Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62387
Title: LTE-Advanced中離散式接力傳輸資源分配演算探討
RAL: Distributed Relay Assignment by Learning in LTE-Advanced Networks
Authors: Chun-Lin Wu
吳俊陵
Advisor: 林宗男(Tsung-Nan Lin)
Keyword: 離散演算法,接力傳輸資源,協調式通訊,隨機自動學習機,第四代通信技術,
LTE-Advanced,Cooperative communication,Relay assignment,Stochastic learning automata,Distributed Algorithm,
Publication Year : 2013
Degree: 碩士
Abstract: 在新一代通訊系統中,接力資源分配方式將會對效能影響甚巨。接力資源分配是指在網路環境中,將接力點分配給傳輸效能不好的使用者,用以提升這些使用者的傳輸速度。目前為止,已經有許多研究文獻對此議題提出數個利用集中式演算法的解決方法,但這些方式讓基地台必須收集所有網路系統中的通道資訊,造成基地台嚴重負擔,並且未完全契合設計接力點的真正功能---提升原本傳輸效能較差的使用者。
這份研究提出一個基於離散式演算法的解決方案。透過隨機自動學習機制,使用者根據網路環境回傳的效能值,自行選擇適合的傳輸方式。實驗結果證明我們提出的分配演算法,有良好的收斂特性與負載平衡特性,效能方面也十分卓越。
Relay assignment is a crucial issue and it affects the performance
of cooperative communication networks, which means assigning the
proper relay nodes (RN) to cell-edge users (UE) in order to exploit
the spatial diversity through relay nodes and improve cell-edge performance.
Several assignment strategies have been proposed in literatures.
Nevertheless, the previous works solved this problem by centralized
way, where base station (eNB) will serve as a control node to
collect the channel conditions and location information and make the
final decision. Maximize aggregate performance is a typical objective
of centralized assignment strategy to improve system capacity in the
network using Hungarian algorithm. Another optimally centralized
algorithm, max-min feature, is to maximize the minimum data rate
among all users. It is shown to find the optimal objective regardless
the initial relay node. Although centralized methods could have better
performance for system, it takes high operation and maintenance
tasks in eNB, where it infringes the operational requirements of smallcell
enhancements. This work is motivated to propose a distributed
algorithm, which means that each UE would choose its own appropriate
RN individually. To achieve this goal, we proposed a strategy
called ”Distributed Relay Assignment by Learning” (RAL) based on
stochastic learning automata. Under the new assignment algorithm,
not only the local performance is preserved, but also the benefited
probability of UEs is raised obviously.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62387
Fulltext Rights: 有償授權
Appears in Collections:電信工程學研究所

Files in This Item:
File SizeFormat 
ntu-102-1.pdf
  Restricted Access
1.31 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved