensis polysaccharide on experimental immunological colon injury in rats. World J Gastroenterol. 2003, 12, 2786-90. Lo, H.H.; Chung , J.G. The effects of plant phenolics, caffeic acid, chlorogenic acid and ferulic acid on arylamine- N- acetyltransferase activities in human gastrointestinal microflora. Anticancer Res.1999, 19, 133–139. Lu, G.H.; Chan, K.; Chan, C.L.; Leung, K.; Jiang, Z.H.; Zhao, Z.Z. Quantification of ligustilides in the roots of Angelica sinensis and related umbelliferous medicinal plants by high-performance liquid chromatography and liquid chromatography-mass spectrometry. J Chromatogr A. 2004,1-2, 101-7. Lu, Q.; Qiu, T.Q.; Yang, H. Ligustilide inhibits vascular smooth muscle cells proliferation. Eur J Pharmacol. 2006, 542, 136-40. Luo, Y.; Smith, J.V.; Paramasivam, V.; Burdick, A.; Curry, K.J.; Buford, J.P.; Khan, I.; Netzer, W.J.; Xu, H.; Butko, P. Inhibition of amyloid-beta aggregation and caspase-3 activation by the Ginkgo biloba extract EGb761. Proc Natl Acad Sci USA. 2002, 19, 12197-202. Maitra, I.; Marcocci, L.; Droy-Lefaix, M. T.; Packer, L. Peroxyl radical scavenging activity of Ginkgo biloba extract EGb 761. Biochem Pharmacol. 1995, 49, 1649-1655. Masters, C. L.; Simms, G.; Weinman, N. A.; Multhaup, G.; McDonald, B. L.; Beyreuther, K Amyloid plaque core protein in Alzheimer's disease and Down syndrome. Proc Natl Acad Sci USA. 1985, 12, 4245-9. Mattson, M. P. Cheng, B.; Davis, D.; Bryant, K.; Lieberburg, I.; Rydel, R. E. beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J Neurosci. 1992 , 2, 376-89. Mazaro-Costa, R.; Andersen, M.L.; Hachul, H.; Tufik, S. Medicinal plants as alternative treatments for female sexual dysfunction: utopian vision or possible treatment in climacteric women? J Sex Med. 2010, 7, 3695-714. McGeer, P.L.; McGeer, E.G. Inflammation, autotoxicity and Alzheimer disease. Neurobiol Aging. 2001, 22, 799-809. McLean,C.A.; Cherny,R.A.; Fraser,F.W.; Fuller, S. J.; Smith, M.J.; Beyreuther,K.; Bush,A.I.; and Masters,C.L. Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Ann Neurol. 1999, 46,860–866. Mori, H,; Kawabata, K.; Yoshimi, N.; Tanaka, T.; Murakami, T.; Okada, T.; Murai, H. Chemopreventive effects of ferulic acid on oral and rice germ on large bowel carcinogenesis. Anticancer Res. 1999, 19, 3775–3778. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983, 65, 55–63. Octave, J.N.; Rasool, C.G.; de Sauvage, F.; Vitek, S., Bartus, R.T., Beer, B.; Ashton, R.A.; Macq, A.F.; Maloteaux J.M.; Blume, A.; Vitek, M.P. Absence of mutation in the beta-amyloid cDNA cloned from the brain of 3 patients with sporadic Alzheimer's disease. Mol Brain Res. 1988, 4, 121-131. Ou, S.; Y, Li. ; K, Gao. A Study on scavenging activity of wheat bran dietary fiber for free radical. Acta Nutr Sin.1999, 21, 191–194 . Ozaki, Y. Anti-inflammatory effect of tetramethylpyrazine and ferulic acid. Chem Pharm Bull (Tokyo). 