Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62628
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔣丙煌
dc.contributor.authorMei-Huei Chenen
dc.contributor.author陳媺蕙zh_TW
dc.date.accessioned2021-06-16T16:05:58Z-
dc.date.available2021-07-15
dc.date.copyright2020-07-15
dc.date.issued2020
dc.date.submitted2020-06-05
dc.identifier.citationAbbott, N. J.; Patabendige, A. A.; Dolman, D. E.; Yusof, S. R.; Begley, D. J., Structure and function of the blood–brain barrier. Neurobiology of disease 2010, 37 (1), 13-25.
Abbott, N. J.; Rönnbäck, L.; Hansson, E., Astrocyte–endothelial interactions at the blood–brain barrier. Nature reviews neuroscience 2006, 7 (1), 41.
Aich, U.; Yarema, K. J., Glycobiology and immunology. Carbohydrate-Based Vaccines and Immuntherapies. Hoboken, New Jersey: John Wiley & Sons 2009, 1-54.
Ahmed, K. S.; Hussein, S. A.; Ali, A. H.; Korma, S. A.; Lipeng, Q.; Jinghua, C., Liposome: Composition, characterisation, preparation, and recent innovation in clinical applications. Journal of drug targeting 2019, 27 (7), 742-761.
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S. W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K., Liposome: classification, preparation, and applications. Nanoscale research letters 2013, 8 (1), 102.
Akiyama, H.; Barger, S.; Barnum, S.; Bradt, B.; Bauer, J.; Cole, G. M.; Cooper, N. R.; Eikelenboom, P.; Emmerling, M.; Fiebich, B. L., Inflammation and Alzheimer’s disease. Neurobiology of aging 2000, 21, 383-421.
Aleksis, R.; Oleskovs, F.; Jaudzems, K.; Pahnke, J.; Biverstål, H., Structural studies of amyloid-β peptides: Unlocking the mechanism of aggregation and the associated toxicity. Biochimie 2017, 140, 176-192.
Anand, P.; Kunnumakkara, A. B.; Newman, R. A.; Aggarwal, B. B., Bioavailability of curcumin: problems and promises. Molecular pharmaceutics 2007, 4 (6), 807-818.
Bader, R. A.; Wardwell, P. R., Polysialic acid: overcoming the hurdles of drug delivery. Therapeutic delivery 2014, 5 (3), 235-237.
Balasubramanian, K., Molecular orbital basis for yellow curry spice curcumin's prevention of Alzheimer's disease. Journal of agricultural and food chemistry 2006, 54 (10), 3512-3520.
Banks, W. A.; Kastin, A. J., Characterization of lectin‐mediated brain uptake of HIV‐1 GP120. Journal of neuroscience research 1998, 54 (4), 522-529.
Barbu, E.; Molnàr, É.; Tsibouklis, J.; Górecki, D. C., The potential for nanoparticle-based drug delivery to the brain: overcoming the blood–brain barrier. Expert opinion on drug delivery 2009, 6 (6), 553-565.
Barghorn, S.; Nimmrich, V.; Striebinger, A.; Krantz, C.; Keller, P.; Janson, B.; Bahr, M.; Schmidt, M.; Bitner, R. S.; Harlan, J., Globular amyloid β‐peptide1− 42 oligomer− a homogenous and stable neuropathological protein in Alzheimer's disease. Journal of neurochemistry 2005, 95, 834-847.
Barnes, D. E.; Yaffe, K., The projected effect of risk factor reduction on Alzheimer's disease prevalence. The Lancet Neurology 2011, 10, 819-828.
Begum, A. N.; Jones, M. R.; Lim, G. P.; Morihara, T.; Kim, P.; Heath, D. D.; Rock, C. L.; Pruitt, M. A.; Yang, F.; Hudspeth, B., Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer's disease. Journal of Pharmacology and Experimental Therapeutics 2008, 326 (1), 196-208.
Bhavanandan, V. P.; Katlic, A. W., The interaction of wheat germ agglutinin with sialoglycoproteins. The role of sialic acid. Journal of Biological Chemistry 1979, 254 (10), 4000-4008.
Bnyan, R.; Khan, I.; Ehtezazi, T.; Saleem, I.; Gordon, S.; O'Neill, F.; Roberts, M., Surfactant effects on lipid-based vesicles properties. Journal of pharmaceutical sciences 2018, 107 (5), 1237-1246.
Briuglia, M.-L.; Rotella, C.; McFarlane, A.; Lamprou, D. A., Influence of cholesterol on liposome stability and on in vitro drug release. Drug delivery and translational research 2015, 5 (3), 231-242.
Butterfield, D. A.; Lauderback, C. M., Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid β- peptide-associated free radical oxidative stress 1, 2. Free Radical Biol. Med. 2002, 32, 1050-1060.
