Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 昆蟲學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63712
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許如君
dc.contributor.authorDi-Jye Houen
dc.contributor.author侯廸傑zh_TW
dc.date.accessioned2021-06-16T17:17:01Z-
dc.date.available2017-08-27
dc.date.copyright2012-08-27
dc.date.issued2012
dc.date.submitted2012-08-18
dc.identifier.citationAdams PS. 2007. Data analysis and reporting. pp 39-62. In: Dorak MT (ed). Real-time PCR. Taylor & Francis Press, New York.
Ahmad M, McCaffery AR. 1999. Penetration and metabolism of trans-cypermethrin in a susceptible and a pyrethroid-resistant strain of Helicoverpa armigera. Pestici Biochem Physiol 65: 6-14.
Ahmed CMI, Ware DH, Lee SC, Patter CD, Ferrer-Montiel AV, Schinder AF, McPherson JD, Wagner-McPherson CB, Wasmuth JJ, Evans GA. 1992. Primary structure, chromosomal localization, and functional expression of a voltage-gated sodium channel from human brain. Proc Natl Acad Sci USA 89: 8220-8224.
Ahmed S, Wilkins RM. 2002. Studies on some enzymes involved in insecticide resistance in fenitrothion-resistant and -susceptible strains of Musca domestica L. (Dipt, Muscidae). J Appl Entomol 126: 510-516.
Aketarawong N, Bonizzoni M, Thanaphum S, Gomulski LM, Gasperi G, Malacrida AR, Gugliemino CR. 2007. Inferences on the population structure and colonization process of the invasive oriental fruit fly, Bactrocera dorsalis (Hendel). Mol Ecol 16: 3522-3532.
Anderson PAV, Holman MA, Greenberg RM. 1993. Deduced amino acid sequence of a putative sodium channel from the scyphozoan jellyfish Cyanea capillata. Proc Natl Acad Sci USA 90: 7419-7423.
Baek JH, Clark JM, Lee SH. 2010. Cross-strain comparison of cypermethrin-induced cytochrome P450 transcription under different induction conditions in diamondback moth. Pestici Biochem Physiol 96: 43-50.
Bbernard C, Philogene BJR. 1993. Insecticide synergists: role, importance, and perspectives. J Toxicol Environ Health Sci 38: 199-223.
Benne R, Van dBJ, Brakenhoff JP, Sloof P, Van BJ Tromp MC. 1986. Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 46: 819-826.
Bingham G, Strode C, Tran L, Khoa PT, Jamet HP. 2011. Can piperonyl butoxide enhance the efficacy of pyrethroids against pyrethroid-resistant Aedes aegypti? Trop Med Int Health 16: 492-500.
Bloomquist JR, Miller TA. 1985. Carbofuran triggers flight motor output in pyrethroid-blocked reflex pathway of the house-fly. Pestici Biochem Physiol 23: 247-255.
Bradford MM. 1976. Rapid and sensitive method for quantiation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72: 248-254.
Brown TM, Payne GT. 1988. Experimental selection for insecticide resistance. J Econ Entomol 81: 49-56.
Busch-Petersen E, Wood RJ. 1983. Insecticide resistance as a prospective candidate for the genetic sexing of the Mediterranean fruit fly, Ceratitis capitata (Wied.). pp 182-189. In: Cavalloro R (ed). Fruit Flies of Economic Importance. Balkema Press, Rotterdam.
Busvine JR. 1951. Mechanism of resistance to insecticide in housefly. Nature 168: 193-195.
Busvine JR. 1979. Recommend methods for the detection and measurement of resistance of agricultural pests to pesticides: method for tephritid fruit flies FAO Method NO. 20. FAO Plant Prot Bull 27: 40-43.
Byerly L, Leung HT. 1988. Ionic current of Drosophila neurons in embryonic cultures. J Neurosci 8: 4379-4393.
Campbell PM, Robi GCD, Court LN, Dorrian SJ, Oakeshott JG. 2003. Developmental expression and gene/enzyme identifications in the alpha esterase gene cluster of Drosophila melangaster. Insect Mol Biol 12: 459-471.
Casida JE. 1980. Pyrethrum flowers and pyrethroid insecticides. Environ Health Perspect 34: 189-202.
Casida JE, Gammon DW, Glickmam AH, Lawrence LJ. 1983. Mechanisms of selective action of pyrethroid insecticides. Annu Rev Pharmacol Toxicol 23: 413-38.
Casida JE, Quistad GB. 1998. Golden age of insecticide research: past, present, or future? Annu Rev Entomol 43: 1-16.
Casida JE, Ruzo LO. 1980. Metabolic chemistry of pyrethroid insecticides. Pestic Sci 11, 257-269.
Catterall WA, Goldin AL, Waxman SG. 2003. International union of pharmacology international union of pharmacology. XXXIX compendium of voltage-gated ion channels: sodium channels. Pharmacol Rev 55: 575-578.
Cetin H, Demir E, Kocaoglu S, Kaya B. 2010. Insecticidal activity of some synthetic pyrethroids with different rates of piperonyl butoxide (PBO) combinations on Drosophila melanogaster (Diptera: Drosophilidae). Ekoloji 19: 27-32.
