請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63555
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔣丙煌 | |
dc.contributor.author | Hsiu-Ju Wang | en |
dc.contributor.author | 王秀如 | zh_TW |
dc.date.accessioned | 2021-06-16T17:13:56Z | - |
dc.date.available | 2017-08-27 | |
dc.date.copyright | 2012-08-27 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-19 | |
dc.identifier.citation | 行政院衛生署。2010。健康食品調節血糖功能評估方法修正草案 (衛署食字第0991301352號)。
行政院衛生署。2012。一百年主要死因統計結果。 林佳雯。2010。以α-葡萄糖苷酶之活性抑制為主軸探討五倍子之調節血糖功能與成分。國立台灣大學食品科技研究所碩士論文。 林進丁。1986。胰島素。藥學雜誌。2: 57-63。 林鈺珊。2011。紅心番石榴茶製程開發中抗氧化與抑制α-葡萄糖苷酶活性之探討。國立宜蘭大學食品科學系碩士論文。 何橈通。1986。糖尿病與公共衛生。臨床醫學。17: 300-317。 邱鐘杰。2008。桑葉相關甲醇萃取物對發炎訊息傳遞途徑於HAEC模式之影響。中國文化大學生物科技研究所碩士論文。 高本釗。1985。新編中藥大辭典(上)。pp. 30-33、pp. 283-286。新文豐出版公司,臺北市。 陳瓊芳。2000。黃連對囓齒類動物抗焦慮作用之研究。中國醫藥學院中國醫藥研究所碩士論文。 張文思。2008。薏苡籽實與荷葉之抗糖基化效應。國立台灣大學食品科技研究所碩士論文。 張淑人。2005。生脈飲中人參對五味子素及五味子酯A的抽出率及自由基清除率之探討。國立陽明大學醫學院傳統醫藥學研究所碩士論文。 蔡蕙芸。2007。龍眼花水萃物對高果糖誘發代謝症候群大鼠之影響。國立台灣大學食品科技研究所碩士論文。 劉怡旻。2001。中藥升麻酸降血糖作用之研究。國立成功大學基礎醫學研究所博士論文。 鄭芳琪。2009。番石榴葉水萃物降血糖作用及有效成分分離。國立台灣大學食品科技研究所博士論文。 American Diabetes Association. Diagnosis and classification of ciabetes mellitus. Diabetes Care 2005, 28, s37-s42. American Diabetes Association. Summary of revisions for the 2009 clinical practice recommendations. Diabetes Care 2009, 32, S3-S5. Aertgeerts, K.; Ye, S.; Tennant, M. G.; Kraus, M. L.; Rogers, J.; Sang, B. C.; Skene, R. J.; Webb, D. R.; Prasad, G. S. Crystal structure of human dipeptidyl peptidase IV in complex with a decapeptide reveals details on substrate specificity and tetrahedral intermediate formation. Protein Sci. 2004, 13, 412-421. Ahren, B. DPP-4 inhibitors. Best Pract. Res. Clin. Endocrinol. Metab. 2007, 21, 517-533. Al-masri, I. M.; Mohammad, M. K.; Tahaa, M. O. Inhibition of dipeptidyl peptidase IV (DPP IV) is one of the mechanisms explaining the hypoglycemic effect of berberine. J. Enzyme Inhib. Med. Chem. 2009, 24, 1061-1066. Anno, T.; Tamura, K.; Oono, H.; Tomi, H. Maltase, sucrase and α-amylase inhibitory activity of Morus leaves extract. Food Preserv. Sci. 2004, 30, 223-229. Apostolidis, E.; Kwon, Y. I.; Ghaedian, R.; Shetty, K. Fermentation of milk and soymilk by Lactobacillus bulgaricus and Lactobacillus acidophilus enhances functionality for potential dietary management of hyperglycemia and hypertension. Food Biotechnol. 2007, 21, 217-236. Aronson, D.; Rayfield, E. J. How hyperglycemia promotes atherosclerosis: molecular mechanisms. Cardiovasc. Diabetol. 2002, 1, 1-10. Attele, A. S.; Zhou, Y. P.; Xie, J. T.; Wu, J. A.; Zhang, L.; Dey, L.; Pugh, W.; Rue, P. A.; Polonsky, K. S.; Yuan, C. S. Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes 2002, 51, 1851-1858. Baker, J. R.; Johnson, R. N.; Scott, D. J. Serum fructosamine concentrations in patients with type II (non-insulin-dependent) diabetes mellitus during changes in management. Br. Med. J. (Clin. Res. Ed). 1984, 288, 1484-1486. Begum, S.; Hassan, S. I.; Siddiqui, B. S.; Shaheen, F.; Nabeel Ghayur, M.; Gilani, A. H. Triterpenoids from the leaves of Psidium guajava. Phytochemistry 2002, 61, 399-403. Birnbaum, M. J. Turning down insulin signaling. J. Clin. Invest. 