1992, 40, 954-6. Page, R.L.; Lawrence, J.D. Potentiation of warfarin by dong quai. Pharmacotherapy. 1999, 19, 870–876. Peng, H.Y.; Du, J.R,.; Zhang, G.Y.; Kuang, X.; Lin, Y. X.; Qian, Z. M. Neuroprotective effect of Z-ligustilide against permanent focal ischemic damage in rats. Biol Pharm Bull 2007, 30, 309-12. Perry, E.K.; Pickering, A.T.; Wang, W.W.; Houghton, P.; Perry, N.S. Medicinal plants and Alzheimer's disease: Integrating ethnobotanical and contemporary scientific evidence. J Altern Complement Med. 1998, 4, 419-28. Ou, S.; Kwok, K. C. Ferulic acid: pharmaceutical functions, preparation and applications in foods. J Sci Food Agric. 2004, 84, 1261-1269. Qureshi, M.J.; Blain. J.A. Antioxidant activity in tomato extracts. Nucleus. 1976, 13, 29–33. Roher A.E.; Lowenson J.D.; Clarke S.; Woods A.S.; Cotter R.J.; Gowing E.; Ball M.J. beta-Amyloid1-42 is a major component of cerebrovascular amyloid deposits: implications for the pathology of Alzheimer disease. Proc Natl Acad Sci USA. 1993, 22, 10836- 40. Roos, R.A.; Cruts, M. From gene to disease; presenilins and Alzheimer disease. Ned Tijdschr Geneeskd. 2001,145, 2027-9. Sakai, S.; Kawamata, H.; Kogure, T.; Mantani, N.; Terasawa, K.; Umatake, M.; Ochiai, H. Inhibitory effect of ferulic acid and isoferulic acid on the production of macrophage inflammatory protein-2 in response to respiratory syncytial virus infection in RAW264.7 cells. Mediat Inflamm. 1999, 8, 173-175. Saura, J. Microglial cells in astroglial cultures: a cautionary note. J neuroinflamm. 2007, 4, 26. Scott, B. C.; Butler, J.; Halliwell, B.; Aruoma, O. I. Evaluation of the antioxidant actions of ferulic acid and catechins. Free Radic Res Commun. 1993, 4, 241-53. Seubert, P.;Vigo-Pelfrey, C.; Esch, F.; Lee, M.; Dovey, H.; Davis, D.; Sinha, S.; Schlossmacher, M.; Whaley, J.; Swindlehurst, C. Isolation and quantification of soluble Alzheimer's β-peptide from biological fluids. Nature. 1992 , 359, 325-7. Smith, P. F.; Maclennan, K.; Darlington,C.L. The neuroprotective properties of the Ginkgo biloba leaf: a review of the possible relationship to platelet- activating factor ( PAF ). J Ethnopharmacol.1996, 50, 131-139. Song, Z.H.; Ji, Z.N.; Lo, C.K.; Dong, T.T.; Zhao, K.J.; Li, O.T.; Haines, C.J.; Kung, S.D.; Tsim, K.W. Chemical and biological assessment of a traditional chinese herbal decoction prepared from Radix Astragali and Radix Angelicae Sinensis: orthogonal array design to optimize the extraction of chemical constituents. Planta Med. 2004, 70, 1222-7. Soreghan, B.; Kosmoski, J.; Glabe,C. Surfactant properties of Alzheimer’s ap-peptides and the mechanism of amyloid aggregation. J Biol Chem. 1994, 269, 28551-4. Suzuki, N.; Cheung, T.T.; Cai, X.D.; Odaka, A.; Otvos, L.; Eckman, C.; Golde, T.E.; Younkin, S.G. An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta APP717) mutants. Science. 