Chang C, Shen WK, Wang TT, Lin YH, Hsu EL, Dai SM. 2009. A novel amino acid substitution in a voltage-gated sodium channel is associated with knockdown resistance to permethrin in Aedes aegypti. Insect Biochem Mol Biol 39: 272-278.
Chiou HZ. 1984. The effect of environmental factors for methyl egugenol containing naled to trap and kill oriental fruit flies, Bactrocera dorsalis. Plant Prot Bull 26: 355-364. (in Chinese)
Chiu HT. 1978. Studies on the improvement of mass rearing for oriental fruit sies. Plant Prot Bull 20: 87-92.
Christenson LD, Foote RH. 1960. Biology of fruit flies. Annu Rev Entomol 5: 171-192.
Chuman H, Goto S, Karasawa M, Sasaki M, Nagashima U. 2000a. Three-dimensional structure-activity relationships of synthetic pyrethroids: 1. Similarity in bioactive conformations and their structure-activity pattern. Quant Struct-Act Rel 19: 10-21.
Chuman H, Goto S, Karasawa M, Sasaki M, Nagashima U. 2000b. Three-dimensional structure-activity relationships of synthetic pyrethroids: 2. Three-dimensional and classical QSAR stidies. Quant Struct-Act Rel 19: 455-466.
Chung H, Sztal T, Pasricha S, Sridhar M, Batterham P, Daborn PJ. 2009. Characterization of Drosophila melanogaster cytochrome P450 genes. PNAS 10: 1073-1079.
Couso-Ferrer F, Arouri R, Beroiz B, Perera N, Cervera A, Navarro-Lopis V, Castanera P, Hernandez-Crespo P, Ortego F. 2011. Cross-resistance to insecticides in a malathion-resistant strain of Ceratitis capitata (Diptera: Tephritidae). J Econ Entomol 104: 1349-1356.
Daborna PJ, Lumba C, BoeyaA, WongaW, ffrench-Constantb RH, Batterhama P. 2007. Evaluating the insecticide resistance potential of eight Drosophila melanogaster cytochrome P450 genes by transgenic over-expression. Insect Biochem Mol Biol 37: 512-519
Darriet F, Chandre F. 2011. Combining piperonyl butoxide and dinotefuran restores the efficacy of deltamethrin mosquito nets against resistant Anopheles gambiae (Diptera: Culicidae). J Med Entomol 48: 952-955.
Davies TGE, Field LM, Usherwood PNR, Williamson MS. 2007. DDT, pyrethrins, pyrethroid and insect sodium channel. Infor Heal 59: 151-162.
Defaix A, Lapied B. 2005. Role of a novel maintained low-voltagea ctivated inward current permeable to sodium and calcium in pacemaking of insect neurosecretory neurons. Invert Neurosci 5: 135-146.
Dong K. 2007. Insect sodium channel and insecticide resistance. Invert Neurosci 7: 17-30.
Drew RAI, Hancock DL. 1994. The Bactrocera dorsalis complex of fruit flies (Diptera: Tephritidae: Dacinae) in Asia. Bulletin of Entomological Research Supplement. 2: 1-68.
Dyte CE, Rowlands DG. 1968. The metabolism and synergism of malathion in resistant and susceptible strains of Tribolium eastaneum. J Stored Prod Res 4: 157-179.
Elliott M. 1996. Synthetic insecticides related to natural pyrethrins. pp 254-300. In: Copping LG (ed). Crop protection agents from nature: natural products and analogues. Royal Society of Chemistry, Cambridge, UK.
Feyereisen R. 1999. Insect P450 enzyme. Annu. Rev. Entomol. 44: 507-533.
Feyereisen R. 2005. Insect cytochrome P450. pp 1-77. In: Gilbert LI, Latrou K, Gill SS (eds). Comprehensive molecular insect science, Vol. 4. Oxford Press, UK.
Fletcher BS. 1989. Movements of tephritid fruit flies. pp 209-219. In: Robinson AS, Hooper G (eds). Fruit Flies: Their Biology, Natural Enemies and Control Vol. 3B. Elsevier Science Press, The Netherlands.
Funaki E, Dauterman WC, Motoyama N. 1994. In-vitro and in-vivo metabolism of fenvalerate in pyrethroid-resistant houseflies. J Pest Sci 19: 43-52.
Goldin AL, Barchi RL, Caldwell JH, Hofmann F, Howe JR, Hunter JC, Kellen RG, Mandel G, Meisler MH, Netter YB, Noda M, Tamkun MM, Waxman SG, Wood JN, Catterall WA. 2000. Nomenclature of voltage-gated sodium channels. Neuron 28: 365-368.
Grant DF, Matsumura F. 1988. Glutathione S-transferase-1 in Aedes aegypti larvae. Purification and properties. Insect Biochem Mol Biol 18: 615-622.
Grolleau F, Lapied B. 2000. Dorsal unpaired median neurones in the insect central nervous system: towards a better understanding of the ionic mechanisms underlying spontaneous electrical activity. J Exp Biol 203: 1633-1648.
Gunning RV, Easten CS, Balfe ME, Ferris IG. 1991. Pyrethroid resistance mechanisms in Australian Helicoverpa armigera. Pestic Sci 33: 473-490.
Gunning RV, Moores GD, Devonshire AL. 1998. Inhibition of resistance-related esterases by piperonyl butoxide in Helicoverpa armigera (Lepidoptera: Noctuidae) and Aphis gossypii (Hemiptera: Aphididae). pp 215-227. In: Jones DG (ed). Piperonyl Butoxide: the Insecticide Synergist. Academic Press, London.
Habig WH, Pabst MJ, Jakoby WB. 1974. Glutathione S-transferase. The first enzymatic step in mercapturic acid formation. J Biol Chem 249: 7130-7139.
Hakki T, Bernhardt R. 2006. CYP17- and CYP11B-dependent steroid hydroxylases as drug development targets. Pharmacol Ther 111: 27-52.
Haller HL, McGovran ER, Goodhue LD, Sullivan WN. 1942. The synergistic action of sesamin with pyrethrum insecticides. J Org Chem 7: 183-188.
Hanrahan CJ, Palladino MJ, Ganetzky B, Reenan RA. 2000. RNA editing of the Drosophila para Na+ channel transcript: evolutionary conservation and developmental regulation. Genetics 155: 1149-1160.
Hardy DE. 1973. Pacific Insects Monograph 31: The fruit flies (Tephritidae-Diptera) of Thailand and Bordering Countries. Entomology Department, Bernice P Bishop Museum, Honolulu, Hawaii.
Hayes JD, Pulford DJ. 1995. The glutathione S-transferase supergene family. Regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 30: 445-600.
Hemingway J, Dunbar SJ, Monro AG, Small GJ. 1993. Pyrethroid resistance in German cockroaches (Dictyoptera, Blattelidae) resistance levels and underlying mechanisms. J Econ Entomol 86: 1631-1638.
Ho SY, Hung SC, Chen JJ, Cheng YS. 2006. Efficacy evaluation of spinosad bait concentrate to control Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) in the orange orchard. J Taiwan Agric Res 55: 101-110. (in Chinese)
Hsu JC, Feng HT. 2000. Insecticide susceptibility of the oriental fruit fly (Bactrocera dorsalis (Hendel)) (Diptera: Tephritidae) in Taiwan. Chinese J Entomol 20: 109-118.
Hsu JC, Feng HT. 2002. Susceptibility of melon fly (Bactrocera cucurbitae) and oriental fruit fly (B. dorsalis) to insecticides in Taiwan. Plant Prot Bull 44: 303-314. (in Chinese)
Hsu JC, Feng HT, Wu WJ. 2004. Resistance and synergistic effects of insecticides in Bactrocera dorsalis (Diptera: Tephritidae) in Taiwan. J Econ Entomol 97: 1682-1688.
Hsu JC, Wu WJ, Haymer DS, Liao HY, Feng HT. 2008. Alterations of the acetylcholinesterase enzyme in the oriental fruit fly Bactrocera dorsalis are correlated with resistance to the organophosphate insecticide fenitrothion. Insect Biochem Mol Biol 38: 146-154.
Ingles PJ, Adams PM, Knipple DC, Soderlund DM. 1996. Characterization of voltage-sensitive sodium channel gene coding sequences from insecticide-susceptible and knock down resistant house fly strains. Insect Biochem Mol Biol 26: 319-326.
Ishaaya I, Ascher KRS, Casida JE. 1983a. Pyrethroid synergism by esterase inhibition in Spodoptera littoralis (Boisduval) larvae. Crop Protect 2: 335-343.
Ishaaya I, Casida JE. 1980. Properties and toxicological significance of esterases hydrolyzing permethrin and cypermethrin in Trichoplusia ni larval gut and integument. Pestic Biochem Physiol 14: 178-184.
Ishaaya I, Elsner A, Ascher KRS, Casida JE. 1983b. Synthetic pyrethroids: toxicity and synergism on dietary exposure of Tribolium castaneum (Herbst) larvae. Pestic Sci 14: 367-372.
Ishaaya I, Mendelson Z, Ascher KRS, Casida JE. 1987. Cypermethrin synergism by pyrethroid esterase inhibitors in adults of the whitefly Bemisia tabaci. Pestic Biochem Physiol 28: 155-162.
Isom LL, De Jongh KS, Catterall WA. 1994. Auxiliary subunits of voltage-gated ion channels. Neuron 12: 1183-1194.
Jao LT, Casida JE. 1974. Esterase inhibitors as synergists for (+)-trans-chrysanthemate insecticide chemicals. Pestic Biochem Physiol 4: 456-464.
Kaneko H. 2011. Pyrethroids: mammalian metabolism and toxicity. J Agric Food Chem 59: 2786-2791.
Kasai S, Scott JG. 2000. Overexpression of cytochrome P450 CYP6D1 is associated with monooxygenase-mediated pyrethroid resistance in house flies from Georgia. Pestici Biochem Physiol 68: 34-41.
Khambay BPS, Jewess PJ. 2010. Pyrethroid. pp 1-29. In: Gilbert LI, Gill SS (eds). Insect Control Biological and Synthetic Agents. Academic Press, London.
Knipple DC, Payne LL, Soderlund DM. 1991. PCR-generated conspecific sodium channel gene probe for the house fly. Archs Insect Biochem Physiol 16: 45-53.
Kostaropoulos I, Papadopoulos AI, Metaxakis A, Boukouvals E, Papadopoulou-Mourkidou E. 2001. Glutathione S-transferase in the defence against pyrethroids in insects. Insect Biochem Mol Biol 31: 313-319.
Lagadic L, Cuany A, Berge JB, Echaubard M. 1993. Purification and partial characterization of glutathione-S-transferase from insecticide-resistant and lindane-induced susceptible Spodoptera littoralis (Boisd) larvae. Insect Biochem Mol Biol 23: 467-474.
Lapied B, Stankiewicz M, Grolleau F, Rochat H, Zlotkin E, Pelhate M. 1999. Biophysical properties of scorpion alpha-toxin sensitive background sodium channel contributing to the pacemaker activity in insect neurosecretory cells (DUM neurons). Eur J Neurosci 11: 1449-1460.
Le Corronc H, Hue B, Pitman RM. 1999. Ionic mechanisms underlying depolarizing responses of an identified insect motor neuron to short periods of hypoxia. J Neurophysiol 81: 307-318.
Lee KS, Walker CH, McCaffery A, Ahmad M, Little E. 1989. Metabolism of trans-cypermethrin by Heliothis armigera and Heliothis virescens. Pestic Biochem Physiol 34: 49-57.
Lee SH, Ingles PJ, Knipple DC, Soderlund DM. 2002. Developmental regulation of alternative exon usage in the house fly Vssc1 sodium channel gene. Invert Neurosci 4: 125-133.
Leng G, Leng A, Kuhn K-H, Lewalter J, Pauluhn J. 1997. Human dose-excertion studies with the pyrethroid insecticide cyfluthrin: urinary metabolite profile following inhalation. Xenobiotica 27: 1273-1283.
LeOra Software. 1987. Polo-PC: a user’s guide to probit or logit analysis. LeOra Software, Berkeley, CA.
Levinson SR, Sather WA. 2001. Structure and mechanism of voltage-gated ion channels. pp 455-478. In: Sperelakis N (ed). Cell Physiology Sourcebook, 27. Academic Press, San Diego.
Li WZ. 1988. The management of Bactrocera dorsalis. pp 51-60. In: Lin FJ (ed). Fruit Tree Pests Integrated Management Seminar. Entomological Society of the Republic of China Press, Taichung. (in Chinese)
Li X, Schuler MA, Berenbaum MR. 2007. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol 52: 231-253.
Littleton JT, Ganetzky B. 2000. Ion channels and synaptic organization: analysis of the Drosophila genome. Neuron 26: 35-43.
Liu ZQ, Song WZ, Dong K. 2004. Persistent tetrodotoxin-sensitive sodium current resulting from U-to-C RNA editing of an insect sodium channel. Proc Natl Acad Sci USA 101:11862-11867.
Loughney K, Kreber R, Ganetzky B. 1989. Molecular analysis of the para locus, a sodium channel gene in Drosophila. Cell 58: 1143-1154.
Lu AYH, Coon MJ. 1968. Role of hemoprotein P-450 in fatty acid omega-hydroxylation in a soluble enzyme system from liver microsomes. J Biol Chem 243: 1331-1332.
Lund AE, Narahashi T. 1982. Dose-dependent interaction of the pyrethroid isomers with sodium channels of squid membranes. Neurotoxicology 3: 11-24.
Maas S, Rich A. 2000. Changing genetic information through RNA editing. Bioessays 22: 790-802.
Maklakov A, Ishaaya I, Freidberg A, Yawetz A, Horowitz AR, Yarom I. 2001. Toxicological studies of organophosphate and pyrethroid Insecticides for controlling the fruit fly Dacus ciliatus (Diptera: Tephritidae). J Econ Entomol 94: 1059-1066.
Margaritopoulos JT, Skavdis G, Kalogiannis N, Nikou D, Morou E, Skouras PJ, Tsitsipis JA, Vontas J. 2008. Efficacy of the pyrethroid alpha-cypermethrin against Bactrocera oleae populations from Greece, and improved diagnostic for an iAChE mutation. Pest Manag Sci 64: 900-908.
Mayer RT, Jermyn JW, Burke MD, Prough RA. 1977. Methoxyresorufin as a substrate for the fluorometric assay of insect microsomal O-dealkylases. Pestic Biochem Physiol 7: 349-354.
Metcalf RL. 1967. Mode of action of insecticide synergists. Annu Rev Entomol 12: 229-256.
Mirer FE, Levine BS, Murphy SD. 1977. Parathion and methyl parathion toxicity and metabolism in piperonyl butoxide and diethyl maleata pretreated mice. Chem Biol Interact 17: 99-112.
Miyazaki M, Ohyama K, Dunlap DY, Matsumura F. 1996 Cloning and sequencing of the para-type sodium channel gene from susceptible and kdr-resistant German cockroaches (Blattella germanica) and house fly (Musca domestica). Mol Gen Genet 252: 61-68.
O’Dowd D. 1995. Voltage-gated currents and firing properties of embryonic Drosophila neurons grown in a chemically defined medium. J Neurobiol 27: 113-126.
Olson RD, Liu Z, Nomura Y, Song W, Dong K. 2008. Molecular and functional characterization of voltage-gated sodium channel variants from Drosophila melanogaster. Insect Biochem Mol Biol 38: 604-610.
O’Reilly AO, Khambay BPS, Williamson MS, Field LM, Wallace BA, Davies TGE. 2006. Modelling insecticide binding sites in the voltage-gated sodium channel. Biochem J 396: 255-263.