2001, 108, 655-660. Boyle, J. P.; Engelgau, M. M.; Thompson, T. J.; Goldschmid, M. G.; Beckles, G. L.; Timberlake, D. S.; Herman, W. H.; Ziemer, D. C.; Gallina, D. L. Estimating prevalence of type 1 and type 2 diabetes in a population of African Americans with diabetes mellitus. Am. J. Epidemiol. 1999, 149, 55-63. Brand, J. C.; Colagiuri, S.; Crossman, S.; Allen, A.; Roberts, D. C.; Truswell, A. S. Low-glycemic index foods improve long-term glycemic control in NIDDM. Diabetes Care 1991, 14, 95-101. Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001, 414, 813-820. Chang, M. S.; Oh, M. S.; Kim, D. R.; Jung, K. J.; Park, S.; Choi, S. B.; Ko, B. S.; Park, S. K. Effects of Okchun-San, a herbal formulation, on blood glucose levels and body weight in a model of Type 2 diabetes. J. Ethnopharmacol. 2006, 103, 491-495. Chen, A.; Taguchi, T.; Sugiura, M.; Wakasugi, Y.; Kamei, A.; Wang, M.; Miwa, I. Pyridoxal-aminoguanidine adduct is more effective than aminoguanidine in preventing neuropathy and cataract in diabetic rats. Horm. Metab. Res. 2004, 36, 183-187. Chen, Y.; Hsieh, C.; Lii, C.; Liu, S.; Wang, T. Inhibitory effects of the water yam (Dioscorea alata L.) on glucose-induced protein glycation: a comparative study with four Chinese medicines for treating diabetes. Nutri. Sci. J. 2006, 31, 137-145. Cheng, F. C.; Shen, S. C.; Wu, J. S. B. Effect of guava (Psidium guajava L.) leaf extract on glucose uptake in rat hepatocytes. J. Food Sci. 2009, 74, H132-H138. Edet, E.; Atangwho, I.; Akpanabiatu, M.; Edet, T.; Uboh, F.; David-Oku, E. Effect of Gongronema latifolium leaf extract on some liver enzymes and protein levels in diabetic and non diabetic rats. J. Pharm. Biomed. Sci 2011, 1, 104-107. Evans, J. L.; Goldfine, I. D.; Maddux, B. A.; Grodsky, G. M. Are oxidative stress− activated signaling pathways mediators of insulin resistance and β-cell dysfunction? Diabetes 2003, 52, 1-8. Feng, J.; Zhang, Z.; Wallace, M. B.; Stafford, J. A.; Kaldor, S. W.; Kassel, D. B.; Navre, M.; Shi, L.; Skene, R. J.; Asakawa, T. Discovery of alogliptin: a potent, selective, bioavailable, and efficacious inhibitor of dipeptidyl peptidase IV. J. Med. Chem. 2007, 50, 2297-2300. Goke, B.; Herrmann, C.; Goke, R.; Fehmann, H.; Berghofer, P.; Richter, G.; Arnold, R. Intestinal effects of α‐glucosidase inhibitors: absorption of nutrients and enterohormonal changes. Eur. J. Clin. Invest. 1994, 24, 25-30. Goh, S.-Y.; Cooper, M. E. The role of advanced glycation end products in progression and complications of diabetes. J. Clin. Endocrinol. Metab. 2008, 93, 1143-1152. Gu, B. H.; Van Minh, N.; Lee, S. H.; Lim, S. W.; Lee, Y. M.; Lee, K. S.; Kim, D. K. Deoxyschisandrin inhibits H2O2-induced apoptotic cell death in intestinal epithelial cells through nuclear factor-κB. Int. J. Mol. Med. 2010, 26, 401-406. Gutierrez, R. M. P.; Mitchell, S.; Solis, R. V. Psidium guajava: A review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 2008, 117, 1-27. Hancke, J.; Burgos, R.; Ahumada, F. Schisandra chinensis (Turcz.) Baill. Fitoterapia 1999, 70, 451-471. Hansawasdi, C.; Kawabata, J. α-Glucosidase inhibitory effect of mulberry (Morus alba) leaves on Caco-2. Fitoterapia 2006, 77, 568-573. Hao, M.; Li, S.; Sun, C.; Lin, Y.; Liu, K.; Wang, L.; Li, C.; Zhou, Q.; Du, J.; Li, H. Amelioration effects of berberine on diabetic microendothelial injury model by the combination of high glucose and advanced glycation end products in vitro. Eur. J. Pharmacol. 