Caspersen, C.; Wang, N.; Yao, J.; Sosunov, A.; Chen, X.; Lustbader, J. W.; Xu, H. W.; Stern, D.; McKhann, G.; Yan, S. D., Mitochondrial Abeta: a potential focal point for neuronal metabolic dysfunction in Alzheimer's disease. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 2005, 19, 2040-2041.
Chen, X.; Zou, L.-Q.; Niu, J.; Liu, W.; Peng, S.-F.; Liu, C.-M., The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes. Molecules 2015, 20 (8), 14293-14311.
Clive Ballard MRC Psych, M.; BComms, H. C., Nonpharmacological treatment of Alzheimer disease. Canadian Journal of Psychiatry 2011, 56, 589.
Danaei, M.; Kalantari, M.; Raji, M.; Fekri, H. S.; Saber, R.; Asnani, G.; Mortazavi, S.; Mozafari, M.; Rasti, B.; Taheriazam, A., Probing nanoliposomes using single particle analytical techniques: effect of excipients, solvents, phase transition and zeta potential. Heliyon 2018, 4 (12), e01088.
Du, J.; Lu, W.-L.; Ying, X.; Liu, Y.; Du, P.; Tian, W.; Men, Y.; Guo, J.; Zhang, Y.; Li, R.-J., Dual-targeting topotecan liposomes modified with tamoxifen and wheat germ agglutinin significantly improve drug transport across the blood− brain barrier and survival of brain tumor-bearing animals. Molecular pharmaceutics 2009, 6 (3), 905-917.
Fricker, G.; Kromp, T.; Wendel, A.; Blume, A.; Zirkel, J.; Rebmann, H.; Setzer, C.; Quinkert, R.-O.; Martin, F.; Müller-Goymann, C., Phospholipids and lipid-based formulations in oral drug delivery. Pharmaceutical research 2010, 27 (8), 1469-1486.
Gabathuler, R., Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiology of disease 2010, 37 (1), 48-57.
Gan, C. W.; Feng, S.-S., Transferrin-conjugated nanoparticles of poly (lactide)-D-α-tocopheryl polyethylene glycol succinate diblock copolymer for targeted drug delivery across the blood–brain barrier. Biomaterials 2010, 31 (30), 7748-7757.
Göröug, P.; Pearson, J., Sialic acid moieties on surface glycoproteins protect endothelial cells from proteolytic damage. The Journal of pathology 1985, 146 (3), 205-212.
Hardy, J.; Selkoe, D. J., The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. science 2002, 297, 353-356.
Helms, H. C.; Abbott, N. J.; Burek, M.; Cecchelli, R.; Couraud, P.-O.; Deli, M. A.; Förster, C.; Galla, H. J.; Romero, I. A.; Shusta, E. V., In vitro models of the blood–brain barrier: an overview of commonly used brain endothelial cell culture models and guidelines for their use. Journal of Cerebral Blood Flow & Metabolism 2016, 36 (5), 862-890.
Hermida, L. G.; Sabés-Xamaní, M.; Barnadas-Rodríguez, R., Combined strategies for liposome characterization during in vitro digestion. Journal of liposome research 2009, 19 (3), 207-219.
Hervé, F.; Ghinea, N.; Scherrmann, J.-M., CNS delivery via adsorptive transcytosis. The AAPS journal 2008, 10 (3), 455-472.
Heymans, M.; Sevin, E.; Gosselet, F.; Lundquist, S.; Culot, M., Mimicking brain tissue binding in an in vitro model of the blood-brain barrier illustrates differences between in vitro and in vivo methods for assessing the rate of brain penetration. European Journal of Pharmaceutics and Biopharmaceutics 2018, 127, 453-461.
Hombach, J.; Bernkop-Schnürch, A., Chitosan solutions and particles: evaluation of their permeation enhancing potential on MDCK cells used as blood brain barrier model. International journal of pharmaceutics 2009, 376 (1-2), 104-109.
Huang, Y.-B.; Tsai, M.-J.; Wu, P.-C.; Tsai, Y.-H.; Wu, Y.-H.; Fang, J.-Y., Elastic liposomes as carriers for oral delivery and the brain distribution of (+)-catechin. Journal of drug targeting 2011, 19 (8), 709-718.
Jain, S.; Hreczuk-Hirst, D. H.; McCormack, B.; Mital, M.; Epenetos, A.; Laing, P.; Gregoriadis, G., Polysialylated insulin: synthesis, characterization and biological activity in vivo. Biochimica et Biophysica Acta (BBA)-General Subjects 2003, 1622 (1), 42-49.
Joseph, J., Experimental optimization of Lornoxicam liposomes for sustained topical delivery. European journal of pharmaceutical sciences 2018, 112, 38-51.
Kaddah, S.; Khreich, N.; Kaddah, F.; Charcosset, C.; Greige-Gerges, H., Cholesterol modulates the liposome membrane fluidity and permeability for a hydrophilic molecule. Food and Chemical Toxicology 2018, 113, 40-48.