Palladino MJ, Keegan LP, O’Connell MA, Reenan RA. 2000. A-to-I pre-mRNA editing in Drosophila is primarily involved in adult nervous system function and integrity. Cell 102: 437-449.
PDAF. 1972. Plant protection manual. Department of Agriculture and Forestry, Taiwan Provincial Government, Nantou, Taiwan.
Peterson MA, Denno RF. 1998. The influence of dispersal and diet breadth on patterns of genetic isolation by distance in phytophagous insects. Am Nat 152: 428-446.
Prasittisuk C, Busvine JR. 1977. DDT-resistant mosquito strains with cross-resistance to pyrethroids. Pestic Sci 8: 527-533.
Raffa KF, Priester TM. 1985. Synergists as research tools and control agents in agriculture. J Agric Entomol 2: 27-45.
Reenan RA, Nanrahan CJ, Ganetzky B. 2000. The mle(napts) RNA helicase mutation in Drosophila results in a splicing catastrophe of the para Na+ channel transcript in a region of RNA editing. Neuron 25: 139-149.
Ru LJ, Wei C, Zhao JZ, Liu AX. 1998. Differences in resistance to fenvalerate and cyhalothrin and inheritance of knockdown resistance to fenvalerate in Helicoverpa armigera. Pestic Biochem Physiol 61: 79-85.
Saito M, Wu CF. 1991. Expression of ion channels and mutational effects in giant Drosophila neurons differentiated from cell-division arrested embryonic neuroblasts. J Neurosci 11: 2135-2150.
Saito M, Wu CF. 1993. Ionic channels in cultures Drosophila neurons. pp 366-389. In: Pichon Y (ed). Experientia Supplementum. Birkhaeuser Verlag Press, USA.
Salgado VL, Irving SN, Miller TA. 1983a. Depolarization of motor-nerve terminals by pyrethroids in susceptible and kdr-resistant house-flies. Pestic Biochem Physiol 20: 100-114.
Salgado VL, Irving SN, Miller TA. 1983b. The importance of nerve-terminal depolarization in pyrethroid poisoning of insects. Pestic Biochem Physiol 20: 169-182.
Salkoff L, Butler A, Scavarda N, Wei A. 1987a. Nucleotide sequence of the putative sodium channel gene from Drosophila: the four homologous domains. Nucleic Acids Res 15: 8569-8572.
Salkoff L, Butler A, Wei A, Scavarda N, Giffen K, Ifune C, Goodman R, Mandel G. 1987b. Genomic organization and deduced amino acid sequence of a putative sodium channel gene in Drosophila. Science 237: 744-749.
Sato C, Matsumoto G. 1992. Primary structure of squid sodium channel deduced from the complementary DNA sequence. Biochem Biophys Res Comm 186: 61-68.
Schafer S, Rosenboom H, Menzel R. 1994. Ionic currents of Kenyon cells from the mushroom body of the honeybee. J Neurosci 14: 4600-4612.
Scharf ME, Neal JJ, Bennett GW. 1997. Changes of insecticide resistance levels and detoxication enzymes following insecticide selection in the German cockroach, Blattella germanica (L.). Pestic Biochem Physiol 59: 67-79.
Scott JG. 1990. Investigating mechanisms of insecticide resistance: Methods, strategies, and pitfalls. pp 39-57. In: Roush RT, Tabashnik BE (eds). Pesticide Resistance in Arthropods. Chapman and Hall Press, New York.
Scott JG. 1999. Cytochromes P450 and insecticide resistance. Insect Biochem Mol Biol 29: 757-777.
Seeburg PH. 2000. RNA helicase participates in the editing game. Neuron 25: 261-263.
Shafer TJ, Mayer DA, Crofton KM. 2005. Developmental neurotoxicity of pyrethroid insecticides: critical review and future research needs. Environ Health Perspect 113: 123-136.
Shono T, Unai T, Casida JE. 1978. Metabolism of permethrin isomers in American cockroach adults, house-fly adults and cabbage-looper larvae. Pestic Biochem Physiol 9: 96-106.
Soderlund DM. 1997. Molecular mechanisms of insecticide resistance. pp 21-56. In: Sjut V (ed). Molecular mechanisms of resistance to agrochemicals. Springer Press, berlin.
Soderlund DM. 2008. Pyrethroids, knockdown resistance and sodium channels. Pest Manag Sci 64: 610-616.
Soderlund DM, Casida JE. 1977. Effects of pyrethroid structure on rates of hydrolysis and oxidation by mouse-liver microsomal-enzymes. Pestic Biochem Physiol 7: 391-401.
Soderlund DM, Bloomquist JR. 1990. Molecular mechanisms of insecticide resistance. pp 58-96. In: Roush RT, Tabashnik BE (eds). Pesticide resistance in arthropods. Chapman and hall Press, New York.
Soderlund DM, Knipple DC. 1999. Knockdown resistance to DDT and pyrethroids in the house fly (Diptera: Muscidae): from genetic trait to molecular mechanism. Ann Ent Soc Amer 92: 909-915.
Song WZ, Liu ZQ, Tan JG, Nomura Y, Dong K. 2004. RNA editing generates tissue-specific sodium channels with distinct gating properties. J Biol Chem 279: 2554-2561.