2011, 654, 320-325. Hasegawa, G.; Kajiyama, S.; Tanaka, T.; Imai, S.; Kozai, H.; Fujinami, A.; Ohta, M.; Obayashi, H.; Park, H.; Nakano, K. The α-glucosidase inhibitor acarbose reduces the net electronegative charge of low-density lipoprotein in patients with newly diagnosed type 2 diabetes. Clin. Chim. Acta 2008, 390, 110-114. Hayden, M. R.; Tyagi, S. C. Intimal redox stress: Accelerated atherosclerosis in metabolic syndrome and type 2 diabetes mellitus. Atheroscleropathy. Cardiovasc. Diabetol. 2002, 1, 1-27. Hennig, B.; Meerarani, P.; Ramadass, P.; Watkins, B. A.; Toborek, M. Fatty acid--Mediated activation of vascular endothelial cells. Metabolism 2000, 49, 1006-1013. Holst, J. J.; Deacon, C. F.; Vilsboll, T.; Krarup, T.; Madsbad, S. Glucagon-like peptide-1, glucose homeostasis and diabetes. Trends Mol. Med. 2008, 14, 161-168. Huang, T. H. W.; Peng, G.; Kota, B. P.; Li, G. Q.; Yamahara, J.; Roufogalis, B. D.; Li, Y. Anti-diabetic action of Punica granatum flower extract: Activation of PPAR-γ and identification of an active component. Toxicol. Appl. Pharmacol. 2005, 207, 160-169. Inzucchi, S. E. Oral antihyperglycemic therapy for type 2 diabetes. JAMA: the journal of the American Medical Association 2002, 287, 360-372. Ip, S. P.; Mak, D. H. F.; Li, P. C.; Poon, M. K. T.; Ko, K. M. Effect of a lignan‐enriched extract of Schisandra Chinensis on aflatoxin B1 and cadmium chloride‐induced hepatotoxicity in rats. Pharmacol. Toxicol. 1996a, 78, 413-416. Ip, S. P.; Poon, M. K. T.; Che, C. T.; Ng, K. H.; Kong, Y. C.; Ko, K. M. Schisandrin B protects against carbon tetrachloride toxicity by enhancing the mitochondrial glutathione redox status in mouse liver. Free Radical Biol. Med. 1996b, 21, 709-712. Isomaa, B. A major health hazard: the metabolic syndrome. Life Sci. 2003, 73, 2395-2411. Jacob, S.; Lehmann, R.; Rett, K.; Hans-Ulrich, H. Oxidative stress and insulin action: a role for antioxidants? Oxidative Stress and Disease 2000, 4, 319-338. Jakuš, V.; Rietbrock, N. Advanced glycation end-products and the progress of diabetic vascular complications. Physiol. Res. 2004, 53, 131-142. Jia, W.; Gao, W.; Tang, L. Antidiabetic herbal drugs officially approved in China. Phytother. Res. 2003, 17, 1127-1134. Jo, S. H.; Ha, K. S.; Moon, K. S.; Lee, O. H.; Jang, H. D.; Kwon, Y. I. In vitro and in vivo anti-hyperglycemic effects of Omija (Schizandra chinensis) fruit. Int. J. Mol. Sci. 2011, 12, 1359-1370. Jurdjevic, M.; Tillman, C. EC Noble in June 1921, and his account of the discovery of insulin. Bull. Hist. Med. 2004, 78, 864-875. Katsube, T.; Imawaka, N.; Kawano, Y.; Yamazaki, Y.; Shiwaku, K.; Yamane, Y. Antioxidant flavonol glycosides in mulberry Morus alba leaves isolated based on LDL antioxidant activity. Food Chem. 2006, 97, 25-31. Kawamori, R.; Tajima, N.; Iwamoto, Y.; Kashiwagi, A.; Shimamoto, K.; Kaku, K. Voglibose for prevention of type 2 diabetes mellitus: a randomised, double-blind trial in Japanese individuals with impaired glucose tolerance. The lancet 2009, 373, 1607-1614. Kim, J. Y.; Kwon, H. J.; Jung, J. Y.; Kwon, H. Y.; Baek, J. G.; Kim, Y. S.; Kwon, O. Comparison of absorption of 1-deoxynojirimycin from mulberry water extract in rats. J. Agric. Food Chem. 2010, 58, 6666-6671. Kimura, T.; Nakagawa, K.; Kubota, H.; Kojima, Y.; Goto, Y.; Yamagishi, K.; Oita, S.; Oikawa, S.; Miyazawa, T. Food-grade Mulberry powder enriched with 1-deoxynojirimycin suppresses the elevation of postprandial blood glucose in humans. J. Agric. Food Chem. 2007, 55, 5869-5874. Ko, B. S.; Choi, S. B.; Park, S. K.; Jang, J. S.; Kim, Y. E.; Park, S. Insulin sensitizing and insulinotropic action of berberine from Cortidis rhizoma. Biol. Pharm. Bull. 2005, 28, 1431-1437. Kong, W. J.; Zhang, H.; Song, D. Q.; Xue, R.; Zhao, W.; Wei, J.; Wang, Y. M.; Shan, N.; Zhou, Z. X.; Yang, P. Berberine reduces insulin resistance through protein kinase C–dependent up-regulation of insulin receptor expression. Metabolism 2009, 58, 109-119. Kwon, D. Y.; Kim, D. S.; Yang, H. J.; Park, S. The lignan-rich fractions of Fructus Schisandrae improve insulin sensitivity via the PPAR-γ pathways in in vitro and in vivo studies. J. Ethnopharmacol. 2011, 135, 455-462. Laube, H. Acarbose: an update of its therapeutic use in diabetes treatment. Clin. Drug Invest. 2002, 22, 141-156. Li, T. H.; Hou, C. C.; Chang, C. L. T.; Yang, W. C. Anti-hyperglycemic properties of crude extract and triterpenes from Poria cocos. Evid.-Based Compl. Alt. 2011, DOI:10.1155/2011/128402. Li, W.; Zheng, H.; Bukuru, J.; De Kimpe, N. Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J. Ethnopharmacol. 2004, 92, 1-21. Lin, C. C.; Lin, L. T.; Yen, M. H.; Cheng, J. T.; Hsing, C. H.; Yeh, C. H. Renal protective effect of Xiao-Chai-Hu-Tang on diabetic nephropathy of type 1-diabetic Mice. Evid.-Based Compl. Alt. 2012, DOI:10.1155/2012/984024. Liu, C. C.; Abd, E. R. M. H.; Liaw, C. C.; Cheng, Y. B.; Chen, C. K.; Chien, C. T.; Kuo, Y. H.; Liou, S. S.; Shen, Y. C. Arisanschinins A-E, lignans from Schisandra arisanensis Hay. Planta Med. 2010, 76, 1605-1610. Lovshin, J. A.; Drucker, D. J. Incretin-based therapies for type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2009, 5, 262-269. Maddux, B. A.; See, W.; Lawrence, J. C.; Goldfine, A. L.; Goldfine, I. D.; Evans, J. L. Protection against oxidative stress—induced insulin resistance in rat L6 muscle cells by micromolar concentrations of α-lipoic acid. Diabetes 2001, 50, 404-410. Maeda, S.; Takeda, S.; Miyamoto, Y.; Aburada, M.; Harada, M. Effects of gomisin A on liver functions in hepatotoxic chemicals-treated rats. Jap. J. Pharmacol. 1985, 38, 347-353. Matsuura, N.; Aradate, T.; Sasaki, C.; Kojima, H.; Ohara, M.; Hasegawa, J.; Ubukata, M. Screening system for the Maillard reaction inhibitor from natural product extracts. J. Health Sci. 2002, 48, 520-526. McIntosh, C. H. S. Incretin-based therapies for type 2 diabetes. Can. J. Diabetes 2008, 32, 131-139. Meckes, M.; Calzada, F.; Tortoriello, J.; Gonzalez, J. L.; Martinez, M. Terpenoids isolated from Psidium guajava hexane extract with depressant activity on central nervous system. Phytother. Res. 1996, 10, 600-603. Meerarani, P.; Badimon, J.; Zias, E.; Fuster, V.; Moreno, P. Metabolic syndrome and diabetic atherothrombosis: implications in vascular complications. Curr. Mol. Med. 2006, 6, 501-514. Mueckler, M. Facilitative glucose transporters. Eur. J. Biochem. 