Kealy, J.; Greene, C.; Campbell, M., Blood-brain barrier regulation in psychiatric disorders. Neuroscience letters 2020, 133664.
Kim, D. S.; Kim, J. Y., Side-chain length is important for shogaols in protecting neuronal cells from β-amyloid insult. Bioorganic & medicinal chemistry letters 2004, 14, 1287-1289.
Kim, H.-J.; Moon, K.-D.; Lee, D.-S.; Lee, S.-H., Ethyl ether fraction of Gastrodia elata Blume protects amyloid β peptide-induced cell death. Journal of ethnopharmacology 2003, 84, 95-98.
Krishnan, K.; Balasundaram, S., Evaluation of Total and Lipid Bound Sialic Acid in Serum in Oral Leukoplakia. Journal of clinical and diagnostic research: JCDR 2017, 11 (3), ZC25.
Kuo, Y.-C.; Lin, C.-C., Rescuing apoptotic neurons in Alzheimer’s disease using wheat germ agglutinin-conjugated and cardiolipin-conjugated liposomes with encapsulated nerve growth factor and curcumin. International journal of nanomedicine 2015, 10, 2653.
Kuo, Y.-C.; Lin, C.-Y.; Li, J.-S.; Lou, Y.-I., Wheat germ agglutinin-conjugated liposomes incorporated with cardiolipin to improve neuronal survival in Alzheimer’s disease treatment. International journal of nanomedicine 2017, 12, 1757.
Lazar, A. N.; Mourtas, S.; Youssef, I.; Parizot, C.; Dauphin, A.; Delatour, B.; Antimisiaris, S. G.; Duyckaerts, C., Curcumin-conjugated nanoliposomes with high affinity for Aβ deposits: possible applications to Alzheimer disease. Nanomedicine: Nanotechnology, Biology and Medicine 2013, 9 (5), 712-721.
Li, J.; Wang, X.; Zhang, T.; Wang, C.; Huang, Z.; Luo, X.; Deng, Y., A review on phospholipids and their main applications in drug delivery systems. Asian journal of pharmaceutical sciences 2015, 10 (2), 81-98.
Li, X.-T.; Ju, R.-J.; Li, X.-Y.; Zeng, F.; Shi, J.-F.; Liu, L.; Zhang, C.-X.; Sun, M.-G.; Lou, J.-N.; Lu, W.-L., Multifunctional targeting daunorubicin plus quinacrine liposomes, modified by wheat germ agglutinin and tamoxifen, for treating brain glioma and glioma stem cells. Oncotarget 2014, 5 (15), 6497.
Lien, C.-F.; Molnár, E. v.; Toman, P.; Tsibouklis, J.; Pilkington, G. J.; Górecki, D. C.; Barbu, E., In vitro assessment of alkylglyceryl-functionalized chitosan nanoparticles as permeating vectors for the blood–brain barrier. Biomacromolecules 2012, 13 (4), 1067-1073.
Lim, G.; Yang, F.; Chu, T.; Chen, P.; Beech, W.; Teter, B.; Tran, T.; Ubeda, O.; Ashe, K. H.; Frautschy, S., Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer's disease. The journal of Neuroscience 2000, 20, 5709-5714.
Lin, C.-Y.; Lin, Y.-C.; Huang, C.-Y.; Wu, S.-R.; Chen, C.-M.; Liu, H.-L., Ultrasound-responsive neurotrophic factor-loaded microbubble-liposome complex: Preclinical investigation for Parkinson's disease treatment. Journal of Controlled Release 2020.
Lin, K.-H.; Hong, S.-T.; Wang, H.-T.; Lo, Y.-L.; Lin, A. M.-Y.; Yang, J. C.-H., Enhancing anticancer effect of gefitinib across the blood–brain barrier model using liposomes modified with one α-helical cell-penetrating peptide or glutathione and tween 80. International journal of molecular sciences 2016, 17 (12), 1998.
Liu, D.; Lin, B.; Shao, W.; Zhu, Z.; Ji, T.; Yang, C., In vitro and in vivo studies on the transport of PEGylated silica nanoparticles across the blood–brain barrier. ACS applied materials & interfaces 2014, 6 (3), 2131-2136.
Liu, D.; Yang, Y.; Liu, Q.; Wang, J., Inhibition of autophagy by 3-MA potentiates cisplatin-induced apoptosis in esophageal squamous cell carcinoma cells. Medical oncology 2011, 28 (1), 105-111.
Liu, Q.; Shao, X.; Chen, J.; Shen, Y.; Feng, C.; Gao, X.; Zhao, Y.; Li, J.; Zhang, Q.; Jiang, X., In vivo toxicity and immunogenicity of wheat germ agglutinin conjugated poly (ethylene glycol)-poly (lactic acid) nanoparticles for intranasal delivery to the brain. Toxicology and applied pharmacology 2011, 251 (1), 79-84.
Liu, W.; Ye, A.; Liu, W.; Liu, C.; Singh, H., Stability during in vitro digestion of lactoferrin-loaded liposomes prepared from milk fat globule membrane-derived phospholipids. Journal of dairy science 2013, 96 (4), 2061-2070.
Liu, Y.; Wang, P.; Sun, C.; Feng, N.; Zhou, W.; Yang, Y.; Tan, R.; Chen, Z.; Wu, S.; Zhao, J., Wheat germ agglutinin-grafted lipid nanoparticles: preparation and in vitro evaluation of the association with Caco-2 monolayers. International journal of pharmaceutics 2010, 397 (1-2), 155-163.
Liu, Y.; Zhao, Y.; Liu, J.; Zhang, M.; Yu, M.; Feng, N., Wheat germ agglutinin modification of lipid–polymer hybrid nanoparticles: enhanced cellular uptake and bioadhesion. RSC advances 2016, 6 (42), 36125-36135.
Maheshwari, R. K.; Singh, A. K.; Gaddipati, J.; Srimal, R. C., Multiple biological activities of curcumin: a short review. Life sciences 2006, 78 (18), 2081-2087.
Makhlof, A.; Fujimoto, S.; Tozuka, Y.; Takeuchi, H., In vitro and in vivo evaluation of WGA–carbopol modified liposomes as carriers for oral peptide delivery. European journal of pharmaceutics and biopharmaceutics 2011, 77 (2), 216-224.
Mattson, M. P., Pathways towards and away from Alzheimer's disease. Nature 2004, 430, 631-639.
Mariani, E.; Polidori, M.; Cherubini, A.; Mecocci, P., Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J. Chromatogr. B 2005, 827, 65-75.
Martins, I.; Hone, E.; Foster, J.; Sünram-Lea, S.; Gnjec, A.; Fuller, S.; Nolan, D.; Gandy, S.; Martins, R., Apolipoprotein E, cholesterol metabolism, diabetes, and the convergence of risk factors for Alzheimer's disease and cardiovascular disease. Mol. Psychiatry 2006, 11, 721-736.
McGeer, P. L.; McGeer, E. G., Inflammation, autotoxicity and Alzheimer disease. Neurobiol. Aging 2001, 22, 799-809.
McGleenon, B.; Dynan, K.; Passmore, A., Acetylcholinesterase inhibitors in Alzheimer's disease. Br. J. Clin. Pharmacol. 1999, 48, 471-480.
Moghassemi, S.; Hadjizadeh, A., Nano-niosomes as nanoscale drug delivery systems: an illustrated review. Journal of controlled release 2014, 185, 22-36.
Molnar, D.; Linders, J.; Mayer, C.; Schubert, R., Insertion stability of poly (ethylene glycol)-cholesteryl-based lipid anchors in liposome membranes. European Journal of Pharmaceutics and Biopharmaceutics 2016, 103, 51-61.
MONSIGNY, M.; ROCHE, A. C.; SENE, C.; MAGET‐DANA, R.; DELMOTTE, F., Sugar‐lectin interactions: how does wheat‐germ agglutinin bind sialoglycoconjugates? European journal of biochemistry 1980, 104 (1), 147-153.
Mourtas, S.; Lazar, A. N.; Markoutsa, E.; Duyckaerts, C.; Antimisiaris, S. G., Multifunctional nanoliposomes with curcumin–lipid derivative and brain targeting functionality with potential applications for Alzheimer disease. European journal of medicinal chemistry 2014, 80, 175-183.
Muqbil, I.; Masood, A.; Sarkar, F. H.; Mohammad, R. M.; Azmi, A. S., Progress in nanotechnology based approaches to enhance the potential of chemopreventive agents. Cancers 2011, 3 (1), 428-445.
Neves-Coelho, S.; Eleutério, R. P.; Enguita, F. J.; Neves, V.; Castanho, M. A., A New Noncanonical Anionic Peptide That Translocates a Cellular Blood–Brain Barrier Model. Molecules 2017, 22 (10), 1753.
Neyra, C.; Paladino, J.; Le Borgne, M., Oxidation of sialic acid using hydrogen peroxide as a new method to tune the reducing activity. Carbohydrate research 2014, 386, 92-98.
Nguyen, T. A.; Tang, Q. D.; Doan, D. C. T.; Dang, M. C., Micro and nano liposome vesicles containing curcumin for a drug delivery system. Advances in Natural Sciences: Nanoscience and Nanotechnology 2016, 7 (3), 035003.
Nisini, R.; Poerio, N.; Mariotti, S.; De Santis, F.; Fraziano, M., The multirole of liposomes in therapy and prevention of infectious diseases. Frontiers in immunology 2018, 9, 155.