Spackman ME, Oakeshott JG, Smyth KA, Medveczky KM, Russell RJ. 1994. A cluster of esterase genes on chromosome 3R of Drosophila melanogaster includes homologues of esterase genes conferring insecticide resistance in Lucilia cuprina. Biochem Genet 32: 39-62.
Steiner LF. 1952. Fruit fly control in Hawaii with posion-bait sprays containing protein hydrolysates. J Econ Entomol 45: 838-843.
Steinhauser S, Beckert S, Capesius I, Malek O, Knoop V. 1999. Plant mitochondrial RNA editing. J Mol Evol 48: 303-312.
[TACTRI] Taiwan Agricultural Chemicals and Toxic Substances Research Institute. 2010. Plant protection manual. Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Council of Agricultural, Taichung, Taiwan.
Thackeray J, Ganetzky B. 1994. Developmentally regulated alternative splicing generates a complex array of Drosophila DmNaV sodium channel isoforms. J Neurosci 14: 2569-2578.
Thackeray J, Ganetzky B. 1995. Conserved alternative splicing patterns and splicing signals in the Drosophila sodium channel gene DmNaV. Genetics 141: 203-214.
Thompson JD, Higgins DG, Gibson TJ. 1994. ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-4680.
Tsukamoto M, Narahashi T, Yamasaki M. 1965. Genetic control of low nerve sensitivity to DDT in insecticide-resistant house flies. Botyu-Kagaku Scientific Insect Control 30: 128-132.
Ullrich V, Weber P. 1972. The O-dealkylation of 7-ethoxycoumarin by liver microsomes, a direct fluorometric test. Hoppe-Seyler's Z Physiol Chem 353: 1171-1177.
Vais HAS, Pluteanu F, Goodson SJ, Devonshire AL, Williamson MS. 2003. Mutations of the para sodium channel of Drosophila melanogaster identify putative binding sites for pyrethroids. Mol Pharmacol 64: 914-922.
Valentine WM. 1990. Toxicity of selected pesticides, drugs, and chemicals. Pyrethrin and pyrethroid insecticides. Vet Clin North Am Small Anim Pract 20: 375-382.
Vanasperen K. 1962. A study of housefly esterases by means of a sensitive colorimetric method. J Insect Physiol 8: 401-414.
Vontas JG, Small GJ, Hemingway J. 2001. Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochem J 357: 65 -72.
Wang R, Huang ZY, Dong K. 2003. Molecular characterization of an arachnid sodium channel gene from the varroa mite (Varroa destructor). Insect Biochem Mol Biol 33: 733-739.
Watanabe T, Manabe S, Ohashi Y, Okamiya H, Onodera H, Mitsumori K. 1998. Comparison of the induction profile of hepatic drug-metabolising enzymes between piperonyl butoxide and phenobarbital in rats. J Toxicol Pathol 11: 1-10.
White IM, Elson-Harris MM. 1992. Fruit pests-Bactrocera Macquart. pp 187-192. Fruit flies of economic significance: their identification and bionomics. CAB International, Oxford Press, UK.
Wicher D, Walther C, Wicher C. 2001. Non-synaptic ion channels in insects-basic properties of currents and their modulation in neurons and skeletal muscles. Prog Neurobiol 64: 431-525.
Wilkinson CF. 1976. Insecticide synergism. pp 195-218. In: Metcalf RR, Jr McKelvey JJ (eds). Insecticides for the Future: Needs and Prospects. Wiley Press, New York.
Wilkinson CF, Hicks LJ. 1969. Microsomal metabolism of 1-3 benzodioxole ring and its possible significance in synergistic action. J Agric Food Chem 17: 829-836.
Williamson MS, Martinez-Torres D, Hick CA, Devonshire AL. 1996. Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Mol Gen Genet 252: 51-60.
Willoughby L, Batterham P, Daborn PJ. 2007. Piperonyl butoxide induces the expression of cytochrome P450 and glutathione S-transferase genes in Drosophila melanogaster. Pest Manag Sci 63: 803-808.
Yu FH, Catterall WA. 2003. Overview of the voltage-gated sodium channel family. Genome Biol 4: 207.1-207.7.
Yu SJ, Robinson FA, Nation JL. 1984. Detoxication capacity in the honey bee, Apis mellifera L. Pesitc Biochem Physiol 22: 360-368.
Zhang L, Gao X, Liang P. 2007. Beta-cypermethrin resistance associated with high carboxylesterase activities in a strain of house fly, Musca domestica (Diptera: Muscidae). Pestic Biochem Physiol. 89: 65-72.
Zhang M, Scott JG. 1994. Cytochrome b5 involvement in cytochrome P450 monooxygenase activities in house fly microsomes. Arch Insect Biochem Physiol 27: 205-16.
Zhu F, Li T, Zhang L, Liu N. 2008. Co-up-regulation of three P450 genes in response to permethrin exposure in permethrin resistant house flies, Musca domestica. BMC Physiol 8: 18.
Zhu F, Liu N. 2008. Differential expression of CYP6A5 and CYP6A5v2 in pyrethroid-resistant house flies, Musca domestica. Arch Insect Biochem Physiol 67: 107-119
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63712-
dc.description.abstract東方果實蠅 (oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae)) 是台灣重要的果樹害蟲之一,已知為害的寄主植物超過 150 種。合成除蟲菊酯於 2000 年登記為防治東方果實蠅用藥,其作用機制是轉變電壓閥門鈉離子通道 (voltage-gated sodium channel, VGSC) 的構形,並對昆蟲具有擊昏 (knock down) 的作用。Hsu 於室內篩選東方果實蠅抗性品系實驗得知,合成除蟲菊酯產生抗藥性的速度極快,且抗性程度也非常高,因此必須藉著了解東方果實蠅對合成除蟲菊酯的抗性機制,才能有效控管合成除蟲菊酯的抗藥性發生。本論文所使用的東方果實蠅合成除蟲菊酯抗性品系分別為賽滅寧 (cypermethrin (cyp-r))、賽扶寧 (cyfluthrin (cyf-r))、芬化利 (fenvalerate (fenv-r)) 抗性品系以及感性品系。利用局部滴加法測試各個抗性品系對非篩選之合成除蟲菊酯的交互抗性,我們發現所有的抗性品系皆對賽扶寧產生非常高的交互抗性 (cyp-r:62.9 倍;fenv-r:154 倍),而對賽滅寧與芬化利的交互抗性程度則相對較低。我們以合成除蟲菊酯檢測 cyp-r、cyf-r 與 fenv-r 被擊昏與回復情形,發現cyp-r 與 cyf-r 皆在 30 分鐘內全部昏厥,fenv-r 則約 4 小時才全部昏厥;如事先加上協力劑 PBO 的處理,則會增加抗性品系的被擊昏速度,尤其在 fenv-r 最為明顯;在回復情形部分,發現抗性品系的回復情形略高於感性品系,而 PBO 處理後的所有品系皆無感受性回復之情況產生。利用 PBO、TPP 及 DEM 等協力劑測試對合成除蟲菊酯的協力效果 (synergism),發現 PBO 不僅在感性品系中有良好的協力效果 (賽滅寧:7.7 倍;賽扶寧:12.1 倍:芬化利:10.4 倍),且在抗性品系中產生更佳的效果 (cyp-r:26.3 倍;cyf-r:55.6 倍;fenv-r:50.7 倍)。利用不同受質分別測試酯酶 (esterases)、多功能氧化酶、穀胱甘肽硫基轉移酶 (glutathione S-transferases) 的酵素活性,酯酶活性於抗性品系中並沒有顯著提高;利用受質 7-ethoxycoumarin 測試氧化酶活性,cyp-r (3.94 倍) 與 fenv-r (2.31 倍) 顯著高於感性品系,而受質 methoxyresorufrin 則皆無顯著差異。更進一步的利用 Quantitative realtime PCR 去測試 fenv-r 的多功能氧化酶基因,發現 4 個 CYP6 及 1 個 CYP4 家族的氧化酶基因表現量為感性品系的 5 倍以上。在標的作用機制部分,感性品系的除蟲菊酯標的部位電壓閥門鈉離子通道 (Voltage-gated sodium channel, VGSC)已定序完成,序列長度為 6498 個鹼基對,並且比對芬化利抗性品系與感性品系的 VGSC 序列,我們在抗性品系 5 隻個體中發現 R52Q、K437R、V531A、V531T、E1168K、S1449A、S1449T、M1640V、M1640T、V1755I、I1876N 及 D1943G 等胺基酸的變異。由協力劑、酵素活性實驗以及多功能氧化酶基因表現量的分析,我們可以知道多功能氧化酶確實在合成除蟲菊酯抗性品系中,擔任非常重要的角色;標的不敏感抗性方面,雖然我們發現許多只出現在抗性品系中的胺基酸變異,但與目前發表的 kdr 點突變位置並不重疊,而且這些胺基酸變異僅有 I1876N 出現的頻率較高 (4/5)。因此,我們認為室內所篩選出的東方果實蠅合成除蟲菊酯抗性品系的主要機制為多功能氧化酶,而 VGSC 上的胺基酸變異之貢獻仍需更進一步研究。zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-16T17:17:01Z (GMT). No. of bitstreams: 1
ntu-101-R97632016-1.pdf: 4000903 bytes, checksum: 6d4866788e2041d9ae277e33f671e787 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要… iii
英文摘要 v
本文目錄 ix
表目錄 xii
圖目錄 xiv
本文目錄
1. 前言 1
2. 往昔研究 4
2.1 東方果實蠅的生物學 4
2.2 合成除蟲菊酯 5
2.2.1 合成除蟲菊酯的結構與作用機制 6
2.2.2 合成除蟲菊酯的代謝命運 7
2.3 電壓閥門鈉離子通道 9
2.3.1 電壓閥門鈉離子通道的結構與功能 9
2.3.2 電壓閥門鈉離子的分子特性 10
2.4 合成除蟲菊酯抗性 13
2.4.1 代謝抗性-酯酶 13
2.4.2 代謝抗性-多功能氧化酶 14
2.4.3 代謝抗性-穀胱甘肽硫基轉移酶 15
2.4.4 代謝酵素與協力劑 16
2.4.5 標的不敏感抗性-擊昏抗性 17
2.4.6 果實蠅科對合成除蟲菊酯的抗性研究 18
3. 材料與方法 20
3.1 化學藥劑 20
3.2 東方果實蠅品系 21
3.3 生物檢定 22
3.4 交互抗性測試 23
3.5 協力劑分析 23
3.6 合成除蟲菊酯對合成除蟲菊酯抗性與感性品系的擊昏及其回復反應 24
3.7 代謝酵素活性測試 25
3.7.1 代謝酵素粗萃取 25
3.7.2 酯酶活性測試 25
3.7.3 多功能氧化酶活性測試 27
3.7.4 穀胱甘肽硫基轉移酶活性測試 29
3.8 電壓閥門鈉離子通道序列分析 31
3.8.1 電壓閥門那離子通道的基因資訊與引子設計 .31
3.8.2 Total RNA 萃取 31
3.8.3 反轉錄 PCR 32
3.8.4 電壓閥門鈉離子通道基因定序 33
3.9 合成除蟲菊酯抗性與感性品系之電壓閥門鈉離子通道基因比較 35
3.10 多功能氧化酶基因表現量比較 36
4. 結果 39
4.1 合成除蟲菊酯抗性品系之抗性程度 39
4.2 合成除蟲菊酯間的交互抗性 39
4.3合成除蟲菊酯對合成除蟲菊酯抗性與感性品系的擊昏及回復反應 40
4.4 協力劑測試 40
4.5 酯酶蛋白質濃度與活性測試 41
4.6 多功能氧化酶蛋白質濃度與活性測試 41
4.7 穀胱甘肽硫基轉移酶蛋白質濃度與活性測試 42
4.8 芬化利抗性品系多功能氧化酶基因表現量 42
4.9 Voltage-gated sodium channel 序列分析 43
4.10合成除蟲菊酯抗性品系與感性品系voltage-gated sodium channel
序列比較 43
5. 討論 45
參考文獻 79
附錄 96
表目錄
Table 1. Resistance ratios of three pyrethroid-resistant lines to their own selected pyrethroids 56
Table 2. Cross resistance among cypermethrin-resistant strain, cyfluthrin-resistant strain, and fenvalerate-resistant strain in three pyrethroid insecticides 57
Table 3. Synergism effect to three pyrethroids (cypermethrin, cyfluthrin, and fenvalerate) of the susceptible and the selected resistant strains 58
Table 4. Esterases crude protein concentrations and activities of two substrates on the susceptible and three pyrethroid-resistant strains 59
Table 5. Mixed-function oxidases crude protein concentrations and activities of the substrate, 7-ethoxycoumarin of the susceptible and three pyrethroid-resistant strains 60
Table 6. Mixed-function oxidases crude protein concentrations and activities of the substrate, methoxyresorufin of the susceptible and three pyrethroid-resistant strains 61
Table 7. Glutathione S-transferases crude protein concentrations and activities of two substrates of the susceptible and three pyrethroid-resistant strains 62
Table 8. The substitutions of amino acid in five susceptible and fenvalerate resistant strains of B. dorsalis 63
圖目錄
Figure 1. The knock down rate of susceptible, cypermethrin resistant, PBO treated susceptible, and PBO treated cypermethrin resistant strains with LD50 concentration of cypermethrin in 30 minutes 64
Figure 2. The recovery rate of susceptible, cypermethrin resistant, PBO treated to susceptible, and PBO treated to cypermethrin resistant strains with LD50 concentration of cypermethrin in 48 hours. 65
Figure 3. The knock down rate of susceptible, cyfluthrin resistant, PBO treated to susceptible, and PBO treated to cyfluthrin resistant strains with LD50 concentration of cyfluthrin in 30 minutes. 66
Figure 4. The recovery rate of susceptible, cyfluthrin resistant, PBO treated to susceptible, and PBO treated to cyfluthrin resistant strains with LD50 concentration of cyfluthrin in 48 hours. 67
Figure 5. The knock down rate of susceptible, fenvalerate resistant, PBO treated to susceptible, and PBO treated to fenvalerate resistant strains with LD50 concentration of fenvalerate in 30 minutes. 68
Figure 6. The recovery rate of susceptible, fenvalerate resistant, PBO treated to susceptible, and PBO treated to fenvalerate resistant strains with LD50 concentration of fenvalerate in 48 hours. 69
Figure 7. Expression of the fifteen cytochrome P450 genes in the fenvalerate resistant strains compared with the susceptible strain.. 70
Figure 8. Alignment of open reading frame and the translated amino acid sequence of Bactrocera dorsalis voltage-gated sodium channel gene with para gene of Drosophila melangaster 71
Figure 9. Voltage-gated sodium channel in various transcripts of susceptible and fenvalerate resistant strains of B. dorsalis 75
Figure 10. Alignment of four different voltage-gated sodium channel amino acid sequence 76
dc.language.isozh-TW
dc.title東方果實蠅對合成除蟲菊酯之抗性機制探討zh_TW
dc.titlePyrethroid Resistant Mechanisms of the Oriental Fruit Fly, Bactrocera dorsalis (Diptera: Tephritidae)en
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee馮海東,戴淑美,林鶯熹,劉明毅
dc.subject.keyword合成除蟲菊酯抗性,協力劑,多功能氧化&#37238,電壓閥門鈉離子通道,東方果實蠅,zh_TW
dc.subject.keywordpyrethroid resistance,synergist,mixed-function oxidases,voltage-gated sodium channel,Bactrocera dorsalis,en
dc.relation.page107
dc.rights.note有償授權
dc.date.accepted2012-08-18
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept昆蟲學研究所zh_TW
顯示於系所單位:昆蟲學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
3.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved