請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6305
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張正憲 | |
dc.contributor.author | Han-Yi Hsieh | en |
dc.contributor.author | 謝瀚逸 | zh_TW |
dc.date.accessioned | 2021-05-16T16:25:34Z | - |
dc.date.available | 2014-08-01 | |
dc.date.available | 2021-05-16T16:25:34Z | - |
dc.date.copyright | 2013-11-05 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-04-01 | |
dc.identifier.citation | [1] C. Ziegler, “Cantilever-based biosensors,” Analytical and Bioanalytical
Chemistry, vol. 379, 946 (2004). [2] R. Berger, E. Delamarche, H. P. Lang, C. Gerber, J. K. Gimzewski, E. Meyer, and H. J. Guntherodt, “Surface Stress in the Self-Assembly of Alkanethiols on Gold,” Science, vol. 276, 2021 (1997). [3] T. M. Battiston, J. P. Ramseyar, H. P. Lang, M. K. Baller, Ch. Gerber, J. K. Gimzewski, E. Meyer, and H. J. Guntherodt, “A chemical sensor based on a microfabricated cantilever array with simultaneous resonance-frequency and bending readout,” Sensors and Actuators B, vol. 77, 122-131 (2001). [4] James W. M. Chon, P. Mulvaney, and J. E. Sader, “Experimental validation of theoretical models for the frequency response of atomic force microscope cantilever beams immersed in fluids,” Journal of Applied Physics, vol. 87, 3978 (2000). [5] X. Xu and A. Raman, “Comparative dynamics of magnetically, acoustically, and Brownian motion driven microcantilevers in liquids,” Journal of Applied Physics, vol. 102, 034303 (2007). [6] W. T. Thomson, Theory of Vibration with Application 4th edition (Prentice Hall A Simon & Schuster Company, New Jersey, 1993). [7] W. J. Bottega, Engineering Vibrations (Taylor & Francis Group, Boca Raton, 2006). [8] 方同, 薛僕, 振動理論及應用 (西北工業大學出版社, 西安, 1998). [9] E. O. Tuck, “Calculation of unsteady flows due to small motions of cylinders in viscous fluid,” Journal of Engeering Mathematics, vol. 3, 29 (1969). [10] J. E. Sader, “Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope,” Journal of Applied Physics, vol. 84, 64 (1998). [11] D. A. Walters, J. P. Cleveland, N. H. Thomson, P. K. Hansma, M. A. Wendman, G. Gurley, and V. Elings, “Short cantilevers for atomic force microscopy,” Review of Scientific Instruments, vol. 67, 3583 (1996). [12] J. C. Hsu, H. L. Lee, and W. J. Chang, “Flexural vibration frequency of atomic force microscope cantilevers using the Timoshenko beam model,” Nanotechnology, vol. 18, 285503 (2007). [13] H. L. Lee, and W. J. Chang, “Effects of Damping on the Vibration Frequency of Atomic Force Microscope Cantilevers Using the Timoshenko Beam Model,” Japanese Journal of Applied Physics, vol. 48, 065005 (2009). [14] A. Sadeghi, and H. Zohoor, “Nonlinear vibration of double tapered atomic force microscope (a nano microscope) cantilevers by considering the Hertzian contact theory,” (2010). [15] H. Zohoor, and A. Sadeghi, “The flexural vibration of dagger shaped atomic force microscope cantilevers by considering Timoshenko beam theory and using the Differential Quadrature Method,” (2010). [16] A. Sadeghi, “The flexural vibration of V shaped atomic force microscope cantilevers by using the Timoshenko beam theory,” Z. Angew. Math. Mech., vol. 92, 782 (2012). [17] S. Dohn, R. Sandberg, W. Svendsen, and A. Boisen, “Enhanced functionality of cantilever based mass sensors using higher modes,” Applied Physics Letters, vol. 86, 233501 (2005). [18] F. Lochon, I. Dufour, and D. Rebiere, “An alternative solution to improve sensitivity of resonant microcantilever chemical sensors: comparison between using high-order modes and reducing dimensions,” Sensors and Actuators B, vol. 108, 979 (2005). [19] M. K. Ghatkesar, V. Barwich, T. Braun, J. P. Ramseyer, C. Gerber, M. Hegner, H. P. Lang, U. Drechsler, and M. Despont, “Higher modes of vibration increase mass sensitivity in nanomechanical microcantilevers,” Nanotechnology, vol. 18, 445502 (2007). [20] M. K. Ghatkesar, T. Braun, V. Barwich, J. P. Ramseyer, C. Gerber, M. Hegner, and H. P. Lang, “Resonating modes of vibrating microcantilevers in liquid,” Applied Physics Letters, vol. 92, 043106 (2008). [21] 黃冠榮, 微混合器與共振式微懸臂梁生物感測器的理論建立與數值模擬, 博 士論文, 國立台灣大學應用力學研究所, 台北市 (2011). [22] 林建豪, 微懸臂梁陣列在不同介質下的頻響函數, 碩士論文, 國立台灣大學 應用力學研究所, 台北市 (2011). [23] R. D. Blevins, Formulas for Natural Frequency and Mode Shape (Van Nostrand Reinhold, New York, 1979). [24] W. J. Bottega, Engineering Vibrations (Taylor & Francis Group, Boca Raton, 2006) p. 634. [25] 廖展誼, 微系統機械元件於流體環境中動態特性研究與原子力顯微鏡上之 應用, 碩士論文, 國立台灣大學應用力學研究所, 台北市 (2010). [26] 黃俊維, 微懸臂梁感測器之力學模型與最佳化設計, 碩士論文, 國立台灣大 學應用力學研究所, 台北市 (2004). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6305 | - |
dc.description.abstract | 本文主要建立Timoshenko 梁於黏滯流體中的振動模型。並將之與Euler 梁於黏滯流體中振動行為以尺寸、流體介質種類、模態階數分類比較,最後將額外質量對於兩理論頻率偏移之影響做比較。
本文首先介紹相關文獻,利用格林函數解析任意截面不可壓縮黏滯流體理論,得出流體施加在扁平梁的水力負載,再將水力函數分別耦合進Euler 梁理論與Timoshenko 梁理論中,取得流固耦合後的頻率響應函數及受額外質量影響的頻率響應函數。 藉由物理行為、兩理論之間的關係以及與文獻中數值結果相互驗證。以數值結果分別比較兩理論於不同尺寸、不同流體介質、不同模態階數之關係。最後同樣以數值結果得知額外質量對兩理論於流體環境中振動之共振頻率的影響。感測器常於流體環境中做量測,由於其頻率於高模態時流體對結構的影響較小,且Timoshenko 梁理論與Euler 梁理論於高模態時差異越趨明顯,本文中之數值結果 呈現當L h | zh_TW |
dc.description.abstract | This thesis is primarily based vibration model of Timoshenko beam in viscous fluid. To compare the vibration model with the vibration behavior of Euler beam in viscous fluid by the size, fluid type and modal order. In the end of the comparison, the added mass effect of two theoretical frequency shifts is compared.