1994, 219, 713-725. Naowaboot, J.; Pannangpetch, P.; Kukongviriyapan, V.; Kongyingyoes, B.; kukongviriyapan, U. Antihyperglycemic, antioxidant and antiglycation activities of Mulberry leaf extract in streptozotocin-induced chronic diabetic rats. Plant Foods Hum. Nutr. 2009, 64, 116-121. Neumiller, J. J.; Odegard, P. S.; White Jr, J. R.; Setter, S. M.; Campbell, R. K. Looking to the future: focus on DPP-4 inhibitors for the treatment of type 2 diabetes and emerging. The Diabetes Educator 2008, 34, 183-200. Nishida, H.; Tatewaki, N.; Nakajima, Y.; Magara, T.; Ko, K. M.; Hamamori, Y.; Konishi, T. Inhibition of ATR protein kinase activity by schisandrin B in DNA damage response. NAR 2009, 37, 5678-5689. Oh, S. Y.; Kim, Y. H.; Bae, D. S.; Um, B. H.; Pan, C. H.; Kim, C. Y.; Lee, H. J.; Lee, J. K. Anti-inflammatory effects of gomisin N, gomisin J, and schisandrin C isolated from the fruit of Schisandra chinensis. Biosci., Biotechnol., Biochem. 2010, 74, 285-291. Oh, W. K.; Lee, C. H.; Lee, M. S.; Bae, E. Y.; Sohn, C. B.; Oh, H.; Kim, B. Y.; Ahn, J. S. Antidiabetic effects of extracts from Psidium guajava. J. Ethnopharmacol. 2005, 96, 411-415. Oldfield, M. D.; Bach, L. A.; Forbes, J. M.; Nikolic-Paterson, D.; McRobert, A.; Thalas, V.; Atkins, R. C.; Osicka, T.; Jerums, G.; Cooper, M. E. Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE). J. Clin. Invest. 2001, 108, 1853-1863. Pajor, A.; Hirayama, B. A.; Wright, E. M. Molecular biology approaches to comparative study of Na (+)-glucose cotransport. Am. J. Physiol. 1992, 263, R489-R495. Paolisso, G.; Di Maro, G.; Pizza, G.; D'Amore, A.; Sgambato, S.; Tesauro, P.; Varricchio, M.; D'Onofrio, F. Plasma GSH/GSSG affects glucose homeostasis in healthy subjects and non-insulin-dependent diabetics. Am. J. Physiol. 1992, 263, E435-E440. Paolisso, G.; Gambardella, A.; Tagliamonte, M. R.; Saccomanno, F.; Salvatore, T.; Gualdiero, P.; D'Onofrio, M. V.; Howard, B. V. Does free fatty acid infusion impair insulin action also through an increase in oxidative stress? J. Clin. Endocrinol. Metab. 1996, 81, 4244-4248. Park, S.; Hong, S. M.; Ahn, I. S.; Kim, Y. J.; Lee, J. B. Huang-Lian-Jie-Du-Tang supplemented with Schisandra chinensis Baill. and Polygonatum odoratum druce improved glucose tolerance by potentiating insulinotropic actions in islets in 90% pancreatectomized diabetic rats. Biosci., Biotechnol., Biochem. 2009, 73, 2384-2392. Peppa, M.; Vlassara, H. Advanced glycation end products and diabetic complications: a general overview. Hormones 2005, 4, 28-37. Pessin, J. E.; Bell, G. Mammalian facilitative glucose transporter family: structure and molecular regulation. Annu. Rev. Physiol. 1992, 54, 911-930. Pessin, J. E.; Saltiel, A. R. Signaling pathways in insulin action: molecular targets of insulin resistance. J. Clin. Invest. 2000, 106, 165-169. Pickup, J.; Mattock, M.; Chusney, G.; Burt, D. NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X. Diab tologia 1997, 40, 1286-1292. Pietrogrande, M. C.; Bacco, D. GC-MS analysis of water-soluble organics in atmospheric aerosol: response surface methodology for optimizing silyl-derivatization for simultaneous analysis of carboxylic acids and sugars. Anal. Chim. Acta 2011, 689, 257-264. Reaven, G. M. Role of insulin resistance in human disease (syndrome X): an expanded definition. Annu. Rev. Med. 1993, 44, 121-131. Reddy, S. S.; Ramatholisamma, P.; Karuna, R.; Saralakumari, D. Preventive effect of Tinospora cordifolia against high-fructose diet-induced insulin resistance and oxidative stress in male Wistar rats. Food Chem. Toxicol. 2009, 47, 2224-2229. Reddy, V. P.; Beyaz, A. Inhibitors of the Maillard reaction and AGE breakers as therapeutics for multiple diseases. Drug Discov. Today 2006, 11, 646-654. Rosenthal, J. H.; Mauersberger, H. Effects on blood pressure of the alpha-glucosidase inhibitor acarbose compared with the insulin enhancer glibenclamide in patients with hypertension and type 2 diabetes mellitus. Clinical drug investigation 2002, 22, 695-701. Rudich, A.; Tirosh, A.; Potashnik, R.; Hemi, R.; Kanety, H.; Bashan, N. Prolonged oxidative stress impairs insulin-induced GLUT4 translocation in 3T3-L1 adipocytes. Diabetes 1998, 47, 1562-1569. Shepherd, P. R.; Kahn, B. B. Glucose transporters and insulin action — implications for insulin resistance and diabetes mellitus. New Engl. J. Med. 1999, 341, 248-257. Shinozaki, K.; Suzuki, M.; Ikebuchi, M.; Hirose, J.; Harano, Y. Improvement of insulin sensitivity and dyslipidemia with a new α-glucosidase inhibitor, voglibose, in nondiabetic hyperinsulinemic subjects. Metabolism 1996, 45, 731-737. Soman, S.; Rauf, A. A.; Indira, M.; Rajamanickam, C. Antioxidant and antiglycative potential of ethyl acetate fraction of Psidium guajava leaf extract in streptozotocin-induced diabetic rats. Plant Foods Hum. Nutr. 2010, 65, 386-391. Soman, S.; Rajamanickam, C.; Rauf, A. A.; Indira, M. Beneficial effects of Psidium guajava leaf extract on diabetic myocardium. Exp. Toxicol. Pathol. 2011, DOI:10.1016/j.etp.2011.1006.1005. Sone, H.; Kagawa, Y. Pancreatic beta cell senescence contributes to the pathogenesis of type 2 diabetes in high-fat diet-induced diabetic mice. Diab tologia 2005, 48, 58-67. Sowers, J.; Levy, J.; Zemel, M. Hypertension and diabetes. Med. Clin. North Am. 1988, 72, 1399-1414. Stumvoll, M.; Goldstein, B. J.; Van Haeften, T. W. Type 2 diabetes: principles of pathogenesis and therapy. The lancet 2005, 365, 1333-1346. Triplitt, C.; McGill, J. B.; Porte, D.; Conner, C. S. The changing landscape of type 2 diabetes: the role of incretin-based therapies in managed care outcomes. J. Managed Care Pharm. 2007, 13, S2-S17. Triplitt, C. L. New technologies and therapies in the management of diabetes. Am. J. Manag. Care 2007, 13, S47-S54. Tsunosue, M.; Mashiko, N.; Ohta, Y.; Matsuo, Y.; Ueda, K.; Ninomiya, M.; Tanaka, S.; Hoshiko, M.; Yoshiyama, Y.; Takeuchi, M. An α-glucosidase inhibitor, acarbose treatment decreases serum levels of glyceraldehyde-derived advanced glycation end products (AGEs) in patients with type 2 diabetes. Clin. Exp. Med. 2010, 10, 139-141. van de Laar, F. A.; Lucassen, P. L.; Akkermans, R. P.; van de Lisdonk, E. H.; Rutten, G. E.; van Weel, C. α-Glucosidase inhibitors for patients with type 2 diabetes. Diabetes Care 2005, 28, 154-163. Wang, H.; Du, Y. J.; Song, H. C. α-Glucosidase and α-amylase inhibitory activities of guava leaves. Food Chem. 2010, 123, 6-13. Wang, W.; Yagiz, Y.; Buran, T. J.; Nunes, C. N.; Gu, L. Phytochemicals from berries and grapes inhibited the formation of advanced glycation end-products by scavenging reactive carbonyls. Food Res. Int. 2011, 44, 2666-2673. Wang, X.; Xing, D.; Wang, W.; Su, H.; Tao, J.; Du, L. Pharmacokinetics of berberine in rat thalamus after intravenous administration of Coptidis rhizoma extract. Am. J. Chin. Med. 2005, 33, 935-943. White, M.; Kahn, C. The insulin signaling system. J. Biol. Chem. 1994, 269, 1-4. Wild, S. H.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030 response to rathman and giani. Diabetes Care 2004, 27, 2569-2569. Wolever, T.; Jenkins, D.; Vuksan, V.; Jenkins, A.; Buckley, G.; Wong, G.; Josse, R. Beneficial effect of a low glycaemic index diet in type 2 diabetes. Diabet. Med. 1992a, 9, 451-458. Wolever, T. M. S.; Jenkins, D. J.; Vuksan, V.; Jenkins, A. L.; Wong, G. S.; Josse, R. G. Beneficial effect of low-glycemic index diet in overweight NIDDM subjects. Diabetes Care 1992b, 15, 562-564. Yatsunami, K.; Ichida, M.; Onodera, S. The relationship between 1-deoxynojirimycin content and α-glucosidase inhibitory activity in leaves of 276 mulberry cultivars (Morus spp.) in Kyoto, Japan. J. Nat. Med. 2008, 62, 63-66. Yuan, L.; Tu, D.; Ye, X.; Wu, J. Hypoglycemic and hypocholesterolemic effects of Coptis chinensis Franch inflorescence. Plant Foods Hum. Nutr. 2006, 61, 139-144. Zerilli, T.; Pyon, E. Y. Sitagliptin phosphate: a DPP-4 inhibitor for the treatment of type 2 diabetes mellitus. Clin. Ther. 2007, 29, 2614-2634. Zhang, J.; Shi, L. L.; Zheng, Y. N. Dibenzocyclooctadiene lignans from Fructus Schisandrae Chinensis improve glucose uptake in vitro. Nat. Prod. Commun. 2010, 5, 231-234. Zhang, Y.; Li, X.; Zou, D.; Liu, W.; Yang, J.; Zhu, N.; Huo, L.; Wang, M.; Hong, J.; Wu, P. Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine. J. Clin. Endocrinol. Metab. 2008, 93, 2559-2565. Zimmet, P. Z.; Alberti, K. G. M. M. The changing face of macrovascular disease in non-insulin-dependent diabetes mellitus: an epidemic in progress. Lancet. 1997, 350, SI1-4. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63555 | - |
dc.description.abstract | 本研究使用五味子 (Schizandra chinensis Baill.)、黃連 (Coptis chinensis)、番石榴葉 (Psidium guajava L. leaves) 與桑葉 (Morus alba L. leaves) 做為全新的調節血糖中藥複方,首先根據其抑制α-glucosidase能力、抑制DPP-4能力與抑制AGE形成能力 (in vitro) 並配合反應區面法 (response surface methodology, RSM) 尋找其較適配方,接著以動物實驗進一步確認該較適化中藥複方之調節血糖效果。反應曲面法結果顯示較適的調節血糖中藥複方之配方為五味子 (3000 μg/mL)、黃連(80 μg/mL)、番石榴葉 (374.56 μg/mL) 與桑葉 (480 μg/mL)。動物實驗結果則顯示以高熱量飼料餵食小鼠六週可成功誘導成為胰島素阻抗小鼠,而給予調節血糖中藥複方後,可顯著降低其任食血糖值,且在胰島素阻抗性試驗中,調節血糖中藥複方也可顯著降低血糖,以上結果指出此中藥複方調節血糖機制可能是因為其可改善胰島素阻抗性。高劑量中藥複方組的血清中果糖胺含量顯著低於高熱量對照組與正常對照組,也顯示出調節血糖中藥複方可改善中長期血糖值與降低糖尿病併發症發生的風險。此外在動物實驗中我們也發現此中藥複方並不會對於小鼠肝臟與胰臟造成傷害,也不會對於小鼠血漿中的脂質與脂蛋白含量有所影響。Berberine與1-deoxynojirimycin為可能的活性成分,其在中藥複方中的含量分別為4.7 ± 0.4與77.1 ± 1.1 μg/mL,此兩化合物的含量在未來可以當作大量生產時的品管指標。 | zh_TW |
dc.description.abstract | An anti-diabetic TCM formula consisting of Schizandra chinensis Baill. (SC), Coptis chinensis (CC), Psidium guajava L. leaves (PG) and Morus alba L. leaves (MA) was developed based on its α-glucosidase, DPP-4 and AGE inhibitory activities in vitro using response surface methodology (RSM). Then, the in vivo study was carried out to confirm the anti-diabetic function of the formula. RSM results showed that the optimum anti-diabetic TCM formula is the combination of SC (3000 μg/mL), CC (80 μg/mL), PG (374.56 μg/mL) and MA (480 μg/mL). For in vivo study, insulin resistant mice were induced by high-fat/high-sucrose (HF/HS) feeding for 6 weeks. Administration of the developed formula significantly decreased non-fasting blood glucose in the HF/HS diet mice. Moreover, the formula decreased blood glucose levels in the insulin tolerance test. These results indicated that the anti-diabetic mechanism of the formula might be due to decreased insulin resistance. The serum fructosamine level in high dose group was significantly lower than HF/HS and normal control groups, indicating that the formula could improve middle term glucose levels and reduce risks for complications. In addition, the formula had no adverse effects on liver as well as kidney and it did not change plasma lipid profile parameters. The contents of berberine and 1-deoxynojirimycin in the formula were 4.7 ± 0.4 and 77.1 ± 1.1 μg/mL, respectively. These two compounds can be used as indicators for quality control during production. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T17:13:56Z (GMT). No. of bitstreams: 1 ntu-101-D94641008-1.pdf: 1769612 bytes, checksum: 8c880432d2f7d81299f7d302a7ff323d (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 第一章 文獻整理 1
1. 糖尿病 1 1.1 糖尿病的流行病學 1 1.2 糖尿病簡介 1 1.3 糖尿病之分類 2 2. 葡萄糖代謝與胰島素訊息傳遞 5 2.1 胰島素 5 2.2 胰島素訊息傳遞與葡萄糖運送 7 2.3 胰島素阻抗性 9 3. 糖尿病之治療方法 9 3.1 胰島素補充與替代品 (insulin replacement) 9 3.2 促進胰島素分泌 (insulin secretagogues) 10 3.3 改善胰島素阻抗 (insulin sensitizers) 10 3.4 減緩碳水化合物吸收 (starch blocker) 10 3.5 GLP-1類似物 (GLP-1 analogues) 13 3.6 DPP-4抑制劑 (DPP-4 inhibitor) 14 4. 高血糖、氧化壓力與胰島素阻抗性 24 4.1 高血糖與自由基之生成 24 4.2 胰島素阻抗與氧化壓力 26 5. 糖化終產物與糖尿病併發症 27 5.1 糖尿病併發症 27 5.2 糖化終產物 27 5.3 糖化終產物與糖尿病併發症之關係 31 6. 中草藥 32 6.1 五味子 32 6.2 黃連 32 6.3 番石榴葉 32 6.4 桑葉 33 第二章 前言 35 第三章 材料與方法 38 1. 試驗材料 38 2. 化學藥品 38 3. 儀器設備 38 4. 調節血糖中藥複方之製備 39 5. 調節血糖中藥複方之較適化 (in vitro) 39 5.1 抑制α-glucosidase之測定 40 5.2 抑制DPP-4之測定 40 5.3 抑制AGE之測定 40 6. 中藥複方之調節血糖功效 (in vivo) 41 6.1 實驗動物 41 6.2 口服葡萄糖耐受性測試 42 6.3 胰島素阻抗性測試 42 6.4 任食血糖含量 42 6.5 血清中胰島素與果糖胺含量 42 6.6 肝功能評估 42 6.7 腎功能評估 43 6.8 血脂含量 43 7. 調節血糖中藥複方之成分分析 43 7.1 schisandrin B含量 43 7.2 berberine含量 43 7.3 1-deoxynojirimycin含量 43 8. 數據統計分析 44 第四章 結果 48 1. 調節血糖中藥複方較適化配方之探討 (in vitro) 48 1.1 黃連、番石榴葉與桑葉對α-glucosidase抑制率之影響 48 1.2 黃連、番石榴葉與桑葉對DPP-4抑制率之影響 53 1.3 黃連、番石榴葉與桑葉對AGE抑制率之影響 57 2. 中藥複方調節血糖活性評估 (in vivo) 61 2.1 肥胖、葡萄糖耐受不良的C57BL/6JNarl小鼠之誘導 61 2.2 中藥複方之攝取對於C57BL/6JNarl小鼠體重之影響 61 2.3 口服葡萄糖耐受性測試 64 2.4 胰島素阻抗性測試 64 2.5 中藥複方之攝取對於C57BL/6JNarl小鼠任食血糖之影響 65 2.6 中藥複方之攝取對於C57BL/6JNarl小鼠血清中胰島素與果糖胺之影響 65 2.7 中藥複方之攝取對於C57BL/6JNarl小鼠肝功能之影響 73 2.8 中藥複方之攝取對於C57BL/6JNarl小鼠腎功能之影響 73 2.9 中藥複方之攝取對於C57BL/6JNarl小鼠血脂之影響 73 3. 調節血糖中藥複方活性成分之探討 82 第五章 討論 88 第六章 結論 94 第七章 參考文獻 95 | |
dc.language.iso | zh-TW | |
dc.title | 調節血糖中藥複方產品之開發與評估 | zh_TW |
dc.title | Development and Evaluation of an Anti-diabetic Traditional Chinese Medicine Formula | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 何其儻,沈雅敬,吳瑞碧,陳旦生 | |
dc.subject.keyword | 五味子,黃連,番石榴,桑葉,調節血糖功效,α-glucosidase抑制活性,DPP-4抑制活性,AGE抑制活性,中藥, | zh_TW |
dc.subject.keyword | Schizandra chinensis Baill.,Coptis chinensis,Psidium guajava L.,Morus alba L.,anti-diabetic effect,α-glucosidase inhibitory activity,DPP-4 inhibitory activity,AGE inhibitory activity,traditional Chinese medicine, | en |
dc.relation.page | 105 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-20 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 食品科技研究所 | zh_TW |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 1.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。