Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6227Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 王振男(Jenn-Nan Wang) | |
| dc.contributor.author | Ru-Lin Kuan | en |
| dc.contributor.author | 關汝琳 | zh_TW |
| dc.date.accessioned | 2021-05-16T16:23:35Z | - |
| dc.date.available | 2013-07-18 | |
| dc.date.available | 2021-05-16T16:23:35Z | - |
| dc.date.copyright | 2013-07-18 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-08 | |
| dc.identifier.citation | [1] Habib Ammari and Hyeonbae Kang. Reconstruction of small inhomogeneities from boundary measurements, volume 1846 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2004.
[2] Guillaume Bal. Hybrid inverse problems and internal functionals. Technical report, 2011. [3] Guillaume Bal, Kui Ren, Gunther Uhlmann, and Ting Zhou. Quantitative thermo-acoustics and related problems. Inverse Problems, 27(5):055007, 2011. [4] Guillaume Bal and Gunther Uhlmann. Reconstruction of coefficients in scalar second-order elliptic equations from knowledge of their solutions. Communications on Pure and Applied Mathematics, 2013. [5] DC Barber and BH Brown. Applied potential tomography. Journal of physics. E. Scientific instruments, 17(9):723–733, 1984. [6] A.P. Calder’on. On an inverse boundary value problem. In Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), pages 65–73. Soc. Brasil. Mat., Rio de Janeiro, 1980. [7] Lawrence C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1998. [8] David S Holder. Electrical impedance tomography: methods, history and applications. Taylor & Francis, 2005. [9] T. Ide, H. Isozaki, S. Nakata, S. Siltanen, and G. Uhlmann. Probing for electrical inclusions with complex spherical waves. Comm. Pure Appl. Math., 60(10):1415–1442, 2007. [10] M. Ikehata. Reconstruction of the shape of the inclusion by boundary measurements. Comm. Partial Differential Equations, 23(7-8):1459–1474, 1998. [11] M. Ikehata. Enclosing a polygonal cavity in a two-dimensional bounded domain from Cauchy data. Inverse Problems, 15(5):1231–1241, 1999. [12] M. Ikehata. How to draw a picture of an unknown inclusion from boundary measurements. Two mathematical inversion algorithms. J. Inverse Ill-Posed Probl., 7(3):255–271, 1999. [13] M. Ikehata. The enclosure method and its applications. In Analytic extension formulas and their applications (Fukuoka, 1999/Kyoto, 2000), volume 9 of Int. Soc. Anal. Appl. Comput., pages 87–103. Kluwer Acad. Publ., Dordrecht, 2001. [14] M. Ikehata. An inverse transmission scattering problem and the enclosure method. Computing, 75(2-3):133–156, 2005. [15] M. Ikehata and H. Itou. An inverse problem for a linear crack in an anisotropic elastic body and the enclosure method. Inverse Problems, 24(2):025005, 21, 2008. [16] Masaru Ikehata. The linearization of the Dirichlet to Neumann map in anisotropic plate theory. Inverse Problems, 11(1):165, 1995. [17] D Isaacson, JC Newell, JC Goble, andMCheney. Thoracic impedance images during ventilation. In Engineering in Medicine and Biology Society, 1990., Proceedings of the Twelfth Annual International Conference of the IEEE, pages 106–107. IEEE, 1990. [18] Manas Kar and Mourad Sini. Reconstruction of interfaces using cgo solutions for the maxwell equations. Preprint. Downloadable from http://www.ricam.oeaw.ac.at/people/page/sini, 2012. [19] Rulin Kuan. Reconstruction of penetrable inclusions in elastic waves by boundary measurements. J. Differential Equations, 252(2):1494–1520, 2012. [20] Y. Li and L. Nirenberg. Estimates for elliptic systems from composite material. Comm. Pure Appl. Math., 56(7):892–925, 2003. Dedicated to the memory of J‥urgen K. Moser. [21] W. McLean. Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge, 2000. [22] N. G.Meyers. An Lp-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Scuola Norm. Sup. Pisa (3), 17:189–206, 1963. [23] Sei Nagayasu, Gunther Uhlmann, and Jenn-Nan Wang. Reconstruction of penetrable obstacles in acoustic scattering. SIAM Journal on Mathematical Analysis, 43(1):189–211, 2011. [24] G. Nakamura and K. Yoshida. Identification of a non-convex obstacle for acoustical scattering. J. Inverse Ill-Posed Probl., 15(6):611–624, 2007. [25] Gen Nakamura, Gunther Uhlmann, and Jenn-Nan Wang. Oscillating-decaying solutions for elliptic systems. In Inverse problems, multi-scale analysis and effective medium theory, volume 408 of Contemp. Math., pages 219–230. Amer. Math. Soc., Providence, RI, 2006. [26] Petri Ola and Erkki Somersalo. Electromagnetic inverse problems and generalized Sommerfeld potentials. SIAM J. Appl. Math., 56(4):1129–1145, 1996. [27] Lassi P‥aiv‥arinta, Alexander Panchenko, and Gunther Uhlmann. Complex geometrical optics solutions for lipschitz conductivities. Revista Matematica Iberoamericana, 19(1):57–72, 2003. [28] M. Salo and J.N.Wang. Complex spherical waves and inverse problems in unbounded domains. Inverse Problems, 22(6):2299–2309, 2006. [29] Mourad Sini and Kazuki Yoshida. On the reconstruction of interfaces using complex geometrical optics solutions for the acoustic case. Inverse Problems, 28(5):055013, 22, 2012. [30] Plamen Stefanov and Gunther Uhlmann. Thermoacoustic tomography with variable sound speed. Inverse Problems, 25(7):075011, 2009. [31] John Sylvester and Gunther Uhlmann. A uniqueness theorem for an inverse boundary value problem in electrical prospection. Communications on Pure and Applied Mathematics, 39(1):91–112, 1986. [32] John Sylvester and Gunther Uhlmann. A global uniqueness theorem for an inverse boundary value problem. Annals of mathematics, pages 153–169, 1987. [33] HIDEKI Takuwa, GUNTHER Uhlmann, and J-N Wang. Complex geometrical optics solutions for anisotropic equations and applications. Journal of Inverse and Ill-posed Problems, 16(8):791–804, 2008. [34] G. Uhlmann and J.N. Wang. Complex spherical waves for the elasticity system and probing of inclusions. SIAM J. Math. Anal., 38(6):1967–1980 (electronic), 2007. [35] G. Uhlmann and J.N. Wang. Reconstructing discontinuities using complex geometrical optics solutions. SIAM J. Appl. Math., 68(4):1026–1044, 2008. [36] G. Uhlmann, J.N. Wang, and C.T. Wu. Reconstruction of inclusions in an elastic body. J. Math. Pures Appl. (9), 91(6):569–582, 2009. [37] Gunther Uhlmann. Developments in inverse problems since Calder’on’s foundational paper. In Harmonic analysis and partial differential equations (Chicago, IL, 1996), Chicago Lectures in Math., pages 295–345. Univ. Chicago Press, Chicago, IL, 1999. [38] I. N. Vekua. New methods for solving elliptic equations. Translated from the Russian by D. E. Brown. Translation edited by A. B. Tayler. North-Holland Publishing Co., Amsterdam, 1967. North-Holland Series in Applied Mathematics and Mechanics, Vol. 1. [39] Jenn-Nan Wang and Ting Zhou. Enclosure methods for helmholtz-type equations. 2012. [40] Ting Zhou. Reconstructing electromagnetic obstacles by the enclosure method. Inverse Probl. Imaging, 4(3):547–569, 2010. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6227 | - |
| dc.description.abstract | 這篇博士論文討論的是如何重建彈性物體中未知物的形狀與位置。我們考慮以下的反問題。有一個彈性物質位於$Omega$,$Omegasubsetmathbb{R}^n$,$n=2,3$。假設這個彈性物質中有一個未知的物體位在$D$,$DsubsetsubsetOmega$,並且此未知的物體與背景已知的彈性物質有相當差異的彈性性質。那麼我們要如何重新建構這個未知物的形狀與位置?我們所使用的方法是包圍法(enclosure-type methods)。包圍法是一個只利用邊界測量來建構內部未知物的方法,它是由Ikehata最先提出的[10,12]。所以它是一個非侵入性的探測方法。利用非侵入的方法探測物體的內部是一個很重要的議題,因為它可以被當成一個安全的醫療診斷的工具。在第二章的部份,我們會在數學上解釋包圍法的想法與相關的結果。
包圍法已被應用在許多不同的數學模型中,如[14,15,16,23, 24,29,36,40]。其中一個包圍法中主要的探測工具就是複幾何光學解Complex geometrical optics (CGO) solutions。我們在這篇論文中把包圍法推廣應用在time-harmonic彈性波上。在我們所討論的數學模型中最大的困難是time-harmonic彈性波中有一個零階項。這個零階項的估計會影響我們如何去應用包圍法。我們可以參考這篇survey paper [40]。在第三章及第四章中,我們分別討論兩種不同的未知物:可滲透的未知物與不可滲透的未知物。在第三章中我們只考慮二維情形,並採用CGO solutions with complex polynomial phases作為主要的探測工具。關於第三章可滲透的情形,先前一些文章也有討論過類似的問題,如[23,29]。在[23,29]中作者們給了一些邊界平滑性的假設。在這一章中,我們修改並推廣[29]中的做法,在二維的情形下將邊界的平滑性從Lipschitz降為連續。在第四章不可滲透的情形中,二維跟三維的情形都有考慮進去。在第四章中三維的情形下,我們採用了CGO solutions with linear phases作為主要探測工具。這個探測工具只能探測出未知物的convex hull。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-05-16T16:23:35Z (GMT). No. of bitstreams: 1 ntu-102-D97221002-1.pdf: 1284879 bytes, checksum: 17a9b6126bd64430e9955ff758799a87 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員審定書i
誌謝ii 中文摘要iv Abstract vi Contents viii 1 Introduction 1 2 The enclosure-type method: a reconstruction method of unknown inclusions 3 2.1 Calder’on’s foundational paper 3 2.2 The idea of the enclosure method 5 2.3 Complex geometrical optics solutions and some related results 9 3 Reconstruction of penetrable inclusions 11 3.1 Introduction 12 3.1.1 Mathematical model 12 3.1.2 The method and improvement 13 3.2 The indicator functional 15 3.3 The testing boundary data 18 3.3.1 CGO solutions with complex polynomial phases 18 3.3.2 The testing boundary data 22 3.4 The main theorem for the reconstruction of unknown inclusions 25 3.5 Remarks 43 4 Reconstruction of impenetrable inclusions 44 4.1 Introduction 44 4.1.1 Mathematical model and some notations 44 4.1.2 A remark on regularity assumptions 46 4.2 The corresponding indicator functional 46 4.3 The regularity results of reflected solution 50 4.4 Reconstruction in 2D by using CGO solutions with complex polynomial phases 56 4.4.1 CGO solutions with complex polynomial phases in 2D and the testing data 56 4.4.2 Reconstruction of the unknown D 57 4.5 Reconstruction in 3D by using CGO solutions with linear phases 62 4.5.1 CGO solutions to (4.1.3) with linear phases 63 4.5.2 The testing boundary data and Reconstruction of the unknown D 67 5 Future work 72 5.1 Maxwell’s equations with anisotropic coefficients 72 5.2 Reconstruction of coefficients of anisotropic time-harmonic Maxwell’s equations by using internal measurements 73 Bibliography 74 | |
| dc.language.iso | en | |
| dc.title | 利用邊界測量重建彈性物體中的未知物 | zh_TW |
| dc.title | Reconstruction of unknown inclusions in an elastic medium by boundary measurements | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 徐洪坤(Hong-Kun Xu),林景隆(Ching-Lung Lin),陳俊全(Chiun-Chuan Chen),林太家(Tai-Chia Lin) | |
| dc.subject.keyword | 反問題,包圍法,time-harmonic 彈性波方程組,複幾何光學解,可滲透的,不可滲透的, | zh_TW |
| dc.subject.keyword | inverse problems,enclosure method,time-harmonic elastic waves,complex geometrical optics (CGO) solutions,penetrable,impenetrable, | en |
| dc.relation.page | 78 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2013-07-08 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| Appears in Collections: | 數學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-102-1.pdf | 1.25 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