This thesis firstly introduces the relevant reference. Using the Green's function to solve incompressible viscous fluid theorem of any cross-section, and to conclude hydrodynamic loading that fluid applied to the flat beam. After that, have the hydrodynamic functions coupled with the Euler beam theory and Timoshenko beam theory to obtain the frequency response function and the frequency response function which affected by the added mass after fluid-structure interaction. Ultimately, the Timoshenko beam numerical results are verified with the physical behavior, the relationship between the two theories and the numerical results of the reference. The numerical results of the frequency response functions were compared the relationship to two theories in different sizes, different fluids, and the different modal orders. Finally, we can find out the added mass effect of resonant frequency which vibrates in the fluid environment of the two theories by the numerical results. Sensors often do measurements in the fluid environment. Because the effect of the frequency is smaller when the fluid acting on the structure, and the differences of Timoshenko beam theory and Euler beam theory become more obvious in high mode. The numerical results in this paper present that the difference in 8th mode is up to 65% when L/ h | en |
dc.description.provenance | Made available in DSpace on 2021-05-16T16:25:34Z (GMT). No. of bitstreams: 1 ntu-102-R99543058-1.pdf: 6532192 bytes, checksum: 63936488b70a6a368876b891b6f6c3b7 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 摘要 ................................................................................................................................I
Abstract ......................................................................................................................... II 目錄 .............................................................................................................................. III 圖目錄 ........................................................................................................................... V 表目錄 ....................................................................................................................... XIV 符號表 .................................................................................................................... XVIII 第一章 緒論 .................................................................................................................. 1 1-1 研究動機與目的 ............................................................................................ 1 1-2 文獻回顧 ........................................................................................................ 2 1-3 論文架構 ........................................................................................................ 4 第二章 黏滯流體水力函數 .......................................................................................... 5 2-1 黏滯流體下任意截面流固耦合 .................................................................... 5 2-2 黏滯流體下扁平梁的水力負載 .................................................................. 10 第三章 流固耦合系統振動分析 ................................................................................ 14 3-1 Euler 梁 .......................................................................................................... 14 3-1-1 結構統御方程式 ............................................................................... 15 3-1-2 模態形狀之求得 ............................................................................... 17 3-1-3 流體中頻率響應及額外質量的影響 ............................................... 20 3-2 Timoshenko 梁 .............................................................................................. 23 3-2-1 結構統御方程式 ............................................................................... 23 3-2-2 流體中頻率響應與額外質量的影響 ............................................... 26 第四章 理論驗證與數值結果 .................................................................................... 30 4-1 理論驗證 ...................................................................................................... 30 4-1-1 靜態分析 ........................................................................................... 30 4-1-2 Timoshenko 梁與Euler 梁相互比較 ................................................ 33 4-1-3 與直接求解法比較 ........................................................................... 36 4-1-4 與文獻比較 ....................................................................................... 38 4-2 數值結果 ...................................................................................................... 49 4-2-1 剪切模數與流體對結構的影響 ....................................................... 49 4-2-2 結構長度與厚度之比值與流體的影響 ........................................... 57 4-2-3 兩理論差異與流體影響於高模態時之關係 ................................... 67 4-2-4 額外質量對兩理論頻率偏移之影響 ............................................. 113 第五章 結論及未來展望 .......................................................................................... 166 參考文獻 .................................................................................................................... 169 附錄 ............................................................................................................................ 172 | |
dc.language.iso | zh-TW | |
dc.title | Timoshenko 和Euler 懸臂梁本身及帶額外微小質量在流體環境中共振頻及頻率飄移之比較 | zh_TW |
dc.title | Comparisons of Resonant Frequency and Resonant
Frequency Shift due to the Added Mass between Timoshenko and Euler Cantilever Beam Immersed in the Fluid Environments | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳光鐘,趙聖德,黃冠榮 | |
dc.subject.keyword | 微懸臂梁感測器,原子力顯微鏡,Timoshenko 梁理論,Euler梁理論,黏滯流體,振動,頻率響應, | zh_TW |
dc.subject.keyword | microcantilever beam sensor,atomic force microscope,Timoshenko, | en |
dc.relation.page | 176 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2013-04-01 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf | 6.38 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。