Nkanga, C. I.; Krause, R. W.; Noundou, X. S.; Walker, R. B., Preparation and characterization of isoniazid-loaded crude soybean lecithin liposomes. International journal of pharmaceutics 2017, 526 (1-2), 466-473.
Olazarán, J.; Reisberg, B.; Clare, L.; Cruz, I.; Peña-Casanova, J.; Del Ser, T.; Woods, B.; Beck, C.; Auer, S.; Lai, C., Nonpharmacological therapies in Alzheimer’s disease: a systematic review of efficacy. Dement. Geriatr. Cogn. Disord. 2010, 30, 161-178.
Pardridge, W. M., Drug transport across the blood–brain barrier. Journal of cerebral blood flow & metabolism 2012, 32 (11), 1959-1972.
Park, Y. S.; Huang, L., Effect of chemically modified GM1 and neoglycolipid analogs of GM1 on liposome circulation time: evidence supporting the dysopsonin hypothesis. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism 1993, 1166 (1), 105-114.
Pasenkiewicz-Gierula, M.; Takaoka, Y.; Miyagawa, H.; Kitamura, K.; Kusumi, A., Hydrogen bonding of water to phosphatidylcholine in the membrane as studied by a molecular dynamics simulation: location, geometry, and lipid− lipid bridging via hydrogen-bonded water. The Journal of Physical Chemistry A 1997, 101 (20), 3677-3691.
Patil, Y. P.; Jadhav, S., Novel methods for liposome preparation. Chemistry and physics of lipids 2014, 177, 8-18.
Pelegri-O’Day, E. M.; Lin, E.-W.; Maynard, H. D., Therapeutic protein–polymer conjugates: advancing beyond PEGylation. Journal of the American Chemical Society 2014, 136 (41), 14323-14332.
Pooja, D.; Tunki, L.; Kulhari, H.; Reddy, B. B.; Sistla, R., Characterization, biorecognitive activity and stability of WGA grafted lipid nanostructures for the controlled delivery of Rifampicin. Chemistry and physics of lipids 2015, 193, 11-17.
Prasad, S.; Tyagi, A. K.; Aggarwal, B. B., Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer research and treatment: official journal of Korean Cancer Association 2014, 46 (1), 2.
Punnappuzha, A.; PonnanEttiyappan, J.; Nishith, R. S.; Hadigal, S.; Pai, P. G., Synthesis and Characterization of Polysialic Acid–Uricase Conjugates for the Treatment of Hyperuricemia. International Journal of Peptide Research and Therapeutics 2014, 20 (4), 465-472.
Querfurth, H. W.; LaFerla, F. M., Mechanisms of disease. N Engl J Med 2010, 362 (4), 329-344.
Ray, B.; Lahiri, D. K., Neuroinflammation in Alzheimer's disease: different molecular targets and potential therapeutic agents including curcumin. Current opinion in pharmacology 2009, 9 (4), 434-444.
Reddy, P. H.; Beal, M. F., Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer's disease. Trends Mol. Med. 2008, 14, 45-53.
Resende, R.; Ferreiro, E.; Pereira, C.; De Oliveira, C. R., Neurotoxic effect of oligomeric and fibrillar species of amyloid-beta peptide 1-42: involvement of endoplasmic reticulum calcium release in oligomer-induced cell death. Neuroscience 2008, 155, 725-737.
Rodriguez-Berdini, L.; Ferrero, G. O., A Technique for the Measurement of in vitro Phospholipid Synthesis via Radioactive Labeling. Bio-protocol 2016.
Rutishauser, U., Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nature Reviews Neuroscience 2008, 9 (1), 26-35.
Schauer, R., Sialic acids as regulators of molecular and cellular interactions. Current opinion in structural biology 2009, 19 (5), 507-514.
Shade, C. W., Liposomes as advanced delivery systems for nutraceuticals. Integrative Medicine: A Clinician's Journal 2016, 15 (1), 33.
Schelterns, P.; Feldman, H., Treatment of Alzheimer's disease; current status and new perspectives. The Lancet Neurology 2003, 2, 539-547.
Selkoe, D. J., Alzheimer's disease: genotypes, phenotype, and treatments. Sci 1997, 275, 630.
Sengupta, U.; Nilson, A. N.; Kayed, R., The role of amyloid-β oligomers in toxicity, propagation, and immunotherapy. EBioMedicine 2016, 6, 42-49.
Shmeeda, H.; Amitay, Y.; Gorin, J.; Tzemach, D.; Mak, L.; Ogorka, J.; Kumar, S.; Zhang, J. A.; Gabizon, A., Delivery of zoledronic acid encapsulated in folate-targeted liposome results in potent in vitro cytotoxic activity on tumor cells. Journal of Controlled Release 2010, 146 (1), 76-83.
Sloane, P. D.; Zimmerman, S.; Suchindran, C.; Reed, P.; Wang, L.; Boustani, M.; Sudha, S., The public health impact of Alzheimer's disease, 2000-2050: potential implication of treatment advances. Annu. Rev. Public Health 2002, 23, 213-231.
Smith, D. G.; Cappai, R.; Barnham, K. J., The redox chemistry of the Alzheimer's disease amyloid β peptide. Biochimica et Biophysica Acta (BBA)-Biomembranes 2007, 1768, 1976-1990.
Svennerholm, L., Quantitive estimation of sialic acids: II. A colorimetric resorcinol-hydrochloric acid method. Biochimica et biophysica acta 1957, 24, 604-611.
Takahashi, M.; Uechi, S.; Takara, K.; Asikin, Y.; Wada, K., Evaluation of an oral carrier system in rats: bioavailability and antioxidant properties of liposome-encapsulated curcumin. Journal of agricultural and food chemistry 2009, 57 (19), 9141-9146.
Timoszyk, A.; Latanowicz, L., Interactions of sialic acid with phosphatidylcholine liposomes studied by 2D NMR spectroscopy. Acta Biochimica Polonica 2013, 60 (4).
Tomar, S.; Sun, X.-L., Investigation of substrate specificity of sialidases with membrane mimetic glycoconjugates. Glycoconjugate Journal 2019, 1-11.
Udompornmongkol, P.; Chiang, B.-H., Curcumin-loaded polymeric nanoparticles for enhanced anti-colorectal cancer applications. Journal of biomaterials applications 2015, 30 (5), 537-546.
Vahed, S. Z.; Salehi, R.; Davaran, S.; Sharifi, S., Liposome-based drug co-delivery systems in cancer cells. Materials Science and Engineering: C 2017, 71, 1327-1341.
Vieira, D. B.; Gamarra, L. F., Getting into the brain: liposome-based strategies for effective drug delivery across the blood–brain barrier. International journal of nanomedicine 2016, 11, 5381.
Wu, J.; Zhan, X.; Liu, L.; Xia, X., Bioproduction, purification, and application of polysialic acid. Applied microbiology and biotechnology 2018, 102 (22), 9403-9409.
Yang, S.; Jin, H.; Zhao, Z. G., Epidermal growth factor treatment has protective effects on the integrity of the blood‑brain barrier against cerebral ischemia injury in bEnd3 cells. Experimental and therapeutic medicine 2019, 17 (3), 2397-2402.
Yin, T.; Yang, L.; Liu, Y.; Zhou, X.; Sun, J.; Liu, J., Sialic acid (SA)-modified selenium nanoparticles coated with a high blood–brain barrier permeability peptide-B6 peptide for potential use in Alzheimer’s disease. Acta biomaterialia 2015, 25, 172-183.
Yu, L.; Edalji, R.; Harlan, J. E.; Holzman, T. F.; Lopez, A. P.; Labkovsky, B.; Hillen, H.; Barghorn, S.; Ebert, U.; Richardson, P. L., Structural characterization of a soluble amyloid β-peptide oligomer. Biochemistry 2009, 48, 1870-1877.
Yin, T.; Yang, L.; Liu, Y.; Zhou, X.; Sun, J.; Liu, J., Sialic acid (SA)-modified selenium nanoparticles coated with a high blood–brain barrier permeability peptide-B6 peptide for potential use in Alzheimer’s disease. Acta biomaterialia 2015, 25, 172-183.
Yu, H.; Huang, Q., Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. Journal of Agricultural and Food Chemistry 2012, 60 (21), 5373-5379.