1994, 264, 1336-1340 . Tabner, B. J.; Mayes, J.; Allsop, D. Hypothesis: soluble Aβ oligomers in association with redox-active metal ions are the optimal generators of reactive oxygen species in Alzheimer's disease. Int J Alzheimers Dis. 2011, 14, 546380. Terry, R.D.; Masliah, E.; Salmon, D.P.; Butters, N.; DeTeresa, R.; Hill, R.; Hansen, L.A.; Katzman, R. Physical basis of cognitive alterations in Alzheimer 's disease : synapse loss is the major correlate of cognitive impairment. Ann Neurol. 1991, 30, 572-80. Tieraona, L.D. Menopause: a review of botanical dietary supplements. Am J Med. 2005, 118, 98-108. Vassar1, R.; Bennett1, B.D.; Babu-Khan1, S.; Kahn,S.; Mendiaz1, E.A.; Denis1, P.; Teplow, D.B.; Ross, S.; Amarante, P.; Loeloff, R.; Luo, Y.; Fisher, S.; Fuller, J.; Edenson, S.; Lile, J.; Jarosinski, M.A.; Biere, A.L.; Curran, E.; Burgess, T.; Louis, J.C.; Collins, F.; Treanor, J.; Rogers, G.; Citron, M. Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science. 1999, 286, 735-41. Vigo-Pelfrey, C.; Lee, D.; Keim, P.; Lieberburg, I.; Schenk, D.B. Characterization of β-amyloid peptide from human cerebrospinal fluid. J Neurochem. 1993 , 61, 1965-8. Vitek, M.P.; Rasool, C. G.; de Sauvage, F.; Vitek, S. M.; Bartus, R. T.; Beer, B.; Ashton, R. A.; Macq, A. F.; Maloteaux, J. M.; Blume, A. J. Absence of mutation in the beta-amyloid cDNAs cloned from the brains of three patients with sporadic Alzheimer's disease. Brain Res. 1988, 2, 121-31. Wagner, H.; Bauer, R.; Xiao, PG; Chen, JM; Michler, G. Chinese drug monographs and analysis: radix Astragali (huangqi). Verlag fur Ganzheitliche Medizin, 1997, 3, 1−17. Wang, Y. L.; Liang, Y. Z.; Chen, B. M.; He, Y. K.; Li, B. Y.; Hu, Q. N. LC-DAD-APCI-MS-based screening and analysis of the absorption and metabolite components in plasma from a rabbit administered an oral solution of danggui. Anal Bioanal Chem. 2005, 2, 245-54. Xin, W.; Wei, T.; Chen, C.; Ni, Y.; Zhao, B.; Hou, J. Mechanisms of apoptosis in rat cerebellar granule cells induced by hydroxyl radicals and the effects of EGb761 and its constituents. Toxicology. 2000, 148, 103–110 Xu, L.N.; Xu, D.C.; Zhang, Z.J. Investigation on the mechanism of sodium ferulate in lowering blood platelet aggregation: effect of sodium ferulate on equilibrium of TXA2 and PGI2.Acta Acad Med Sinicae .1984, 6, 414 –417. Yan, J.J.; Cho, J.Y.; Kim, H.S.; Kim, K.L.; Jung, J.S.; Huh, S.O.; Suh, H.W.; Kim, Y. H.; Song, D. K. Protection against b-amyloid peptide toxicity in vivo with long-term administration of ferulic acid. Brit J Pharmacol. 2001,133, 89 – 96. Yan, R.; Ko, N.L.; Li S.L.; Tam Y.K.; Lin, G. Pharmacokinetics and metabolism of ligustilide, a major bioactive component in Rhizoma chuanxiong, in the rat. J Pharmacol Exp Ther. 2008, 36, 400–408. Yan, R.; Li S.L.; Chung H.S.; Tam Y.K.; Lin, G. Simultaneous quantification of 12 bioactive components of Ligusticum chuanxiong Hort. by high-performance liquid chromatography. J Pharmaceut Biomed. 2005 , 37, 87–95. Yankner, B.A.; Duffy, L.K.; Kirschner, D.A. Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science. 1990, 250, 279-282. Yu, Y.; Du, J.R.; Wang, C.Y.; Qian. Z.M. Protection against hydrogen peroxide-induced injury by Z-ligustilide in PC12 cells. Exp Brain Res. 2008, 184, 307-12. Zhao, K.J.; Dong, T.T.; Tu, P.F.; Song, Z.H.; Lo, C.K.; Tsim K.W. Molecular genetic and chemical assessment of radix Angelica ( Danggui ) in China. J Agric Food Chem. 2003, 51, 2576-2583. Zhang, H.; Chen, S.; Deng, X.; Yang, X.; Huang, X. Danggui-Buxue-Tang decoction has an anti-inflammatory effect in diabetic atherosclerosis rat model. Diabetes Res Clin Pract. 2006, 2, 194-6. Zhang, L.; Du, J.R.; Wang, J.; Yu, D.K.; Chen, Y.S.; He, Y.; Wang, C.Y. Z- ligustilide extracted from Radix Angelica Sinensis decreased platelet aggregation induced by ADP ex vivo and arterio-venous shunt thrombosis in vivo in rats. Yakugaku Zasshi. 2009, 129, 855-9. Zhang, X.; Xiao, H.; Xu, Q.; Li, X.; Wang, J.; Liang, X. Characterization of phthalides in Ligusticum chuanxiong by liquid chromatographic-atmospheric pressure chemical ionization-mass spectrometry. J Chromatogr Sci. 2003, 8, 428-33. Zhang, Z.; Zhao, R.; Qi, J.; Wen, S.; Tang, Y.; Wang, D. Inhibition of glycogen synthase kinase-3β by Angelica sinensis extract decreases β-amyloid induced neurotoxicity and tau phosphorylation in cultured cortical neurons. J Neurosci Res. 2011, 89, 437-447. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63759 | - |
| dc.description.abstract | 阿茲海默症 (Alzheimer’s disease , AD) 是一漸進式神經退化性疾病,也是最常見的一種失智症。病徵包括記憶力喪失、理解及語言能力下降、行走及吞嚥困難,最終將喪失獨立生活的能力。由神經病理學來看,AD患者腦中會形成類澱粉斑塊( amyloid plaque ) 及神經糾結 ( neurofibrillary tangles ) 的沉積。近年來許多研究指出,分子小而具水溶性的β-類澱粉胜肽寡聚合物 ( Aβ1-42 oligomers ) 是導致AD的主因。由於目前並沒有根治AD的方法,因此本研究以「Aβ-42寡聚合物誘發神經細胞毒性」為模式,希望能研究出有效保護神經細胞抗Aβ-42寡聚合物毒性進而預防AD的天然中草藥。根據本研究室過去實驗指出,當歸 ( Anglica sinensis ) 甲醇萃出物 ( As-M ) 在dPC 12細胞模式具有抗Aβ1-40寡聚合物毒性之效果。文獻指出當歸中所含主要的活性成分Z-藳本內酯 ( Z-ligustilide, Z-LIG ) 以及阿魏酸 ( Ferulic acid, FA ) 皆具有保護神經細胞的效果。因此本實驗一方面製備純化的Z-LIG,並以HPLC分析當歸甲醇萃出物( As-M )中Z-LIG及FA含量,同時以初代大鼠腦皮質細胞為模式,以As-M、Z-LIG和FA,等樣品進行抗Aβ-42寡聚合物毒性效果之探討,並研究其可能機制。實驗結果顯示,抑制Aβ-42寡聚合物毒性效果最好的樣品是75 μM FA,其抑制率為28.6%;其次是25 μM Z-LIG,抑制率為24.0%;而As-M在10 ppm時保護效果最好,但與Aβ-42寡聚合物處理組相比沒有顯著差異。為探討兩者是否具協同作用,進一步將Z-LIG與FA混和後,進行抑制Aβ1-42寡聚合物毒性之試驗,結果顯示兩者不具協同作用。續以Aggrregated human Aβ ELISA kit分析有效樣品是否對Aβ1-42寡聚合物的產生有抑制效果,發現Z-LIG可有效降低(51 )% Aβ1-42寡聚合物的產生,而FA則可降低23.3% ,與Aβ1-42寡聚合物組相比沒有顯著差異。雖Z-LIG可有效降低(51 )% Aβ1-42寡聚合物的產生,但在高劑量下對保護神經細胞抗Aβ1-42寡聚合物毒性之效果較差,推測由於在培養液中溶解度甚低,致使無法有效保護神經細胞;而FA雖能有效抗Aβ1-42寡聚合物毒性,但卻無法有效減少Aβ1-42寡聚合物之產生,推測其對神經細胞之保護效果,可能來自其他機制。 | zh_TW |
| dc.description.abstract | Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline in memory, orientation, judgment, and reasoning; it is also the most common cause of dementia among the elderly. Neuropathologically, it is characterized by the accumulation of extracellular plaques and intracellular neurofibrillary tangles (NFTs). Plaques are mainly comprised of a small peptide called amyloid-β (Aβ),and neurofibrillary tangles are consisting of aggregates of hyperphosphorylated tau protein. Recent researches suggested that soluble oligomers may be the aggregating species responsible for Aβ neurotoxicity. Because there is no known cure for AD, developing a prevention of AD is important. Therefore, the objective of this study is to find potential phytochemicals that can protect the neuron against Aβ-induced toxicity. Methanol extract of Anglica sinensis (As-M) was proven to have protective potential in dPC12 cell model against Aβ-induced toxicity in our laboratory. Z-ligustilide (Z-LIG) is thought to be the most biologically active component in Anglica sinensis. Ferulic acid is a phenolic compound contained in Angelica sinensis, has been demonstrated that long-term administration of ferulic acid (FA) induces resistance to Aβ1-42 toxicity in the brain. We plan to use As-M and mixtures of the two compounds to evaluate their potential neuroprotective effect against Aβ-induced toxicity in primary rat cortical neurons by assessing the cell viability with MTT colorimetric assay and further investigate their mechanism of action. FA (75 μM) and Z-LIG (25 μM) showed significant protective effect to primary rat cortical neurons against Aβ1-42 toxicity, their inhibitory ratios were 28.6% and 24.0%, respectively. But As-M did not show significant protective effect against Aβ1-42 toxicity. Therefore, we mixed FA and Z-LIG to test their protective effect to primary rat cortical neurons. Our results suggested that Z-LIG and FA did not show a synergistic effect in this regard. In aggrregated human Aβ ELISA assay, EGb761, Z-LIG and FA were found to reduce the production of Aβ1-42 oligomers, indicating that these compounds may protect neuron through accelerating Aβ assembly. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:18:24Z (GMT). No. of bitstreams: 1 ntu-101-R99641013-1.pdf: 4811920 bytes, checksum: 1df7997099ceda6a0c5f5a666a30550d (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 謝誌 I
中文摘要 III Abstract V 縮寫表 VII 目錄 VII 圖次 XIII 表次 XIV 壹、前言 1 貳、文獻整理 一、阿茲海默症之發展與病理特徵 3 二、β- 類澱粉胜肽 ( β- amyloid peptide, Aβ ) 5 三、類澱粉胜肽連鎖反應假說 ( Amyloid cascade hypothesis ) 7 四、Aβ之聚合作用 ( Aggregation ) 及其細胞毒性 9 五、以初代神經細胞 ( Primary cortical neurons ) 作為阿茲海默症研究模式之 探討 16 六、實驗材料之介紹 (一)、銀杏葉萃取物 ( Ginkgo biloba extract, EGb761 ) 19 (二)、當歸 ( Anglica sinensis ) 21 (三)、Z-藁本內酯 ( Z- Ligustilide ) 22 (四)、阿魏酸 ( Ferulic acid ) 23 參、研究目的及架構 一、研究目的 24 二、實驗架構 25 肆、材料與方法 一、實驗材料 (一)、實驗樣品 27 (二)、大鼠初代腦皮質神經細胞 ( Rat primary cortical neurons ) 27 (三)、試劑與試藥 1. β-amyloid1-42 ( Aβ1-42 ) 28 2. 細胞培養之試劑與藥品 28 3. 溶劑. 29 4. 層析材料及內標準品. 29 5. 其他藥品 30 6. Human aggregated Aβ ELISA kit 30 (四)、裝置與儀器設備 1. 化學分析儀器設備 30 2. 細胞實驗相關儀器設備及耗材. 31 二、實驗方法 (一)、細胞實驗用溶液配方 33 (二)、樣品配製 34 (三)、當歸甲醇萃出物(As-M)之製備 34 (四)、Z-藁本內酯 ( Z-Ligustilide ) 之矽膠管柱層析 34 (五)、當歸甲醇萃出物(As-M)中Z-藁本內酯( Z-ligustilide ) 與阿魏酸 ( Ferulic acid) 之定量分析 35 (六)、大鼠初代腦皮質神經細胞之分離與培養 1. 細胞培養皿之塗覆 ( Coating of cell culture plates ) 36 2. 大鼠初代腦皮質神經細胞取得及培養 ( Isolation and culturing of primary neurons ) 37 (七)、Aβ 1-42定量與聚集 40 (八)、以大鼠初代腦皮質神經細胞為模式之細胞試驗 1. 類澱粉胜肽寡聚合物之毒性試驗 40 2. 樣品之毒性試驗 40 3. 樣品抗Aβ1-42寡聚合物毒性之保護試驗 40 4. 細胞存活率之測定 40 (九)、類澱粉胜肽 ( β-amyloid, Aβ ) 寡聚合物含量之測定 40 三、數據統計與分析 44 伍、結果與討論 一、Aβ1-42寡聚合物對初代神經細胞之毒性 45 二、銀杏葉萃取物 (Ginkgo biloba extract, EGb761) 對初代神經細胞抗Aβ1-42寡聚合物毒性之保護效果 48 三、當歸甲醇萃出物(As-M)中Z-藁本內酯( Z-ligustilide ) 及阿 魏酸 ( ferulic acid )之定量分析 54 四、樣品對初代神經細胞抗Aβ1-42寡聚合物毒性之保護效果 (一)、當歸甲醇萃出物 ( As-M ) 56 (二)、阿魏酸 ( Ferulic acid ) 60 (三)、Z-藳本內酯 ( Z-Ligustilide ) 64 (四)、阿魏酸( Ferulic acid )與Z-藳本內酯( Z-Ligustilide )之混和物 69 五、樣品對初代神經細胞抗Aβ1-42寡聚合物毒性之機制 77 陸、結論 81 柒、參考文獻 83 | |
| dc.language.iso | zh-TW | |
| dc.subject | β-類澱粉寡聚合物 | zh_TW |
| dc.subject | 阿茲海默症 | zh_TW |
| dc.subject | 阿魏酸 | zh_TW |
| dc.subject | 本內酯 | zh_TW |
| dc.subject | Z-藁 | zh_TW |
| dc.subject | 當歸 | zh_TW |
| dc.subject | ferulic acid | en |
| dc.subject | amyloid-β (Aβ) | en |
| dc.subject | primary rat cortical neuron | en |
| dc.subject | Angelica sinensis | en |
| dc.subject | Z-ligustilide | en |
| dc.subject | Alzheimer’s disease (AD) | en |
| dc.title | 探討當歸甲醇萃出物及其活性成分對大鼠腦皮質神經細胞之保護效果 | zh_TW |
| dc.title | Neuroprotective Effects of the Methanol Extract of Angelica sinensis and Its Bioactive Components Against Aβ-induced Toxicity in Rat Cortical Neurons | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蕭永基(Young-Ji Shiao),張基煌(Chi-Huan Chang),魏國晉(Guor-Jien Wei),何其儻(Chi-Tang Ho) | |
| dc.subject.keyword | 阿茲海默症,β-類澱粉寡聚合物,當歸,Z-藁,本內酯,阿魏酸, | zh_TW |
| dc.subject.keyword | Alzheimer’s disease (AD),amyloid-β (Aβ),primary rat cortical neuron,Angelica sinensis,Z-ligustilide,ferulic acid, | en |
| dc.relation.page | 92 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-17 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 4.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