Zlokovic, B. V., The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 2008, 57 (2), 178-201.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62628-
dc.description.abstract薑黃素可瓦解類澱粉β-胜肽堆積,在體內體外實驗中都證實其對腦部具有保護功效。然而,因血腦障壁 (Blood brain barrier, BBB) 緊密的結構和薑黃素生物可利用率低,使腦部吸收薑黃素非常困難,導致在臨床上應用有限。微脂體為奈米載藥系統,由雙層磷脂質組成,可包埋薑黃素,透過表面修飾可接上標的性物質。過去常使用聚乙二醇 (poly(ethylene glycol), PEG) 和運鐵蛋白 (Transferrin) 製備載體,提升載體在血液運輸的穩定度和標的運輸至血腦障壁,然而,PEG會堆積在生物體內無法分解,且會引發過敏反應,因此,找到取代材料非常重要。唾液酸 (Sialic acid, SA) 為可生物分解的材料,具有高度親水性特質,可於載體外形成水層,提高穩定性,做為替代PEG的材料,然而目前還未應用於微脂體載藥系統。小麥凝集素 (Wheat germ agglutinin, WGA) 可當作標的血腦障壁的分子,其會和腦內皮細胞上的唾液酸結合,將載體運輸至腦內。本研究以最佳比例之膽固醇與卵磷脂,建構出包埋率高的奈米微脂體,接著,以可食性之唾液酸、聚唾液酸 (Polymerized SA, PSA) 和其氧化態各別作為架橋,連接小麥凝集素進行微脂體之表面修飾,並透過血腦障壁細胞平台證實載體穿透血腦障壁的運輸效率。
研究結果顯示,微脂體對於薑黃素的包埋率高達90.77%,其粒徑約為115奈米。熱重分析 (Thermogravimetric analysis, TGA) 結果確認SA、PSA和其氧化態皆成功鑲嵌於微脂體的磷脂雙層中,100℃下TGA曲線顯示WGA可當作唾液酸的保護層。整體來說,SA或PSA較其氧化型態可連接較多含量之WGA於微脂體表面上,其中,聚唾液酸並無顯著增加連接WGA於微脂體表面。經過模擬人體消化酵素處理後,超過40% WGA仍存在於載體表面,另外,傅立葉轉換紅外光譜 (Fourier transform infrared spectrum, FTIR) 在1241 cm-1和533-581 cm-1具有醯胺基訊號,表示唾液酸的羧酸基和WGA的胺基以共價鍵互相連接形成醯胺基,即使經過消化酵素處理,醯胺基訊號仍然存在,顯示在微脂體表面的唾液酸和WGA之鍵結可抵抗消化酵素的分解。掃描式電子顯微鏡顯示經過消化酵素處理後,表面修飾之載體仍具有球體型態且有清楚的輪緣。另外,經過表面修飾和消化酵素處理之載體較未經過表面修飾且未經過消化酵素處理之載體具有較高穿透BBB之效率。本研究結果證實載體表面修飾具有提升微脂體運輸植化素穿透BBB之效率以達到保健腦部之潛力。
zh_TW
dc.description.abstractCurcumin has been proven to be able to effectively improve brain diseases, such as Alzheimer’s disease. However, low bioavailability of curcumin and blood brain barrier (BBB) limit its clinical uses. The development of new delivery system to improve transport of curcumin crossing the BBB appears to be a promising strategy for prevention or even treatment of brain diseases. Past researches focused on a strategy of using poly (ethylene glycol) (PEG) and transferrin to prolong the survival of drug in blood and facilitate brain drug delivery system. However, limitations of PEG including synthesis procedure, immunological response, and accumulation in tissues have been observed. In this study, we used alternative sialic acid (SA), polysialic acid (PSA), oxidized form of SA/PSA and wheat germ agglutinin (WGA) to synthetize multifunctional nano-liposomes to facilitate the transport of curcumin across BBB.
Results showed that curcumin was entrapped in liposome with high encapsulation efficiency (90.77%) and the vector had a size of about 115 nm in diameter. The thermogravimetric analysis (TGA) confirmed the successful presence of SA and PSA in the lipid bilayers of liposomes. TGA curves below 100 °C suggested that WGA acts as a protective layer for SA. In general, the liposomes modified by the un-oxidized SA or PSA could conjugate more WGA than that oxidized counterparts, and polymerization of SA did not increase WGA conjugation on the liposomes. More than 40% of WGA on the surface of modified liposomes remained after digestive enzymes challenge. The amide peaks at 1241 cm-1 and 533-581 cm-1 in the Fourier transform infrared (FTIR) spectrum of the modified liposomes indicated the covalent bonding between carboxyl group of SA and amine group of WGA. These characteristic peaks still existed after digestive enzymes challenge, demonstrating that the conjugation of WGA and SA on the modified liposome can resist the digestive enzymes to a certain extent. SEM images showed that the modified liposomes after digestive enzymes treatment were still spherical with clear rim, and the enzyme-treated vectors had a higher permeation rate crossing blood-brain barrier (BBB) endothelial cell monolayer than the un-modified liposome even without enzyme treatment. This study demonstrates how the surface modification can enhance the function of liposome as a phytochemical carrier for brain disease.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:05:58Z (GMT). No. of bitstreams: 1
ntu-109-D04641002-1.pdf: 5681715 bytes, checksum: 94240a2a8ac6bfee12e3e2c5a38e50a9 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents謝誌 ii
摘要 iii
Abstract v
縮寫列表 ( List of Abbreviations ) vii
目錄 viii
圖目錄 xii
表目錄 xiv
前言 2
第一章、文獻整理 4
第一節、阿茲海默症 (Alzheimer's disease) 4
1-1-1. 盛行狀況 4
1-1-2. 阿茲海默症之病理特徵 (Pathology) 4
1-1-3. 類澱粉β-胜肽 (Amyloid β-peptide, Aβ) 5
1-1-4. 形成毒性物之機制 5
1-1-5. Oligomer 毒性和Fibril毒性比較 6
1-1-6. 毒性原因 7
1-1-7. 病因 13
1-1-8. 治療方式 17
第二節、薑黃素 ( Curcumin ) 20
1-2-1 特性與結構 20
1-2-2 保健腦部之功效 20
1-2-3 生物可利用率探討 21
第三節、血腦障壁 (Blood-brain barrier) 25
1-3-1 介紹 25
1-3-2 特性 25
1-3-3 物質通過BBB的機制探討 30
1-3-4 體外BBB模型 ( bEnd.3 cell model ) 33
第四節、微脂體 ( Liposome ) 35
1-4-1 特性 35
1-4-2 結構種類 39
1-4-3 微脂體的形成原理 41
1-4-4 製備方式 41
1-4-5 表面化學修飾 44
1-4-6 穿過血腦障壁的載體特性 46
第五節、小麥凝集素 ( Wheat germ agglutinin ) 49
1-5-1 結構和特性 49
1-5-2 小麥凝集素穿過BBB的原理 49
1-5-3 WGA應用於標的BBB之潛力 52
第六節、唾液酸 ( Sialic acid ) 55
1-6-1 化學結構 55
1-6-2 特性 55
1-6-3 唾液酸應用於載體運輸之潛力 61
第二章、研究目的與實驗架構 65
第一節、研究目的 65
第二節、實驗架構 68
2-2-1 化學修飾微脂體表面 68
2-2-2 模擬人體胃腸消化酵素試驗 69
2-2-3 體外腦障蔽平台評估載體功效 70
第三章、實驗材料與方法 71
第一節、實驗材料 71
第二節、細胞株來源 72
第三節、實驗儀器 72
第四節、實驗方法 75
3-4-1 製備包埋薑黃素之微脂體 75
3-4-2 表面化學修飾包埋薑黃素之微脂體 77
3-4-2-1製備氧化的唾液酸和聚唾液酸 77
3-4-2-2 接合不同種類之唾液酸於微脂體上 77
3-4-2-3 接合小麥凝集素於唾液酸修飾之微脂體 78
3-4-3 載體之物化特性分析 79
3-4-3-1 粒徑、界達電位和形態分析 79
3-4-3-2 唾液酸和小麥凝集素含量分析 79
3-4-3-3 熱重分析 81
3-4-3-4 傅立葉轉換紅外光譜分析 81
3-4-4 模擬人體胃腸消化酵素之穩定性測試 81
3-4-5 修飾後之微脂體穿透血腦障蔽之測試 82
3-4-5-1 建構體外血腦障蔽模型 83
3-4-5-2 修飾後之微脂體穿透血腦障蔽之運輸效率評估 85
3-4-5-3 修飾後之微脂體對於血腦障蔽緊密度之影響 86
3-4-5-4 修飾後之微脂體於血腦障蔽單層細胞之吸收評估 86
3-4-5-5 體外釋放性試驗 87
3-4-6 載體抑制Aβ毒性之功效評估 87
3-4-7 數據分析 88
第四章、結果與討論 89
第一節、包埋薑黃素微脂體之製備 89
4-1-1 包埋薑黃素微脂體之製備 89
4-1-2 修飾之微脂體唾液酸和小麥凝集素含量分析 92
4-1-3 粒徑和界達電位分析 94
4-1-4 熱重分析 97
第二節、體外消化酵素測試 102
4-2-1 消化酵素對修飾後微脂體之影響 102
4-2-2 微脂體在消化酵素作用前後之形態變化 105
4-2-3 傅立葉轉換紅外光譜分析 108
第三節、以體外模型評估微脂體穿透血腦障蔽之能力 112
4-3-1 細胞存活率測試 112
4-3-2 建構體外血腦障蔽模型 115
4-3-3 微脂體通過體外血腦障蔽模型之穿透率 118
4-3-4 消化酵素作用後之微脂體對血腦障蔽緊密度之影響 125
4-3-5 載體進入血腦障蔽單層細胞之影像觀察 127
4-3-6 載體釋出薑黃素試驗 130
4-3-7 載體抑制Aβ毒性之功效評估 133
第五章、結論 135
第六章、參考文獻 136
dc.language.isozh-TW
dc.title利用可食性化合物修飾已包埋薑黃素之微脂體以增進其穿透血腦障蔽能力zh_TW
dc.titleModification of curcumin-loaded liposome with edible compounds to enhance ability of crossing blood brain barrieren
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree博士
dc.contributor.oralexamcommittee蔡國珍,謝昌衛,陳政雄,葉安義
dc.subject.keyword薑黃素,微脂體,唾液酸,小麥凝集素,消化酵素,血腦障蔽,zh_TW
dc.subject.keywordCurcumin,Liposome,Sialic acid,Wheat germ agglutinin,Digestive enzymes,Blood-brain barrier,en
dc.relation.page153
dc.identifier.doi10.6342/NTU202000946
dc.rights.note有償授權
dc.date.accepted2020-06-05
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  目前未授權公開取用
5.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved