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Abstract

The goal of this dissertation is to discuss how to reconstruct the shape and
location of the unknown inclusions in an elastic body. We consider the following
inverse problem. There is an elastic body occupying €2, 2 C R", n = 2,3.
Assume there is an unknown inclusion in €2, which is denoted by D, and assume
the Lamé coefficients of D is definitely different from those of the background
material. Then how do we reconstruct the shape and location of the unknown
inclusions? The method we will use is the so-called enclosure-type method.
The enclosure-type method is a method of constructing inclusions only from
boundary measurements, which is initiated by Ikehata [10,12]. Therefore it is
a non-invasive reconstruction method. Utilizing non-invasive methods to detect
the internal information of subjects is a very important issue, because they are
probably proposed as a safe diagnostic tool in medical imaging. In the second
chapter of this thesis, we will mathematically explain the idea of the enclosure
method and discuss the related results.

The enclosure-type methods have been applied to many different mathemat-
ical models. See [14,15,16,23,24,29,36,40] for reference. One of the main
probing tools of the enclosure method is complex geometrical optics (CGO)
solutions. In this thesis, we extend and apply the enclosure-type methods to
the time-harmonic elastic waves. The most difficult point for this model is the
presence of zeroth order term in time-harmonic elastic waves. The estimate of
the zeroth order term will influence on how to apply the enclosure method. We
can see the survey paper [40] for Helmholtz-type equations. In chapter 3 and
4, we discuss the following two cases respectively: penetrable inclusions and
impenetrable inclusions.

In Chapter 3, we only consider the two dimension case and adopt the CGO
solutions with polynomial phases as a main probing tool. In the previous re-

search similar to our problem, such as [23,29], the authors gave some regularity
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assumptions on the boundary of inclusion D. In this chapter, we modify the
approach of [29] and reduce the regularity assumption on 9D from Lipschitz
continuity to continuity. In Chapter 4, the impenetrable case, two and three di-
mension are considered. In three dimension, CGO solutions with linear phases
are adopted as the probing tool. However using such probing tool, only the con-

vex hull of D can be detected.

Keywords: inverse problems, enclosure method, time-harmonic elastic waves,

complex geometrical optics (CGO) solutions, penetrable, impenetrable
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Chapter 1

Introduction

Inverse boundary value problems is a field of discussing the inverse problems
of partial differential equations. Since A. P. Calder6n published his pioneering
work “On an inverse boundary value problem” in 1980s, inverse boundary value
problems have become a popular field in mathematics. The problem Calderén
proposed is: whether we can determine the conductivity of an electrical mate-
rial by measuring the voltage and current on its boundary. More precisely, by
applying a specific voltage density on the boundary, there corresponds a current
which can also be measured on the boundary. This correspondence is the so-
called Direct-to-Neumann map. And the question is whether this map uniquely
determines the conductivity distribution of the whole material. This problem led
to the development of the Electrical Impedance Tomography (EIT), which is de-
signed as a safe and low cost device for medical diagnosis as well as many other
applications [37, 1, 8, 5, 17]. The problem then gives rise to the general idea
of gaining informations from boundary data, which applies to many other kind
of physical settings. Moreover, the questions gradually evolve from theoretical
determinations to practical reconstructions. That is, not only being satisfied by
knowing the boundary data will determine the material property, a great deal of
researches now make efforts to give concrete algorithms.

In this thesis, what we mainly discuss is how to reconstruct unknown inclu-
sions in a known background from the boundary information. This non-invasive

method that we use in this thesis is a type of enclosure method initiated by Ike-
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hata. We would give a more detailed description about the enclosure method
and its related results in Chapter 2. Besides, we will apply the enclosure-type
method to the time-harmonic elastic wave equations. A crucial point in this
model is the presence of the zeroth order term. See [39] for reference. In Chap-
ter 3 and 4, we will discuss our main results about penetrable and impenetrable
unknown inclusions respectively.

In Chapter 3, we only consider the two dimension case and adopt the CGO
solutions with polynomial phases as a main probing tool. In the previous re-
search similar to our problem, such as [23,29], the authors gave some regularity
assumptions on the boundary of inclusion D. In [23], the authors assumed the
regularity of D is C2?. And later in [29], the authors reduced the regularity
assumption on dD to Lipschitz. In this chapter, we modify the approach of
[29] and reduce again the regularity assumption on 9D to continuity. In Chap-
ter 4, the impenetrable case, two and three dimension are considered. In three
dimension, CGO solutions with linear phases are adopted as the probing tool.
However using such probing tool, only the convex hull of D can be detected. In
the impenetrable case, we only assume the regularity of 9D is C?. And in the

final chapter, some open problems and future work will be mentioned.



Chapter 2

The enclosure-type method: a
reconstruction method of unknown
inclusions

The enclosure method is a method to reconstruct unknown inclusions in a known
background, which is initiated by Ikehata. See Ikehata’s survey paper [12] for
reference. The main tool of this reconstruction method is the following two
(which will be defined later): the indicator functional and the complex geomet-
rical optics (CGO) solutions. The idea of these two tools can be tracked back to
the Calder6n’s work. Therefore in this chapter, we will start from the Calder6n

problem and then show how these two tools work.

2.1 Calderodn’s foundational paper

Since Calderén published his pioneering work “On an inverse boundary value
problem” in 1980s [6], his work has influenced deeply the development of the
inverse boundary value problems. Here we just briefly introduce the problem in
[6] and emphasize the influence on the enclosure method.

The problem he concerned is a very interesting and meaningful problem:
how to reconstruct conductivity of an unknown object by using boundary mea-
surements? Precisely, let us consider that a conducting material with unknown

conductivity occupy a bounded domain €2. Then the conductivity and the volt-

3



age of the material are governed by the conductivity equations
V-(yVu)=0, in €, (2.1.1)

If the conductivity 7 is known, then when applying a voltage u|sn = f on
the boundary we can measure the corresponding current 7% |aq on the bound-
ary, where v is the outer normal of J€2. This correspondence is the so-called
Dirichlet-to-Neumann map (or called voltage-to-current map), which is given
by

A(f) = (7%)‘89'

The inverse problem Calder6n concerned can be therefore stated mathematically
as determining 7 from the knowledge of A,. This problem is not easy to deal
with directly, so from the divergence theorem, Calderén consider the following

nonlinear map

Q,(f) == / A Vuldx = /a A (D,

where ds denotes the surface measure, and u solves (2.1.1) with Dirichlet bound-
ary condition u|g9q = f. Then the inverse problem becomes to determine -y from
()., Calderén proved that the map (), is analytic in [6] and the Fréchet derivative
of it at vy is injective in v, when 7, is a constant. That means the linearization of
the map from y to (), is injective at constant conductivities. Moreover, he also
gave an approximation formula to reconstruct a conductivity which is close to a
constant conductivity.

Calderdn’s work has a deep influence in the development of inverse bound-
ary value problems. The idea of (), is widely applied to subsequent inverse
problems. For example, the indicator functional, which is a key tool in the
next section (enclosure-type method), is one application of (),. Besides, in [6],
Calder6n took the special harmonic functions u = ex(Ptirt) a5 4 helper in order
to show the injectivity of the linearized map, where p € C" with p - p+ = 0.

This is the origin of the complex geometrical optics solutions, which we will
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discuss later in the next section. Subsequently, the class of CGO solutions be-
comes a very important tool in studying inverse problems. For more details of
the development in inverse problems, we refer the survey paper [37].

By extending the brand new idea Calderén proposed, we can not only deter-
mine the conductivities within the subjects from boundary information, but also
reconstruct the unknown inclusions within a subject. The enclosure method is
the one example we want to discuss. The situation which the enclosure method
can be applied to is as follow: the subject contains unknown inclusions, of which
the conductivity is unknown and apparently different from that of the back-
ground. The enclosure method is not only a theoretical identification method
for unknown inclusions, but provides a reconstruction algorithm for drawing
the unknown inclusions. In the next section, we will describe the idea of the

enclosure method carefully.

2.2 The idea of the enclosure method

To describe the idea of the enclosure method clearly, we take the following case
as an example. Suppose the subject we concern is a conducting material, which
is governed by the conductivity equation. We suppose the subject occupies the
domain {2 C R” and the unknown inclusion occupied D C R"™ with D CC Q.
Here we consider the simplest case: the known conductivity v, of the subject
(without the unknown inclusions) is 1. And we denote by ~ the total conductivity
of the subject with the unknown inclusions. Therefore we have the following

two conductivity equations:

Aug = 01in € (2.2.2)

and

V- (yVu)=0in €, (2.2.3)



where v = 1 + xp7yp- Xp is the characteristic function of domain D and ~p
is difference between the conductivities within D and within Q \ D. wu and
uo denote the voltages of the situation with and without unknown inclusions D
respectively. Then we can define the Dirichlet-to-Neumann maps for (2.2.2) and

(2.2.3) as follows: for a Dirichlet boundary condition f € H'/?(0)

ou
Av(f)ZVEC(m a4
8u0 ( o )
A’Yo(f) :’VOE

where v is the outer normal of 0f2.

Y

o0

Now it is ready to introduce the idea of the enclosure method. There are two
main tools in this method: the indicator functional and a sequence of special
functions (in fact they will be called CGO solutions in next section).

First we introduce the indicator functional, of which the idea comes from
Q. in the previous section: for a Dirichlet boundary condition f € H/2(Q),

n=2,3,

B = [ (A =8 () - s 225)

Roughly speaking, it measures, for a given voltage on the boundary, the dif-
ference between currents or energies corresponding to the situations with and

without D. Moreover, we can easily deduce that

E(f)~C / Vuo|2dx,
D

for some constant C' independent of f and u,, where u is the solution of Laplace
equation (2.2.2) with ug|gn = f-
On the other hand, we observe that for any h > 0, w,wt € S"! with
w-wt =0,
6%(w~x+z’wl~x)
is a solution of Laplace equation. Notice that it is also the special function

Calder6n proposed in [6]. Thus set, for any numbers d,

_d 1. it -
Ugap = € henWXHTN),
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then we have A ug 45 = 0.
Now let foan = uoan|on and take fo 4 into the indicator functional E.

Then we have

E(foun) ~ C / (Vg a2
D

~ C’% et ox=d) g
D

for some constants C', C’" independent of h. Then we can deduce as follows: for

convenience, we let

pX) =w-x+iwt-x

be the phase function and denote the real part of p by Re(p). We have

1. If DN {x: Re(p) —d > 0} = 0, then it means
w-x—d<0,VxeD.

Therefore we have

E(foan) — 0, as h ™\, 0.

2. If DN {x : Re(p) —d > 0} # 0, then it means there exist an open set
U C D such that

w-x—d>0,ifxel.

Therefore we have

E(f07d7h) — OO, as h \‘ 0.

Now, denote the level set of the real part of the phase function p at t by ;.

That is,
Uy = {x: Re(p(x)) = t}.

And let

Fd = U ﬁt.

d<t<oo

7



(@ DN{x:Re(p)—d>0}=10 () DN{x: Re(p) —d >0} #0D

Then from the above deduction we can conclude that if we choose these
fo.an as our testing data, then the limiting behavior of E(fy 4,) will indicate
whether I'; intersects the unknown inclusion D. By varying d, we can theoreti-
cally find which level set /4 just touches the unknown inclusion. Hence we the

following conclusion:

the limiting behavior of E( fo ) will indicate which level set {; just touches

the unknown inclusion D.

Hence we call the functional £ the indicator functional. Actually, in [11] Ike-

hata called E( fy.4,) the indicator function.

Now we summarize the above idea as follows. First we establish the indica-
tor functional E. Next, we will construct a suitable sequence of test boundary
data {f4}nh—o such that, by taking in such a boundary data, the limiting be-
havior of E( fy,) will indicate which specific hyperplane just touches D. Tech-
nically, we choose the special solutions Calderén proposed as the testing data
and the specific hyperplane is the level curve of the real part of the phase func-
tion p. And then we can prove that the limiting behavior of £( fy,) has a sharp
difference between the cases of DN Ty =@ and DNT; # 0.

By performing such procedure repeatedly from different directions, that is
adopting different w, we can collect more and more planes touching 0D, and
find out the location and shape of D. It looks like one uses the planes to enclose

the unknown inclusion, hence the name enclosure method.
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2.3 Complex geometrical optics solutions and some
related results

Since Ikehata proposed the idea of the enclosure method, there have been many
results of extending the idea to many other kind of physical settings. In the
following we try to show how to extend the idea to different physical settings
and the related results.

Remember that the two main tools in the enclosure method are indicator
functional and a sequence of suitable special functions. In different mathemat-
ical models, it should be not difficult to define similar corresponding indicator
functionals. However it is not easy to find a suitable sequence of functions as test
data. We try to extend the idea of the above Calderdn type functions e (whiwh),
To do this, we notice that the above Calder6n type functions are harmonic func-

tions and they have “complex phases”. So one idea of constructing a suitable

test data is to find solutions of the corresponding model having the form
€'t (a(x) + Ra(x))

with a “complex phase” function p, where R;, < a as h — 0. The solutions
with this form are the so-called “complex geometrical optics solutions”(CGO
solutions). This is the second tool in enclosure-type method.

There are some results for proving the existence of CGO solutions for var-
ious mathematical models, for example [31, 32, 16, 26, 27, 9, 35]. And these
articles also show that CGO solutions are useful in inverse boundary value prob-
lems. In particular, CGO solutions usually play the important role of the probing
utility in enclosure type method, see for example [10, 12, 14, 15, 28, 9, 33, 35,
40, 23, 29].

From line phases to general phases

In Ikehata’s early works, he used the Calderdén type harmonic function e (wtiw®)

to construct the test data. So, as mentioned in the previous section, it looks like

9



one uses lines (planes) to enclose the obstacle (and hence the name). As a con-
sequence a connected inclusion is required to be convex for a complete identi-
fication, and in general only its convex hull can be determined. One can refer
to the survey paper [13] for detailed explanation and early development of this
theory. In [28], [24] and [9], the authors utilize the complex spherical wave solu-
tions and some concave parts of unknown inclusions can be determined. In [35],
due to the complex structure, the authors proposed a framework of constructing
CGO solutions with general phases for some elliptic systems in two-dimension.
It means this work provides more choices of phase functions of CGO solutions
in 2D. They also gave a concrete example: the CGO solutions with complex
polynomial phases. In the same paper they also applied CGO solutions with
complex polynomial phases to conductivity equations, and then inclusions with
more general shapes can be determined. This type of CGO solutions were later
applied to other equations, for example [36] for static elastic systems and [23]

for Helmholtz equations.
Non-Laplacian leading term

The mathematical models we have mentioned above are almost equations or
systems with the Laplacian as the leading order term or which can be reduced to
the equations with the Laplacian as the leading term. To deal with more general
cases, we consider the equations (or systems) with non-Laplacian leading order
term. However, the anisotropy of non-Laplacian leading term prevents us from
constructing CGO solutions by traditional methods. As a result, the authors in
[25] proposed another type of CGO solutions, called “oscillating-decaying solu-
tions”. These oscillating-decaying solutions are also useful in inverse problems,

especially in detecting unknown inclusions.
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Chapter 3

Reconstruction of penetrable
inclusions

In this chapter we consider the inverse problem of reconstructing penetrable
unknown inclusions in a plane elastic body by boundary measurements. In [34]
and [36], the same problem is considered in the context of elastostatics. In
the present work we shall consider the situation when time-harmonic waves are

applied.

We use Ikehata’s enclosure method to reconstruct penetrable unknown in-
clusions in a plane elastic body in time-harmonic waves. Complex geometrical
optics solutions with complex polynomial phases are adopted as the probing
utility. In a situation similar to ours, due to the presence of a zeroth order term
in the equation, some technical assumptions need to be assumed in early re-
searches. In a recent work of Sini and Yoshida, they succeeded in abandoning
these assumptions by using a different idea to obtain a crucial estimate. In par-
ticular the boundaries of the inclusions need only to be Lipschitz. In this work
we apply the same idea to our model. It’s interesting that, with more careful
treatment, we find the boundaries of the inclusions can in fact be assumed to be

only continuous.

The content of this chapter comes from [19].
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3.1 Introduction

3.1.1 Mathematical model

Let Q C R? be a bounded domain (open connected set) occupied by our object,
which consists of an elastic body as background and some unknown inclusions
therein. For simplicity we assume €2 has C* boundary. The background elastic
body will be assumed to be homogeneous and isotropic with Lamé constants
denoted by A\ and 9. Denote the region of unknown inclusions by D. D is an
open subset of ) with D C ). The inclusions are also assumed to be isotropic
but may be inhomogeneous. Denote the differences between the Lamé coeffi-
cients of the inclusions and the background by Ap and pp, which are assumed
to be in L>°(Q), with A\p = pup = 0 on Q \ D. So the Lamé coefficients A and

1 of the whole object on €2 are given by
A=X+Ap and p = pg+ pp.

For simplicity we also assume our object has unit density. Now, consider we
send a time-harmonic elastic wave with time dependence e** into 2. By singling
out the space part we have the displacement field u, which is a two-component

vector-valued function, satisfying
V(o) +k*u=0 inQ. (3.1.1)

Here, for any displacement field v (which we will assumed to be a column
vector), o(v) is the corresponding stress tensor, which is represented by a 2 x 2
matrix:

o(v) =NV - v)Iy + 2ue(v),

where I, is the 2 x 2 identity matrix and €(v) = (Vv + (Vv)T) denotes the

1
2
infinitesimal strain tensor. Note that for v = (v, v2)7, Vv denotes the 2 x 2
matrix whose j-th row is Vv, for j = 1,2. And for a 2 x 2 matrix function A,

V - A denotes the column vector whose j-th component is the divergence of the

j-throw of A for j =1, 2.

12



For D = (), that is for the case with no inclusion, the corresponding dis-

placement field will usually be denoted by uy, which satisfies
V - (0g(wg)) + k*ug =0 in Q, (3.1.2)

where

oo(v) = M(V - v) L5 + 2p0e(v)

for any displacement field v. Accordingly, we will use op(v) to denote o(v) —
oo(v), i.e.

op(v) = Ap(V - v)I + 2upe(v).
We assume \g, o and A, p satisfy the conditions

Ao+ 29 > 0, po >0, and
(3.1.3)

A+2u >0, p>0 onf,

which ensure respectively that —V - 0y and —V - ¢ are strongly elliptic opera-
tors. In particular the two operators both have at most countably many Dirichlet
eigenvalues. As a consequence, we can readily choose (and will choose) k£ € R
so that k2 is neither an eigenvalue of —V - o nor an eigenvalue of —V - o. In
this situation, the Dirichlet boundary value problems corresponding to (3.1.1)
and (3.1.2) have unique solutions (see e.g. Ch.4 of [21]). Thus we can define
the Dirichlet-to-Neumann maps Ap, and Ay, both from Hz (9Q)? to H~2(9)2,
by

Apf =o(u)v|pg and Aygf = og(ug)v|sq, (3.1.4)

where v is the unit outer normal on 0f2 and u and ug solve respectively (3.1.1)
and (3.1.2) with Dirichlet boundary data f. The goal is to determine the un-

known inclusions from the knowledge of Ap and Ay.

3.1.2 The method and improvement

We will utilize the enclosure-type method to reconstruct the unknown inclu-

sions. In this method, complex geometrical optics (CGO) solutions usually play
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the important role of the probing utility. Technically, the phases of these CGO
solutions influence what kind of shapes of inclusions we can detect. In this work
we will also apply CGO solutions with complex polynomial phases to our prob-
lem, of which the governing equations are the Helmholtz type elastic systems

(3.1.1) and (3.1.2). These special solutions are first proposed in [35, 23].

A crucial point in our problem, as in [12, 24, 23], is the presence of the
zeroth order term. Due to this, some technical assumptions are needed in early
researches. In particular 9D is assumed to be C2. However in the recent work
[29] of Sini and Yoshida, by using a different idea to obtain a crucial estimate,
they succeeded in abandoning these technical assumptions, and in particular
0D can be only Lipschitz. In this paper, we apply the same idea to our model.
With more careful treatment, we find the boundaries of the inclusions can in fact
be assumed to be only continuous. More detailed discussions are given in the

remark after our main theorem, Theorem 3.4.1.

In the following we give a sketch of this chapter as well as a rough idea of the
whole process of the enclosure method. In section 2, we introduce a functional
Eon Hz (09)?, which will be called the indicator functional for our model in
Chapter 3. And then we give an upper bound and a lower bound of £, which
play central roles in the proof of the main theorem. In fact, we will construct
a family f;, € H 3 (09)? as input data into F, and the limiting behavior of the
output data, for various d, will indicate the location of dD. The construction
of f;, is based on the construction of CGO solutions for (3.1.2), which is given
in section 3. By using the Helmholtz decomposition and the Vekua transform,
this construction is much the same as in [23]. The main theorem concerning the
limiting behavior of E on f; 5, as well as discussions on the implication, the idea

of proof and our improvement, are given in section 4.
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3.2 The indicator functional

In this section we introduce the functional £ on Hz (052) defined by

B = [ (80— Ao)] - s,

where the Dirichlet-to-Neumann maps Ap and Ay are defined in (3.1.4). E
will be called the indicator functional (according to Ikehata’s indicator function
[11]), which plays a central role in the enclosure method. Intuitively, it mea-
sures, for a fixed Dirichlet boundary data, the difference between the tractions
corresponding to the situations with and without D.

Now let u and uy € H'(Q2)? satisfy (3.1.1) and (3.1.2) respectively with the
same boundary condition f € H 2 (09)?, and let w = u — ug. The goal in this
section is to prove Lemma 3.2.2, which gives a lower bound and an upper bound
of E(f) in terms of uy and w. To this end, we first give two identities. Note that

1/2
we use | A| to denote <Z” a%-) for a matrix A = (a;).

Lemma 3.2.1. We have the following two identities:

2
}dx

2
}dx (3.2.1)

2
}dx

2
} dr (32.2)

1
(V . ll())]g

E(f):/D{(ADﬂLMD)|V-u0|2+2uD -3

e(up)

- [ {0 i w2 fetw) - 57wt

+/k52 \w|” da;
Q

5w - [ {(ADHD)w-uFHuD

e(u) - %(v )

# [ {00+ 00) 197w 4 250 etw) = 57wt

—/k2|w|2dx.
Q

Lemma 3.2.2. Assume that the Lamé coefficients X\, 1o and N\, [ satisfy the

strong convexity condition, that is

Ao + o, po >0 and A+, p >0,

15



then we have the following upper bound and lower bound of E(f):

E(f) S/(ADJFMD)IV-uo|2d:E
D
1
(V'UQ)]Q

+2/,UD -5
D 2

EXf)>(/‘(AD%_MDXAO%_MM|Y7.ud2dx
~Jp At

+2/ KD o
D M

Proof. The upper bound of E(f) follows immediately from (3.2.1) (by omitting

2
}dm

2
}M(m@

2
m+/ﬁmﬁm
Q

e(up)

2
e(ug) — %(V ‘ug)lp| dr — /Q k2wl da.

the second integral). On the other hand, from (3.2.2) we have

E(f) > /D {()\D + p1p)|V - u)® + 2up |e(u) — %(V -u)ly

) 1
[ {0 m)I7 w20 ) = (7w,

—/wax
Q

And the lower bound follows from the following two identities, of which the

verifications are straightforward (by using w = u — uyg).

(1)
(Ap + 1p) [V -u)* + (Ao + o) |V - w|?
Ao + Ko > (Ao +up) (o + o)
— (/A +uV-u— v V.
(*““m‘“)* e
(i)
1 ? 1 ?
2pp (€(u) — §(V ~u)ly| + 240 [e(W) — §(V W)l
20 10 |* . 21pho 1 ?
= ; V 2pbij — —/ﬂbgj p (W) = 5(V-uo)ly|
where

(%y:qm—%wrMQ md(@y:dmo—;vqmb.
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For completeness we give the proof of Lemma 3.2.1 in the following. Before

doing so, note that we have the following basic formulae:

V-(oc(u)v)=(V-o(u))- v+tr(c(u)Vv), (3.2.4)

tr(c(u)Vv) = tr(c(v)Vu). (3.2.5)

Here tr(-) is the trace of matrices. And

tr(o(W)Va) = (A + @)V - uf? + 24 |e(w) — %(v Wk . (326

These formulae are easy to check and we shall omit the proof. Also note that
we have similar formulae with o replaced by oy, op, etc.

Now we give the proof of Lemma 3.2.1

Proof of Lemma 3.2.1. First note that [, Apf - fds and [, Agf - fds are real.

In fact, by definition we have

/m Apf - Fds = /m(a(u),,) fds = /BQ(U(U)TI_I) e

By divergence theorem and (3.2.4) we then get

/aQADf'de: /Q(V'U(u))'ualx—l— /Q tr(o(u)Va)dz

(3.2.7)
= / —k*u - udx + / tr(oc(u)Va)dz,
Q Q
which is real. Similarly |, a0 Nof - fds is real.
Since u and ugy both equal f on 0€2, similar to (3.2.7) we have
/ Apf - fds = / —k*u - tpdr + / tr(o(u)Vuag)dz; (3.2.8)
o0 Q Q
/ Aof - fds = / —k?uy - udx + / tr(og(ug)Vu)de. (3.2.9)
o9 Q Q
Take complex conjugation of (3.2.8) and by (3.2.5) we get
/ Apf - fds = / —k*ug - udx + / tr(o(ug)Va)de. (3.2.10)
o9 Q Q
Then subtract (3.2.9) from (3.2.10) we obtain
E(f) = / tr(op(ug)Vua)dz. (3.2.11)
Q

17



On the other hand,

/Qk:zw -wdr = /Q(k2u — k*up) - wdz = —/QV (o(u) — ao(ug)) - Wdx.

Note that w € H}(Q)?, thus integration by parts gives

k2/9|w\2d:c:/gtr [(o(u) — 09(ug)) VW] d. (3.2.12)

Now, substituting u = w + ug into the right-hand side of (3.2.12), and by

(3.2.11), we get

k? /Q \w|dx = /Q tr(o(w)Vw)dr — / tr(op(ug) Vg )dx + E(f).

Q
(3.2.13)

And the first identity (3.2.1) follows from (3.2.6).

Similarly, by substituting uy = u — w into the right-hand side of (3.2.12)

we will obtain (3.2.2). O

3.3 The testing boundary data

In this section we construct the boundary data to be input into £ for detecting
the location of dD. For this purpose, we first introduce the CGO solutions with

complex polynomial phases.

3.3.1 CGO solutions with complex polynomial phases
We are to construct CGO solutions with complex polynomial phases to
V-oo(v) +k*v=0 (inR?). (3.3.1)

Suppose that v € C*>°(IR?)? satisfies the above eqaution. By Helmholtz decom-

position, we can write

v=Vp+ Vi

for some smooth scalar functions ¢ and 1), where Vv := (=1, 019)T (and

here we also regard V¢ as a column vector). Then ¢ and 1) satisfy
V(Ao + 210) A + k*p) + V(110 A¢p + k*3) = 0.

18



1/2 1/2
Let by = (/\O_'i—;m) and ky = (ﬁ—j) . From the above equation it’s easy to

see that conversely for any ¢ and ¢» € C*(IR?) satisfying

Ap+kp =0
A+ k3 =0,

(3.3.2)

v = Vo + V11 is asolution to (3.3.1). Moreover, if ¢ and 1) are CGO solutions
to (3.3.2), then v is a CGO solution to (3.3.1).

It is not difficult to construct CGO solutions to (3.3.2) by using the Vekua
transform, which transforms a harmonic function to a solution to a Helmholtz
equation. Precisely, for any real constant w, the Vekua transform 7, associated

with w is defined as follows:
1
0
T () (x) = u(x) — / () o { oIV T 1)} di
0

for a function u, where J, is the zero order Bessel function of the first kind. If u

is a harmonic function, then T, (u) satisfies
A (T,(u)) + w*(T,(v)) = 0.

This formula is derived by I. N. Vekua. One can refer to [38] for details and
other related results.

In the following we adopt the same idea as in [36] and [23] to construct
CGO solutions with complex polynomial phases. Given N € N and 5 € C with

B| = 1, let p = px g be the function on R? defined by
76

p(x) = B(ay +izy)", (3.3.3)

which, by regarding R? as the complex plane C, is a complex polynomial. Then

we define
. T
D =TDygi= {r(cos 0,sin6) > 0,0 — fo| < ﬁ} , (3.3.4)

the open cone with axis § = 6y and open angle 7/N, where 6y is such that

B =e N0 LetT =7yp5:= Re{pnp}. Note that in ' we have
7(x) =1V cos N(0 — 6g) > 0,
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where x = r(cos 6, sin 0).
Now for any constant h > 0, e is harmonic (since it is holomorphic by

regarding R? as C), and hence
o= =Ty (eh) and ¥ =y = Tp,(eh)
satisfy (3.3.2). Moreover, ¢}, and 1, are CGO solutions. In fact, we can write
on(x) =e " (1+ Rp1(x)) and ¢p(x)=e 7 (14 Rua(x)) (3.3.5)

with R, ; (I = 1, 2) satisfying the following estimates in I':

/{32 2
|Rpil < h x| ;
ORp (%) Nk x|V kle| 1.9 o
agjj 47’(X) QT(X)’ ] — Ly«

These estimates are established in [23, Lemma 2.1]. In this study we will also
need estimates of the second derivatives of R}, ;, which are not hard to derive in
the same manner as the derivation of (3.3.6) given in [23]. Actually, by repeat-

edly applying the following well-known recurrence formulae

= = — >
dt(tjl) tJo(t), 7 Ji(t), Vt >0,

where .J; is the Bessel function of the first kind of order 1, and using the basic
estimates

[1(B)] <

13
<3 |Jo(t)] <1, Vt>0,

the verification of the following estimates are direct (although somewhat lengthy):

1 [(kEN?|x|*V
< (2t
~h 4TN(X)
KEN(N = DIx|N RN N (2] + Ja))
A7y (%) 27N (%)

Eflag||lo;|  K2Oy
h [ R’ J 1Y)
+ ( 47y (x) + 27‘N(x))

O* Ry, 1(x)
83)@82@'

+ ) (3.3.7)

inI', for 1 <1,¢,7 <2, where ¢;; is the Kronecker delta.
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Let diam(€2) denote the diameter of 2. By (3.3.6) and (3.3.7) there exists a
constant C'r = Cg(Ao, o, k, N, B, diam(£2)) > 0 such that for any 0 < h < 1,

1<li,j<2andxe€I'NQ,

Cr
< .
| Bp(x)] < h—TN(X),
8Rh l(X) CR
9 < .
) oz, S ) (3.3.8)
ath,l(X) < 1 CR
8&@0%— - hTN(X)‘

Now v = v}, := Vi, + V11, is a CGO solution to (3.3.1). v}, can be

written down explicitly as follows:

) Qh,1(X)
vi(x) =€ h ’
Qn2(x)
where
10 OR
@na(x) = _ﬁ(l + Rpa(x)) + OB (x)
h 81’1 81’1
and
10 OR
Ona(x) = [L2209 (1 | (o)) 4 2B ()
h 8.1'2 8.1'2
- lﬁ 0xy (1+ Raa2(x)) + Txl} i
Thus for 0 < A < 1 and ¢ = 1,2, from (3.3.8) we have the following estimates
for Qp; in I' N €2
2N |x|N-1 C 20
|@Qni(x)] < AN T A B
h 7(x) 7(x)
C C (3.3.11)
< 2B TR
= T
and for j = 1,2
, N-2
IQni(x) < 2N x| {(N+ ‘XD@ +N] i 2Ck
- " 2O ey
> s (3.3.12)
< Cr 1+ b + Cr
~ h T(X) T(X) )

where C = C’R()\O, o, k, N, B, diam(2)) > 0 is a constant.
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3.3.2 The testing boundary data

Note that from the discussion above the CGO solutions v,, are controllable in
[' N €. In the following we go on to follow the idea in [36] and [23] to modify
v}, into a family of functions localized in I'.

From the idea of enclosure method the previous chapter stated, we know the

level curve of real part of the phase function is very important. So let, for ¢ > 0,
1
bo={xel:7(x) = f}’ (3.3.13)

the level curve of 7in I at %

Oor

In fact, any level curve of 7 = 7y 3 has NV branches, and the cone I' = I'y g
just contains one branch with the two edges of I' being the asymptotes of that
branch. On the other hand, we here choose one cone (or branch) which intersects
the subject €. Also note that when ¢ is larger, the curve ¢, is closer to the origin.
(We refer to Figure 2 in [23] for an illustration.) Then for d > 0 let

Ty=Tnpa= ] & (3.3.14)

o<t<d

Note that for d; > dy > 0 we have 'y, C I'y,.
In the following we fix an ¢ > 0 and a compact interval J C (0,00). Let

{¢a}acs be a family of smooth cut-off functions such that
(i) 0 < gq(x) <1,

(i) ¢a(x) =1 (resp. 0) for x € [y, (resp. x € R?\ ['g42.), and
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(iii) for some C, > 0, we have |0g¢q4(x)| < Cy for each multiindex o with

la| < 2, for each x € Q and foreach d € J.

The existence of such family {¢,} is obvious and we omit a precise construction.

Now let
Pan(X) := dg(x)e rivy, € CP(R?)2. (3.3.15)

It is the traces of these py on O that will be the testing data to be input into
E. In fact, we will see that the behavior of E(pgn|aa) as h — 07 tells whether
I'; intersects D or not. Now note that although pg j, is controllable from the dis-
cussion above, it is no longer a solution to (3.3.1). However, to get information
from E(panlon) we will need estimates related to the solution of (3.3.1) with
boundary condition p |9q. But indeed for small % controllability of py gives
controllability of the true solution of (3.3.1) with the same boundary condition.
We explain this precisely in the following.

Let ug 4, satisfy

V- UO(UO,d,h) + ]{321107d7h =0 in{)

(3.3.16)
Uo,ah = Pdanlon on 0f2.
And let
Wi, = Pd,n — Uo,d,hs (3.3.17)
then w, satisfies
V - oo(wp) + k*wy, = V- 09(pan) + k*pasn, in (33.18)
wy, =0 on 0.
Let
gn =V -0o(pan) + kzpd,m (3.3.19)

then we have the following lemma.
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Lemma 3.3.1. There exists positive constants Cy and C' (depending on §2, g, po, k)

such that for0 < h < landd e J

C _11_
Wl 2 < Chllgnll 22 < e " w(aare),

In particular, there exists 0 < hy < 1 such that for 0 < h < hgand d € J, there

is a positive constant C' = C' (), \o, 1o, k) such that

IWillm o < Cillgnllzzey < Clenlaa),

Proof. Note that in this paper for any two vectors a and b, we define a ® b to
be the matrix whose ij-th entry is a;b;.

That ||wh | g1y < Cil|8hl|L2(q)2 for some C is classical. So we need only
to estimate ||g || .2(q)2-

Since Py (x) = ¢a(x)e 7y, we have

g = e V(Y - (60v1) + 10V - (V(6avn) + (V(6avi))) + Koavs
= ¢ {2 [V (V- va) + Vou(V - vi)]
+ 10V - [Vis ® Vo + Vu © vy]
+ (Vi + (V1)) Vo4

+ ¢alV - oo(Vn) + k2Vh]}-

Because V - 0¢(vy,) + k*vy, = 0 and Vg = 0 outside ['gy . \ T'qye, we have

_ 1
grllz2(0)2 < Cge™ || Vall i1 ((Tay0\Taye)n0)? (3.3.20)

for some positive constant C; = C; (g, o, Cp)-

By (3.3.11), for x € (Fgao: \ Tare) N €L

7(x)

[Va(x)| = e

V1@ 2 + |Qua(x)f?

cvaer {Cny Cn | Ch o
h  7(x)
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for some positive constant Cf, = C, (Ao, o, k, diamS2). Hence we have the

following estimate:

1

" 27 (x) ?

Willranraonar < 55 Hdr )
(Tay2:\Taqe)NQ2

Similarly by (3.3.11) and (3.3.12) we have

1/

1
C 27 (x) ’
||Vvh||L2((Fd+25\rd+s)nﬂ)2 < h—f / e dv .
(Fd+2s \Fd+s)nﬂ

Since

/ 627}5)() dr < |(Fd+2€ \ Fd+€) N Q‘e%(#sv
(Fd+2s\Fd+s)nQ

we have

_L 1l 1
8rllz2)2 < Cge™ 2 || Vall a1 (Daya\Tus)ne)? < ﬁe 7 (3 d+s), (3.3.21)

where C' depends only on Ay, /10, k£ and €.
O

3.4 The main theorem for the reconstruction of un-
known inclusions

We now come to considering our inverse problem of reconstructing D. For the
main theorem we make the following three assumptions (in addition to those

already made in the introduction) throughout this section.

1. We assume V - 0y and V - o satisfy the strong convexity condition (but not

only the strong elliptic condition (3.1.3)):

Ao + o > 0, po > 0;

A4+pu>0, >0 onf.

Thus, in particular, Lemma 3.2.2 applies.

2. ()\D + MD)ND >0onD.
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3. For any y € 0D, there exists a ball B,(y) such that one of the following
jump conditions holds:

(1) pp(x)>r, Ap(x)+up(x) >0, Vxe€ B.(y)ND; 341

() pp(x) <—r, Ap(x)+ pp(x) <0, ¥Vxe B, (y)ND.

Now assume the origin 0 is outside Q.! As in section 3, in the following
we fixan N € N, a g € C with || = 1, an ¢ > 0, and a compact interval
J C (0,00). And recall the definition of p, I, ;, Iy, and p,, in (3.3.3), (3.3.4),
(3.3.13), (3.3.14), and (3.3.15) respectively. Also recall that we use 7 to denote

Re(p). Let

sup 7(x), ifDNT #0)

S, = xeDNr’

0, ifDNT =0.

Note that D N T" # () if and only if s, > 0, and in this situation ¢, ,, is a curve

just touching 0D, i.e. {1/, N D = {15, N OD # 0.

For notational simplicity let f;, :== par|oq. Recall that ug 4, satisfies

V- O-O(u07d7h) + ]{321107d7h =0 in{

Ugdnr = fd,h on 0f2.

Similarly let ug  be the solution when the inclusion D exists:

V-o(ugn) + kQud,h =0, inQ

Ugpn = fd,h on 0f).

'In general, for a = (a1, az2)” a point outside 2, we should use p = B((x1 — a1) + i(z2 —
ag))N , and similar modifications of I', Iy, etc., and there is a similar result as Theorem 3.4.1.
However as we can always set the coordinates so that 0 ¢ Q in practice, such consideration is
not needed.
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Now let wg, = ugp, — Ugqn. We have the following two inequalities from

Lemma 3.2.2:

Blfs,) < / b+ 10)|V - 1o an|2de
D

1 2
+ 2/ wp [e(Ugapn) — i(V ‘U qn)la| du+ szWd,hH%?(Q);
D
(3.4.2)
(Ao + po)(Ap + pp) 9
E(f > V- d
( d,h) = /D N+ 1 | uO,d,h| X

2

1
dr — ]{ZzHWd,hH%g(Q).

€(uo,d,h> - §(V . u07d7h)12

+2/M
D M

They are the key to the following main theorem of this paper.

(3.4.3)

Theorem 3.4.1. For d € J and h > 0 small enough, the following conclusions

hold:
(A) IfDNT, =0, then
|E(£4,)] < Ch™ e lamsa)
for some C' > 0 independent of h, where s; = max(d%ra, 84) < é.

(B) If DNT'y # (0 and D has continuous boundary, then there exists a constant

0,0 <6 < sy — é, such that
|E(£4,)] > Ch™3en(s=a=9
for some C' > 0 independent of h.
(B") If DNTy # 0 and D has C** boundary for % < a <1, then
|B(fu0)| > Ch™3Faen(=d)
for some C' > 0 independent of h.

Before going into the proof of Theorem 3.4.1, we give two remarks.
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Remark 3.4.1.

1. From Theorem 3.4.1, we have the following conclusions. In (A), since
sq < %, |E(f4;,)| tends to zero as h tends to zero. On the other hand, in
(B) and in (B'), since s, > 1, |E(f;,)| tends to infinity as h tends to zero.

In particular, from (A) and (B), we have
= inf L lim |E(f, =0 344
S, = in E.hi)rg“ (fin)] =0p. (3.4.4)

Hence, although we don’t know the limiting behavior of E(f; ;) when I,
just touches 0D, we can reconstruct 0D in principle. (Of course, due to
the geometric nature of I';, in fact only “detectable” points can be recon-
structed. An explanation of this point can be found in [35, Corollary 5.4].
Also see [36] or [23] for a reconstruction algorithm, which is easily mod-
ified to be suited for our case. We omit such discussions in this paper.)
From this point of view, almost no regularity assumption on 9D is essen-
tial in the reconstruction. Nevertheless, for a complete characterization of
the limiting behavior of E(f,,), we include (B') in our theorem, while for

this purpose more regularity assumption has to be made.

N

Figure 3.1: The reconstruction algorithm is to find more and more touching
curves

2. We will use (3.4.2) and (3.4.3) to prove Theorem 3.4.1. Roughly speak-
ing we have better knowledge of ug 4 than w,,, and the crucial step is

to give an appropriate control of ||Wg || 12(q) in terms of ug 4. For this
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purpose, in the corresponding parts of early researches, e.g. [12, 24, 23],
some technical assumptions (precisely, positivity of the relative curvature
and finiteness of the number of touching points of ¢ /,, (or say I'; /5, ) and
dD) have to be made. In particular @D is usually assumed to be C?. (In or-
der to apply CGO solutions with complex polynomial phases, even more
technicalities are involved. For example, in [23, Lemma 3.7], the authors
proposed an estimate which is based on a rather technical result in [20].)
In [29], Sini and Yoshida came up with a totally different method to con-
trol [[Wqp||z2(q) (While they did not adopt CGO solutions with complex

polynomial phases). Precisely, they proposed (in our terminology)

Wanll2) < Cllaganllwir(py (3.4.5)

for some p < 2, which was proved by using an L? regularity estimate of
Meyers and the Friedrichs’ inequality. In this way the technical assump-
tions on the touching point are no more needed and dD can be assumed
to be only Lipschitz. Inspired by this result, we tried to adopt their idea
in our situation. We find it’s interesting that, with more careful treatment,
we find the boundaries of the inclusions can in fact be assumed to be only
continuous. Moreover, we find in the case of I'; just touching 0D, the reg-

ularity assumption on 9D can be reduced to be C*“ for any « € (%, 1].

To save notation, in the remaining of this chapter we will freely use C' to

denote a constant, which may represent different values at different places.

The following lemma is just (3.4.5), we give the proof here for the sake of

completeness.

Lemma 3.4.2. There exist constants C > 0 and 1 < qy < 2 such that for

G <q=<2

[Wllr2@) < Cl[Vao|la(n),

whenever u and vy € H'(Q)? satisfy (3.1.1) and (3.1.2) respectively, u and uy

have the same traces on 052, and w = u — u,.
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Proof. Let q be the element in H{ (2)? satisfying
V-(o(q) +k*q=w inQ.
Then, by taking inner product with w and integration by parts, we have
/ \w|dx = — / tr(o(q)Vw)dx + k? / q-wdz
Q Q Q
=— / tr(o(w)Vq)dr + k* / q- wdz. (3.4.6)
Q Q
On the other hand, note that
V-o(w)+k*w = -V -op(up),
which, by taking inner product with q and integration by parts, gives
— / tr(oc(w)Vq)dr + k* / w - qdr = / tr(op(ug)Vq)de. (3.4.7)
Q Q Q
From (3.4.6) and (3.4.7) we get
/ |w|?dx = / tr(op(ug)Vaq)de.
Q Q
Then by Holder’s inequality we have for any 1 < p < oo
/|w|2d:): < llon (o)l e IV all o, (3.4.8)
Q

where ¢ is the conjugate exponent of p.
Now let Q = q. By definition of q we have
V- (0(Q)=w—kq inQ
Q=0 on{.

Then by [22, Theorem 1], there exist py, > 2 such that for each 2 < p < py,

IVdll o) = IVQllr) < C{llallz2@) + W2 } (3.4.9)

for some C' = C(k, A\, ) > 0. Note that also by definition of q, we have
a2y < C||W|| 2 for some C' = C'(k, A, i) > 0 (see e.g. [7, Section 6.2,
Theorem 6]). So from (3.4.9) we have

IVall ey < Cllwll2(ey (3.4.10)
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for some C' = C(k, A, u) > 0. Combining (3.4.8) and (3.4.10), we have
[WlZ2(q) < ClIV ol oy l|wl 2(@)
for some C' = C'(k, A\, ) > 0 and 2 < p < py, and therefore
[Wlz20) < Cl[Vug||ze(p)

for some C' = C(k,\,pu) > 0 and ¢y < ¢ < 2, where 1 < ¢y < 2 is the

conjugate exponent of py. 0]

Remark 3.4.2. Remember that we assume §2 has a smooth boundary for simplic-
ity. In fact, it is so assumed only to allow direct application of the L” estimates
in [22]. In other words, the regularity condition on 02 really required is just that

guarantees the validity of (3.4.9).

To make the proof of Theorem 3.4.1 more concise, some computational re-

sults are collected in the following lemma.
Lemma 3.4.3. For d € J, we have the following conclusions.

(1) There exsists a constant C' > 0 such that for ¢ > 0and 0 < h < 1, we

have

(3.4.11)

Sl
)
x
|
Q-
QU
S
\_/
Q|

IVPapllpepy < Ch™2 (/ e
DmFd+2s

In particular, since s, > 7(x) for x € D N Ty 9., we have
for some C' > 0 independent of h.

(ii) There exist positive constants ¢ and C' such that, for 0 < h < 1 and for

any open set U with D N Ty,.. NU # (), we have

2

1
€(Pan) — §(V *Pan)l2
L2(DNT g4eNU) (3.4.12)
> (ch™ — Ch_Z)/ enT)=2dy.
DﬂFd+EﬂU
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(iii) There exist constants C' > 0 and qy < 2 such that for each qy < q < 2

and 0 < h < 1, we have

2/q
oy < Cebeb 1 ot (/ ez<r<x>—a>dx) |
D

Ml y2e

(3.4.13)

Proof. (1) Remember that

1 1
Pdn = (pcll,hapi,h>T = ¢d€3(p(x)_3)(Qh,17 Qn2)",

where (05,1 and (), » are defined in (3.3.9) and (3.3.10) respectively. Then
by definition of ¢4 (in page 23), for x € D \ I' 442, we have pg(x) = 0.
On the other hand, by (3.3.11) and (3.3.12), we have for x € D N 'y, .

and 0 < h <1,
: 2
op’
2 d,h
[Vpan(x)|” = Z o,
3,l=12
004(x
= 3 ehtro= |25 g
Gi=1,2 Tl (3.4.14)

for some positive constant C' independent of h. Since s, = sup 7(x)
xeDnr

and |Vpgu|? = (|[Vpan|?)¥?, we have for 0 < h < 1

vad,hHLq(D) < Ch_2 </ 6%(T(x)_%)d1’> < Ceﬁ(s*—g)h—{
DmFdJrZs

for some positive constant C' independent of h.

Wi directly by (3.3.9) and (3.3.10) for x € DA Ty

(i1)) We can compute o

Opyn(X) 1 s [ O¢a(x) 1 0p(x) OQn1(x)
oo, = ¢ hde ( o1, Qh,1+ﬁ¢d Bz, Qh,l"‘(ﬁdiaxl )
_ e (1 (9p(x)  Ip(x) Op(x)
—emer (ﬁ( Oy Oy Oxy Ga(x) + L
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and

8 2 X 1 px a 8
pd,h( ) _ e_me# ¢ ( )Q h _¢d ( >Qh,2 +¢d th(X)
ox; ox; Oz
1 e 1 8p
— e hde h ( ( 83;1 8;1;2 ) _'_Ih 1) )
where

1 0 0 0
I = —¢q p( pR,1 pha)

h? "7 0x; \ Oxq 0wy
1004 | Op dp
— 20 ~ 2P
h oa {a (At Fa) = 500 +R“)}

4 1¢ 8/) 8Rh1 _ 8Rh72 4 8p 8Rh71 _ 8/) 8Rh72
d 82151 81’1 8xl 81’2 8xl

82151 8&}2
1 9?p 0%p
+ _¢d |:8LL’182L’1 (1 + RhJ) B 81’181’2 (1 + ha)}

+o O*Ryq _athz +a¢d ORp1  ORpa )
“\ 92,00, 0,07, ox; \ Ory Oxy )’

0 0
I+ = ¢d ( P R+ —pRh,z)

0 0:)31
1a¢d dp
+h(‘3 L92( +Rh1)+a—(1+Rh2)]

¢ 8Rh1 8Rh,2 i op aRh,1 4 dp aRh,Z
h d 8xl 0xo o0x, Oxy O oxr, Ox;

1 9?p 0?p
* Egbd {8@8@ (1+ Rn) + 0x;011 (1+ Rmz)}

O*Rp1 0*Ryo 0pq (ORn1  ORp2
+ b4 (8@8@ * 8x18x1) * oz ( 0xo * o0xy ) )

By (3.3.8), foranyx € DN I'y9.and 0 < h < 1,

T2 ()|, [T (%) < CR

for some positive constant C' independent of h.
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Then we have forx € D NIy 0. and 0 < h < 1

2

1
2|€ (Pa,n) — §(V “Pan)
> 817}1,}1 B ap?z,h ’
- 83)1 83}2
Loety a2 [0 (O O\  Op (0p  Op\][
> lenP=a) g p—2 — —
= | ’ ¢d |:01L'1 (0331 01'2) 01'2 01'2 + 0:)31

1

2
en P~ @) (L — I )

> en(=a) (cg2h ™t — 20h72)

for some positive constants ¢, C' independent of /4. Then (ii) of this lemma

is valid.

(iii)) By Lemma 3.4.2, there exist constants C' > 0 and 1 < g9 < 2 such that

1Wanllr2@) < C||Vaoan|Lap)

for each ¢y < g < 2. Therefore replacing ug 44 by pq, — Wy, and applying

Holder’s inequality, we have

||Wd,h||L2(Q) < C{HVWhHLQ(D) + ||Vpd,h||Lq(D)}
< C{IIVWall12p) + | VPanllLap) }
< C{IVWillmioy + [IVParllLan) } -

Then by Lemma 3.3.1 and (3.4.11), (3.4.13) follows.

Now we give the proof of the main theorem.

Proof of Theorem 3.4.1. (A) By (3.4.3), we have

—(Ao + o) (Ap + pip) 9
_E(f) < . d
(fan) _/D T 2 |V - ug g "dx
_ 1 2
) / HOPD (g a) — =(V - upan)lo| do
D M 2

+/ kf2|Wd7h|2d:L'.
Q
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(B)

Therefore, together with (3.4.2), we have

B ()| < C {1V 0020 + [Wanlizoy §

for some positive constant C' independent of h. Therefore from Lemma
3.3.1 and Lemma 3.4.3, we have, by choosing ¢ = 2, the following esti-

mate:
|E(fan)| < C{HVWhH%m) + IVPanll7p) + de,h||2L2(Q)}
<C {e%(d%s‘%) + h‘4e%<3*—%>} .

Therefore for 0 < h < 1,

|E(£)| < C (h—4e%<8d—%>) ,

where s4 = max( 717, s..). Moreover we notice that D N Ty = ) implies

Sy < é, and the conslusion (A) follows.

We first consider case (i) of (3.4.1) and prove the conclusion (B) from

(3.4.3).

Suppose D N Ty # 0, then s, > 4 > -1 since D is open. Therefore for
any y € 0DNT'4;., each neighborhood Uy, of y satisfies DNI'q . NUy #
(). By the assumption (i) of (3.4.1), for each y € 0D, there exists ry, such

that

pp(x) >ry, Ap+pp=>0, Vxe B, ND. (3.4.15)

Set K := 0D N {1 = s,} = 0D N{y,,. It’s easy to see that ' # ().
Since K is compact and is contained in Uyc B, (y), there exsits N € N
such that X' € UX.| B, (y;), where ry is abbreviated to r;. Let Dy =

D\ U}L, B, (y;), then it is easy to see that there exists &' > 0 such that

7(x) <s,—4d in Dg.
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Therefore for ¢y < g < 2 we have

N
/ eh(T=2) dm</ en (T dx—i—Z/ en (T a)dy
DNCgqoe Dgr 1 (¥i)NDNla 2

7j=1

< Cek(s=a=9) + N eF =D dy

By, (y« )ﬁDmFd+2s

for some y, € {y;}}_, and r, € {r;}_, such that

1 1
/ en ™" ddr = max / en™ddy |
By, (y+)NDNL g4 2, =L N 7 (¥5)NDNCg e

Moreover, we can compute more finely that

1
/ en(Td) dy
BT* (y*)ﬂDﬂFd+25

:/ e%(T_é)dij/ er (T3 dy
By, (y*)ﬂDﬁFd+5 By, (}’*)ODO(FdJr%\FdJrs)
1 1

< / eh T dy + Cenlare—a),
Br, (y+)NDNlq4,

Therefore by combining the above inequalities, we have

q

/ en(Tad)dx <C ehT=a)dy
DTy 2e B, (y+)NDNT g4«

+ Cetlare=d) 4 Cenle—a=?),
Set

9(r_1
Agin ::/ enTma)dy.
By, (y*)ﬂDﬂFd+5

Now we come back to (3.4.3), from Lemma 3.3.1 we have for 0 < h <« 1

E(fd,h) 2 C {/ HoltD
D M

- k2HWd,hH%2(Q)

dx — ||Wh||H1(Q }
2
>C /MOMD du
D M
o (1 e%(d}rs_é)
HOMD

D pdh)__(v Pd,n 12‘ dx

2

(Pd h) — 1(V Pad, n) 12

1
€(Pan) — §(V “Pan)l2

[Wanll?a )
_ i .
fD —uoﬁD ‘E(pd,h) - %(V . pd7h)12‘ dx

(3.4.16)
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In the following we estimate each term separately.
First, by Lemma 3.4.3 we can compute

fD uoﬁD ‘E(pd,h) - %(V . pd7h)]2‘2 dx

||Wd,h||%2(g)
Agmh(c — Ch_2)
2(-d) | s o1y 5\
€ N _I_ fDﬂFd+25 ehn d dx
A27*’h(0h_4 — ChZ)

(A(L*,h)z/q + 6%(d_<lks_%) + 6%(5*_%_5')7

>C

(3.4.17)

>C

for qp < q < 2.

Now we need to compute A, carefully. For y, € ¢/, N ID, we
consider the following change of coordinates as in [23]. First, let 7 be
the composition of the following two rigid motions: i) translate y, to the
origin, and ii) rotate so that the unit inward normal of 7 (I';/s,) at the
origin is the vector (0,1)T. Then set z = (z;(x), 22(x))Y = T(x) and

€ = (&(2),8(2))T = =(z), where

Z1

(T 'z) — s,

—_
—
—

—~

z) =

Then = o T gives a C? diffeomorphism in a neighborhood Uy, of y..
Geometrically, under the transformation = o 7 the point y, becomes the
origin of the new frame (&3, &), &1-axis coincides with the curve £; Jsis
and the positive direction of £;-axis coincides with the unit inward normal

of T(I'y/s,) aty..

We do the above change of coordinates, then we have = o 7 (y.) = 0 and

Cehto=d) / ehe g
20T (Bry (y+)NDNT g4 )

< Agupy < Cehld) / ert2dg | .
HoT (Bry (y+)NDNL g4 )

Since 0D is continuous, = o 7 (9D) is also continuous and is able to

(3.4.18)

be parametrized by a continuous function near & = 0 under a suitable
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rotation. So, we consider a rotation 7 with 7 (¢) = &€ = (&;,&)7 such
that 7 (207 (8D)) can be parametrized by f, (&) near &€ = 0 with f,(0) =
0.

Actually, we can choose % such that
£y = (sinf)&; + (cosB)E, with || < g,

because Zo7 (D) C {& < 0} and D is open. Let a = sinf and b = cos 6,
then b > 0. Without loss of generality, we assume 7 (= o 7(9D)) can be
parametrized by f,(&) in & < diam(T (2 o T(B,.(y.) N D NTye))).
Set U = T(Z o0 T(B,.(y.) N DNTa)).

Here we note that f, is continuous in U since we assume 0D has contin-

uous boundary, and U cC {aél + b§~2 < 0} since Zo T(D) C {& < 0}.

Now it’s easy to see that there exist positive constants ¢y, da, 07, 0, inde-

pendent of h with §, < d such that

fi(€1)
/ / ;g a§1+b£2)d£

_/ 6552d§:/65(“51+b52)d§
Z0T (Bry (y+)NDNT g42) U
f* &1
/ / % 051+652)d£
f(&1) —d2 -
/ / %0514-652 d{—l—/ / e%(“ﬁl-ﬁ-biz)dé
6/

Since U C {aél + bég < 0},

6QSf*<£1>s—%€1 in U

Therefore, we can compute directly and obtain that

/ / eZ(a§~1+b£~2)dé

< / ené2dg (3.4.19)
EoT (Bry (y+)NDNL g4 )

61 pfe(1) g i -
- / / e OSTIE 4 (8] + 01)(0h — 6).
8" J =62

1
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In order to make the computation clear, we set

&1 pf(&) gz z o~
Byan = / en(@€1F0e2) g¢ (3.4.20)
)

1Y/ =02

By combining (3.4.17), (3.4.18) and (3.4.19), we have

fD % ‘E(pd,h) — %(V . pd7h)[2‘2 dx
[WanllZ2 )
6%(3*_5)32’*7,1(0 — Ch?)
6%(5*_%)(3(1,*,;1 +0)2a+ er (T 1) 4 ehl(si—5-0)
By .n(c — Ch?)
(Bywn 211 1 C 1 ehlate ) 4 H-0)

(3.4.21)

=C

Now we compute B, ., more carefully. We note that since f, is con-

1

P d’), there exists

tinuous nearé =0, forall 0 < ¢ < min(ds, s, —

0 < 6 < min(dy, 07) such that

1f(&)] = 1£(&) = £(0)] <6, V& € (=07, 8)).

Therefore,

Then for 0 < h < 1, we obtain the following estimate
h _aps
Byn > C’—be n (3.4.22)
q

forall 0 < ¢ < min(ds, S« — ¢’) and for some C' independent of h.

1
d+e’
Moreover, we observe that for 0 < h < 1

7 (g —s+)
eh\d+ < C’h_le%(d%s_sﬁ_é)
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and
2
h
1 < Chlen(o),
2%, h

Then (3.4.21) becomes the following estimate

D ”O,’jD Pdh) — —(V Pd,n 12‘ dx By «n

WanlZo = By

forgo < g<2and0 < h < 1.

Actually, we can directly compute and use the Holder inequality to obtain

that for ¢y < ¢ < 2,

2/q
Byan) 2/q _ [ ehbf*(ﬁl) _ e—%bég) dé]
L 2/q
n eha&ehbf*(&) (1 _ 6—%b(6z+f*(51))> dé,
qb 5/
2/(] 2 S 2 o /q ~
<C ( ) ehaflezbf*(&) (1 — e~ 10O+ (51))> dé;.

Since 85 + f.(&,) > 0 for §'~1 € [, 01], we have

0 < e~ EE+RE) < 1

and therefore for g < 2

(1 - e_%(52+f*(§~1))>2/q <l-—e"

(62+f+(61))

:-\M

Hence we obtain for ¢y < ¢ < 2

By .p)¥1 < AN a1 o 7bf(61) 7 @2t Fu(€1)
(Bgap)?1<C|— eh eh 1—en d§1

B 2b S+ 2 (€1 +b62)
(k) )/ [, e
() )

and then the most difficult part of the proof of Theorem 3.4.1 can be con-

cluded that for0 < h < land ¢y < ¢ < 2

Duo,’jD pdh)__(v Pd,h 12‘ dx

> COh'a, (3.4.23)
HWd,h HL2(Q)
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for some constant C' independent of h.

Back to (3.4.16), by (3.4.23) we have for 0 < h < land ¢y < ¢ < 2

1 2
E(fdvh) >C / Hollb 6(pd,h) - —(V . pd7h)]2 dx
D M 2
201 _1
X <1 — ertare ) - _ h(5_1)>.
o EOEL Je(pan) — LV - pan) | dx
(3.4.24)
By direct computation we have
e%(d}ks_é) 2, 1
2 < Ceﬁ(de‘s*)’
fD uoﬁD }E(pd,h) — %(V . pd7h)]2‘ dx
therefore
E(L_l)
¢htdte d
o(1). (3.4.25)

2 pumy
Jp B2 |e(pap) = 5(V - pan) 2| d
Hence by using Lemma 3.4.3 and by computing directly from (3.4.24)
and (3.4.25), we have for 0 < h <« 1

|E(£,,)] > Ch™* Ay, > Chtei =) By, . (3.4.26)

Therefore by (3.4.22), for all 0 < 6 < min(dz, s, — ') and for 0 <

1
d+e’

h < 1 we have
|E(£4,)| > Ch™3ei(s—a=9), (3.4.27)

for some constant C' independent of h. Choose 0 such that § < s*—é, then

the proof of (B) is complete.

For case (ii) of (3.4.1), instead of using (3.4.3), we shall consider the

negative of (3.4.2):

—E(fy) > / ~(Ap + up)|V - uggpl*dr
D

—2//~LD
D

And a similar argument will also give (3.4.27).

1

E(uo,d,h> - —(V . U—O,d,h)l2

2
dm—/kz\wd7h|2dx.
2 Q
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(B’) Asin (B), we will only prove case (i) of (3.4.1) by (3.4.3), and case (ii) of
(3.4.1) can be treated similarly by using the negative of (3.4.2). Suppose
that D N Ty # 0 and D has C%® boundary. Since D N 'y # 0, 5, > é >

sz and K = 9D Nty # 0.

1

In fact, we have proved in (B) that s, — prs

> 0 and continuity of 0D
ensure (3.4.23) holds. So (3.4.23) also holds under this assumption of

(B’) and therefore (3.4.26) also holds.

However, since D has C'%* boundary, we have the better estimate than
(3.4.22). Without loss of generality, we assume f,(&;) is C% for & €
[—d1,8}]. Then there exists a positive constant L such that for & € [—§ —

1,01]

(€D = 1£:(&) = £(0)] < LI& ™

Therefore we can compute directly as follows:

0 i ) __ N
> 2ﬁ (/ 6%(“61—bL|§1\a) — 6%516$d€1>
-
h g ~2 (a1 +bLE ") ~5 e n R gE
~ 9 e R\VISITOML ) eT S le TR dy | .
0

Without loss of generality, we assume that 0 < d; < 1. Since 0 < a < 1,

we have

nl/a o~
0



Then by computing directly, we have

e i
By > h B /hl/“ 6—2(a+bL)53ad§1 e / ' e_2a51dé1
Sk — 2b 0 0

Since
8
nl/e o~ & L
/} e 2(atbL)& d§1—>/ e~ 2(a+bL)E7 dé < oo as h— 0t
0 0

and
51

3 -~ 00 -
/ e 281 4dE, — / e 281 de, <00 as h— 0T,
0 0
we have

Bo,p > Ch''s for 0<h< 1.

Then by (3.4.26)

E(£1) > Cen=a p=tpHs = Qe p~34%

for each 0 < h < 1. If a > %, then even when s, =%, | E(f;,)| tends to

d?

infinity as h tends to zero.

3.5 Remarks

In this work, we succeed in applying the enclosure-type method and CGO so-
lutions to the theory of reconstructing unknown inclusions in time-harmonic
elastic waves. At the same time, we observe that only Lipschitz assumption
on the boundary regularity is needed. This is a very low regularity assumption
on the boundary. Besides, we also find the effect of CGO solutions is taken in
the enclosure-type method by utilizing the relationship between the reflection
solution w and the solution ug of (3.1.2), for example Lemma 3.4.2. Actually
this relationship is the key point in reflecting the regularity assumption on the

boundary. In other words, if we can have sharper description of this relation, we

may reduce the assumptions on the boundary regularity.
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Chapter 4

Reconstruction of impenetrable
inclusions

4.1 Introduction

In this chapter, we consider the following inverse problem: reconstructing the
shape and location of an impenetrable obstacle or cracks in an elastic body by
using boundary measurements. We also use the enclosure-type method intro-
duced in Chapter 2 to do the work of reconstructing the unknown obstacles. In

the following we give the precise mathematical model of this inverse problem.

4.1.1 Mathematical model and some notations

Let ) be an open bounded domain in R", n = 2, 3. For simplicity, we assume
2 has C"*™° boundary. In this chapter we suppose that the elastic subject occupies
2, and there is an impenetrable and sound-hard obstacles, which is denoted by
D with D CC . In our assumptions, for simplicity, we consider the elastic
subject is isotropic and homogeneous with Lamé constants A and p. A and p are
real numbers.

We send a time-harmonic elastic wave with time dependence €*! into ) in

order to detect the unknown D. By singling out the space part, the displacement

field u satisfying
V-o(u)+ku=0 in Q\D,
(4.1.1)
o(u)r=0 on 0D,
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when D is not empty. Here o denotes the stress tensor of the elastic body, that

is
o(v) = AV - vI, + u(Vv + (Vv)) (4.1.2)

for any vector field v and I,, denotes the n. X n identity matrix.
If D = (), that is there is no unknown obstacles or cracks, then we denote

the corresponding displacement field by uy which satisfies
V-o(u) +kuy=0 in Q. (4.1.3)

In the following when saying k? is not a Dirichlet eigenvalue of problem
(4.1.1), it means the following corresponding homogeneous problem has only
one trivial solution:

V-o(v)+k?>>=0, in Q\D
o(vl)y=0, on 0D
v =0, on 0f).
Similarly, when saying k% not a Dirichlet eigenvalue of the problem (4.1.3), it
means the following corresponding homogeneous problem has only one trivial

solution:

V-o(v)+k*=0, in Q
v =0, on Of).

We note that if &2 is neither an eigenvalue of problem (4.1.1) nor (4.1.3), then
given any Dirichlet boundary condition f on 0f2, problem (4.1.1) and (4.1.3)
have the only one solution respectively. Therefore under this assumption on k2,
we can define the Dirichlet-to-Neumann operators Ap and Ay from H?2 (o)™

to H~2(9Q)" as follows: for any Dirichlet boundary condition f € Hz(9Q),

< ADf,g >:/

tr(c(n)Vv)dx — k? / u - vdx
o\D

o\D
forany g € Hz(9Q)" and some v € H'(Q\ D)™ satisfying v|s, = g, where u

solves (4.1.1) with Dirichlet boundary condition u|yq = f.
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Similarly, for any Dirichlet boundary condition f € H2 (0Q)",

< Nof, g >= / tr(o(ug)Vv)dx — / up - vdx
Q Q

for any g € H2(09) and some v € H'(Q) satisfying v]sn = g, where ug

solves (4.1.3) with Dirichlet boundary condition ug|gq = f.

4.1.2 A remark on regularity assumptions

To establish an applicable algorithm, the regularity results for the reflection so-
lution w = u — uy is crucial, where u and ug are solutions of (4.1.1) and (4.1.3)
with the same Dirichlet boundary conditions respectively. Precisely, what kind
of regularity results of w we can get, will influence what kind of regularity
assumptions on the boundary we can give. Actually, in [19] the regularity as-
sumptions on 9D can be reduced to C%%, o > 1/3 or even only continuity.
However, the situation in the impenetrable case is totally different. It is hard to
assume the regularity of 0D is less than “Lipschitz”. This is because we can not
obtain “good” estimate for w when the regularity of 9D is less than Lipschitz.
In this chapter, in order to emphasize the influence of the reflected solution,

we just assume the regularity of 9D is C?.

4.2 The corresponding indicator functional

In our reconstruction method, we hope to detect the unknown D but not to invade
the elastic body occupying 2. So all the information we can obtain only comes
from Of).

As mentioned before, we note that if we assume k2 is neither the Dirichlet
eigenvalue of problem (4.1.1) nor (4.1.3), then Ap and Ay are well-defined.
Then we can use Ap and Ay to deal with our problem.

From now on, assume we can obtain all information such as follows: if we
set a displacement f on 0f2, we can measure the corresponding tractions o(u)v

and o(ug)r on 0F2 associated to (4.1.1) and (4.1.3) respectively. This means A p
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and Ay are known. In other words, this assumption can let us make the most of
Ap and Ay.
Next, we consider the following corresponding indicator functional £ de-

fined as follows: for any f € Hz (9Q)"
E(f) :=< (Ag — Ap)f, f > .

It measures the difference between the energies corresponding to the situation
with and without the impenetrable inclusion D. And it is one of the main tools
in the enclosure-type method. To show how E comes into effect in the impene-
trable case, we need to understand it more and establish useful identity in terms
of the known term uy.

Here for a matrix A, we denote the trace of A by tr(A).
Lemma 4.2.1. Forany f € Hz(9Q)",

B(f) = /Q e wv) - /Q SEwe /D tr(o(10) Vo) — /D ER

where u and g are the corresponding solutions to (4.1.1) and (4.1.3) with the

boundary condition u|pg = uglsq = f, and w = u — u,,.

Proof. The proof is simple. First, we notice that, due to the definition and prop-

erty of o, for any vector fields v and v
tr(o(v)Vv) =tr(c(v)Vv). (4.2.4)
and
tr(c(v)Vv) isreal. (4.2.5)

Since ulgn = ug|sq = £, we have

< Apf,f>= / tr(oc(u)Va) — / ku-u (4.2.6)
Q\D Q\D

= / tr(oc(u)Vay) — / E*u - d. 4.2.7)
Q\D Q\D
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From (4.2.6) and (4.2.5), we know < Apf,f > is real. Therefore taking com-

plex conjugate of (4.2.7) and using the formula (4.2.4), we have

< Apf,f >= / tr(o(ug)Va) — / E*ug - . (4.2.8)
o\D o\D
Similarly,
< Nof , £ >= / tr(o(ug)Vag) — / k*uy - g 4.2.9)
Q Q

is also real. By subtracting (4.2.8) from (4.2.9), we obtain the energy difference

functional £

E(f) = —/ B t’f’(O'(uO)VV_V) +/ ~ ]{?2110 - W
D D (4.2.10)

—l—/ tr(o(ug)Vig) — / k*uy - o,
D D
where w = u — u,.

On the other hand, by subtracting (4.2.6) from (4.2.9) we have
E(f) = —/ tr(a(u)Vﬁ — a(uO)Vﬁo) + / E*(u-1 — ug - )
o\D O\D
+ / tr (U(uo)Vﬁo) — / kuy - g
D D
. / tr (a(W)Vv_v + o(w) Vi + U(uo)Vv_v>
O\D
—l—/ E*(w-W+w-tg+u-w)
o\D
+/ tT(U(uO)Vﬁ()) —/ ]CQUO . ﬁ().
D D
By using formula (4.2.4) again, we get
tr (O’(W)Vl_l0> =tr (a(ﬁO)VW> .
Therefore,
E(f) = — / tr (a(w)vw) + / kw - W
O\D O\D
—l—/ tr(o(uo)Vﬁo) —/ k*uy - g 4.2.11)
D D

. /Q ’ 2Re{tr<0(uo)Vv_v> _ru. v_v}
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From (4.2.10), we have

_ /Q\D tr(o(uo)Vv‘v> + /Q\D g - W
= E(f) —/[)tr(a(uo)Vﬁ()) +/Dk2u0‘ﬁ0

and is real. Therefore we can deduce (4.2.11) becomes

B(f) = —/Q\Dtr<a(W)Vv_v> +/Q\D E

—l—/Dt7“<U(uo)Vl_lo> —/Dkzu()'l_lo

+2E(f)—2/Dtr<a(u0)Vﬁo) +2/ k2, - To.

D

Hence the conclusion of this lemma holds. |

From the Lemma 4.2.1, it is easy to obtain the following simple upper bound

and lower bound of the indicator functional E.

Corollary 4.2.2. For n = 2,3, assume that \, i are constants which satisfy the

strongly convexity condition, that is,
2
A+ —pu>0, and p>0.
n
For f € HY2(0Q)", we have the following two inequalities:
|B()] < Clwlltn @5y + Cllwollin oy
for some constant C' dependent only on \, i1 and

2 1
[EE)] = A+ —m)lIV - wollz2pyn + 211l €(10) = ~(V - o) Lu[ 72y
- k‘2||110||2L2(D)n - szWHZH(Q\D)na
where 1,, denotes the n X n identity matrix and u and u, are the corresponding

solutions to (4.1.1) and (4.1.3) with the boundary condition u|gg = uglsq = f,

and w = u — u,.
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Proof. From Lemma (4.2.1), it is easy to see the first inequality immediately
follows.
To see the second inequality, we recall the following formula: for any v €

H', we have
tr(c(v)Vv) = (A + E,u)|V -v|® 4+ 2ule(v) — E(V -v)L,|7. (4.2.12)
Then by strongly convexity condition, we have
tr(c(w)Vw) >0
and therefore from Lemma (4.2.1),
B(f) > / tr(o(110) Vo) — / Ko - o — / Kw - w.
D D D

By applying (4.2.12) again, we obtain the second result of this corollary. L

4.3 The regularity results of reflected solution

We call w the reflected solution corresponding to problem (4.1.1) with ug if
W = u — uy, where u satisfies problem (4.1.1) with boundary condition u, on

012, that is,

(

V-o(u)+ku=0 in Q\D,

o(ujr=0 on 9D

u=u; on J.
\
From the inequalities in the previous section, we know the key point of estimat-
ing the E(f) is to estimate reflected solution w, because u is a known solution.

So, let us see which equation w (corresponding to problem (4.1.1) with uy)

satisfies:

V-(c(w)+kw=0in Q\D
o(w)v = —a(ug)r, on 0D (4.3.13)

w = 0, on Of).
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From a standard proof, we can obtain the existence and uniqueness of the
problem (4.3.13), and furthermore a simple regularity result of w. The following

theorem tell us this.

Theorem 4.3.1. Assume that D and ) are two Lipschitz domain with D CC §2
inR", n =23 Letf € (H'(Q\ D)")*, g € H'/2(0D)". We consider the
following problem
V.o +ku=f in Q\D
clur =g, on 0D (4.3.14)

u=0, on 0f,

where o has the form (4.1.2) with Lamé constants )\ and j which satisfy A\+2p >

0 and i > 0. Now we also assume that k? is not a Dirichlet eigenvalue of
(4.3.14). Then there exists the unique weak solutionu € H'(Q\ D)" to (4.3.14).

That is, u satisfies

/ g _tr(a(u)vw>+/ Pu-gp =< f,9 >,
8D o\D

o\D
for any 1p € HY(Q2\ D)" with ¥ |sq = 0. Moreover, we have

||u||H1(Q\D)" < C{||f||(H1(Q\D)")* + HgHH*l/?(aD)"}»
where C' is a positive constant independent of u, f and g.

Notice that from now on ¢ and C' denote constants, which may represent

different values at different places.

Proof. We refer to [21, Theorem 4.10] for the standard proof. Nevertheless, we
write down it here for the sake of convenience.
In order to deal with the problem within 2 \ D, a special function space is

needed to be defined and discussed. Set a subspace of H'(Q2\ D)"

Hp ={ue H'(Q\D)": ulpg =0}
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with the inner product

(u, V) = (U, V) g1\ pyr

for u, v € H},. Itis a Hilbert space. Clearly, the inclusion %}, C L2(2\ D)" is

compact. Moreover, it is also easy to see that #}, is dense in L2(Q \ D)", since
Hy(Q\ D)" € Hp, € L*(Q\ D)

and H}(2\ D) is dense in L2(Q \ D). Then L2(2\ D)™ acts as a pivot space
for 7—[}). The definition of a pivot space can be found in [21, p. 44]. (Let H and
V' be two Hilbert spaces. We say H acts as a pivot space on V/, if V' is a closed
dense subspace of H with || - ||z <||-||v. Then we can write V C H C V* and
say H acts as a pivot space of V.)
Next, let B be a bilinear form on H}, x H}, defined as follows:
B(u,v) := / tr(o(u)Vv) — / Ku-v,
Q\D o\D

foru,v € H}. Since A + 2u, > 0, we have
Re{B(u,u)} > clull5, — Cllull7zi0p).

Therefore, B is coercive on H1}, (with respect to the pivot space L*(Q\ D)™).

Consider the linear operator A from H}, to (H1],)* defined as follows:
< Au,v >=B(u,v), u,veH,

Then from Theorem 2.34 in [21] A is a Fredholm operator with zero index. From
Theorem 2.27 in [21], the results of Fredholm Alternative holds. By assumption,
01is not a Dirichlet eigenvalue of (4.3.14), therefore A has a bounded inverse A~*

(see [21, Corollary 2.2]). Define F' € (H1))* as follows:

F (1) :z/aDg-q,Z;ds—<f,1,ZJ>.

Then

lallas, = 1A™ Fllg, < ClIFllaes )
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Moreover, we obtain the following estimate by computing directly

1F Ny < -3 oy + 1l @0

Hence the conclusion of this theorem follows. O

We apply Theorem 4.3.1 to the problem (4.3.13), then we can immediately

obtain the following lemma.

Lemma 4.3.2. Let ug solves (4.1.3). The reflected solution w corresponding to

(4.1.1) with ug has the following estimate:
Wl 1 ovpy < Cillo(o)v|| g-1/29pyn
S CQHU(]HHl(D)n
for some constant C'y, Cy independent of w and u,.

Therefore from Corollary 4.2.2 we get
[E()] < Clluoll7r pyr < Cllwollz -

In other words, | E/(f)| has a known upper bound in terms of u.
But how about the lower bound? Evidently, the result (4.3.2) is not enough.

We must seek a better regularity result for w if it is possible.

Theorem 4.3.3. Assume that OD is of class C* and ug solves (4.1.3). Let w
be the reflected solution corresponding to (4.1.1) with ug. Then we have the

following estimate:
||WHL2(Q\D)" S CHUOHH*({)D)" (4315)
for % <t< % and some positive constant C' independent of w, ug and t.

Proof. As in [23] or [11], consider the following special function p € H 1((2 \

D)™ satistying

V-(op)+kp=w, in Q\D
olp)y=0, on 9D (4.3.16)

p=0, on Of).



It means that for any ¢ € H(Q\ D) with ¢|gq = 0, i.e. ¢ € H}, we have

—/ tr(a(p)Vgo)dx—l—/ E’p - pdx = W - dx.
Q\D Q\D Q\D

Therefore, we can obtain the following identity by substitute ¢ by w:

/ |w|?dx = —/ tr(o(p)Vw)dx + / E’p - wdx.
o\D Q\D Q\D

Moreover, since w satisfies (4.3.13) and (4.2.4), we have

/ |w|?dx = —/ o(w)v - pds = / o(up)v - pds. (4.3.17)
o\D oD

oD
This identity tells us that we can estimate ||W|| .2\ py by estimating o (ug)v|ap

and p|op.

Since 9D is of class C?, from [McLean Theorem 4.18] we have the follow-

ing regularity results for p:

1Pl m2@\ ) < CliPlla @y + Cllwll 2\ py

< Cl|wl[ L2\ pyn-
Therefore, by trace theorem, we obtain

1Pl 3 5y < ClIW Lz

and the conclusion (4.3.15) follows.

Lemma 4.3.4. Let uy be any solution to (4.1.3), then for % <t< %

lota) ooy < Clluoll - .
for some positive constant C' independent of uy and t.
Proof. Since uy satisfies (4.1.3), for any ¢ € H'(D)™ we have

/ a(uo)y-gods—/ tr(o(uo)Vgo)d}H—/ k*ug - pdx = 0
oD D D
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Thus, for ¢ > £ we can regard o(uo)v as an element of H~*(9D)" by

<o), >= /Dtr(cf(uO)Vgo)dx — /D Eug - ¢

for any ¢ € H*(OD)" and oo € H**'/2(D)" with |5p = ¢. Therefore, for any
é € H'(OD)"

| < (), @ > | < 00} y3 e [T 3 e + W02 102y

for any p|9p = ¢. Then for = < ¢ <

N

1
2

| < 0(00,0) > | < Cllull ooy |l sy

for some positive constant C' independent of u, and ¢. Hence,

HuOHH*t(aD)” < C||110||H3/2—t(p)n
for some positive constant C' independent of u, and ¢. 0

Combining the above two theorem, we immediately obtain the following

estimate.

Corollary 4.3.5. Assume that D is of class C?. Let uy be a solution to (4.1.3)
and w be the reflected solution corresponding (4.1.1) with uy. Then we have for
1 3
3 SUS3)

Wl L2\ p) < Clluol| gs/2—¢(pyn

for some constant C' independent of ug, w and t.

Remark 4.3.1. From the proof of Theorem (4.3.3), we know the regularity result
of p help us obtain the sharper estimate for ||w|| ;2(q\ p)=, Where p is the solution
to (4.3.16). In [29], the authors consider the similar problem for the case of the
Helmholtz equation. They adopt another method to prove the similar result as
(4.3.5) when D has only Lipschitz boundary. Therefore it should be possible
to extend the case that D has Lipschitz boundary to Lamé systems by imitating

their method.
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4.4 Reconstruction in 2D by using CGO solutions
with complex polynomial phases

In this section, we reconstruct the unknown D in two dimension by using CGO

solutions to (4.1.3) with complex polynomial phases.

4.4.1 CGO solutions with complex polynomial phases in 2D
and the testing data

We use the CGO solutions constructed in the previous chapter. Precisely, given
N € Nand g € Cwith |5| = 1, we consider the following complex polynomial,

which is defined in (3.3.3),

p(x) = pnp(x) = B(x1 + ixz)",

where x = (21, 22)7.

Then the CGO solution v, with a parameter h is defined as
Vi = V(Ti, (eh)) + VH(Ti, (7)),

where 7, is the Vekua transform associated to w, defined in the previous chapter.
Here T, can transform a harmonic function to a solution of Helmholtz equation

(A +w?)v = 0.

On the other hand, we also use the same testing boundary data as in the

previous chapter. Precisely, for i > 0 and d > 0, define the testing data p;, 4

_1
Phrd = Qg€ PV,

where ¢, is defined in section 3.3.2.
Recall that although pgj, is not a solution to (4.1.3), it is close to the real
solution ug 4, which satisfies (4.1.3) with uggnlo0 = Panloo. Lemma 3.3.1

proves that.

56



4.4.2 Reconstruction of the unknown D

Throughout this section, we additionally assume that the Lamé constants A and

1 satisfy the strongly convexity:
A4 p>0, p>0,

and that the unknown region D has C? boundary. The strongly convexity con-

dition implies we have the following two key inequalities from Corollary 4.2.2:
[E®)] < Clwlln@pye + Cllwollzn oy (4.4.18)
for some positive constant C' depending only on A and y, and

|E(£)] > 2plle(uo) — %(V ) u0>In||2L2(D)” - k2||u0H%Q(D)” - szWH%Q(Q\D)”?
(4.4.19)
where [,, denotes the n x n identity matrix. On the other hand, the boundary
regularity of D implies that Corollary 4.3.5 holds.
From now on we fix a compact interval J C (0,00), e > 0, N € N and
B € C. These parameters are set in Section 4.1 and 4.2 to construct the CGO
solutions to (4.1.3) and corresponding testing data. Let s, be the value of the

level curve of 7 which touches unknown D, that is,

sup 7(x), if DNT#0Q

Sy = xeDNI’
0, if DNIT =40.

Then we can reconstruct the unknown D by using the following main theorem.

Remark that the procedure of reconstructing D is the same as in [19].

Theorem 4.4.1. Ford € J and h > 0 small enough, the following conclusions

hold:

(A) IfDNTy =0, then

1

|E(£,)] < Ch™ten(sea),

for 0 < h < 1 and some positive constant C' independent of h, where

Sq = max(d—}rg, s¢) < %
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(B) If DN Ty # 0 and D has C? boundary, then
|E(fy,)| > Ch™2ei (s~ a)
for 0 < h < 1 and some positive constant C' independent of h.

In order to simplify the proof of Theorem 4.4.1, we give the following

lemma.

Lemma 4.4.2. Ford € J,

for some positive constant C' independent of h.

Proof. The result of this lemma is obtained by direct computing. From the
definition of p, ., we have
11
Parloms < [ louettDQuax
Dnrd+2s

where Qj, = (Qn.1, Qn2)”. By the estimate (3.3.11) for Q, ;, i = 1, 2, we obtain

2 1y, 1 1
||pd,h||22 s < C/ eﬁ(T_E)(_+ )dX
L*(D) DAL, 22 (x)
< Ch™? / 1)
DmFd+2s
for some positive constant C' independent of h. 0

proof of Theorem 4.4.1.  (A) Suppose that DIy = (). By (4.4.18) and Lemma
4.3.2, for any solution ugy to (4.1.3) with Dirichlet boundary condition

ug|sq = f, we have

E(f)| <C {HUOH%P(D)" + ||‘7(u0)’/||ir%(az:>)n}

for some positive constant C' independent of uy and f. Then by trace
theorem, we have

|E(f)] < Clluol| 1 (pyn
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(B)

for some positive constant C' independent of u, and f. For given d € J,

let £;;, = pPa.n|oq, then by substituting f;, 4 for f,
[E(fn.a)l < Cllvoanllnpy
for some positive constant C' independent of h, where uy 4, is the solution

to (4.1.3) with Dirichlet boundary condition ug 44|00 = fi.1-

From Lemma 3.3.1, we obtain

|E(fr,0)| < C{ll0.4n — PanllZi oy + 1Panllin oy }

2¢1

_2¢1__1
S 0{6 ’L(d d+6) + ||pd7h||§{1(D)n}

for some positive constant C' independent of h. By Lemma 4.4.2 and

Lemma 3.4.3, we obtain
|E(fh,d)| < C{e_% i) + h—2/ 6%(7—%)0[}(
Dy o.

on / A Ddx)
DmFd+2s

1

< C{e @) 4 (b2 4 ek D))
for come positive constant C' independent of h.

Since DN T, = 0,

1 1

Sqg = max(s*, d——|—g) < 8

Therefore we have
|E(£,,)| < Ch™tentema)
for some positive constant C' independent of h.

Suppose that DNTy # (), then s, > é. Since 9D € C?, by (4.4.19) and

Corollary 4.3.5, we have

1
|E(f)] = 2M||€(u0)_§(V'u0)1n||2L2(D)”_k2||u0||2L2(D)”_C||u0||2%4(D)n
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for some positive constant C' independent of ug, f and ¢, where uy is
the solution to (4.1.3) with Dirichlet boundary condition uy|gsy = f and

1 <t < 3. Therefore
1 2 2
|E(£)] > 2ple(ug) — §(V o) Il 72(pyn — Cllollz2pyn

for some positive constant C' independent of u, and f. By substituting £,

for f, we have

(V- ugan) Lnll72(pyn — Cllvoanlz2(pyn

1
|E(fon)| > 2ulle(uoan) — 3

for some positive constant C' independent of hA. From Lemma 3.3.1, we

have

1
[E(fan)l =2 2ulle(Pan) = 5(V - Pan) nllZ2(ppn
1
— 2plle(wp) — §<V : Wh)InH%Q(D)” - C||pd,h||2L2(D)” - CHwh||2L2(D)”

1
> 2plle(Pan) = 5(V - Pan)Iallzzoy = ClPanlizoy = Cliwalli oy

2(1 1)

1
> 2plle(Pan) — §<V : pd,h>InH%2(D)” - Cde,h||2L2(D)” — Cenla @z

for some positive constant C' independent of h.

Since DN Ty # 0, s, > é and D N Ty, # 0. By Lemma 3.4.3 and

Lemma 4.4.2, for any open set U with D N T'y.. NU # (), we have

|E(£20,)] > 2u(ch™ — Ch™?) / e Ta) dx (4.4.20)

DTy .NU

— Ch_Q/ e
DT gy oe

for some positive constants ¢, C' independent of h.

1

(—Ddx — Ce nlaarz)  (4.4.21)

>N

Let
K:=0Dn{r=s,}=0D NLyys,.

Itis easy to see X' # (). Since K is compact and contained in Uy B, (y),

there exists Ny € N such that K C Ui<j<n,B,, (y;). Here we can

Yj
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assume each ry satisfies 9D can be parametrized by a C? function in
By (y)
Let Dp = D\ ( Ur<j<No Bryj (yj)), then it is also easy to see that there

exists small constant & > 0 such that
7<8 —0 in Dg.

Therefore by similar computation of Theorem 3.4.1, we have

[ etbaxs [ e b [ D
DNy o Dgr DT gq2:\Taye)

No
2

2 1
eh

) dx

(r—

_'_
j=1

/[)ﬂrd+5 mBT'yj (yj )

Lety, € ijzol{yj} satisfy

_1 20,_1
/ en™"ddx = max (/ en(™ d)dx).
DATg1cNBry, (y+) 3=1,....,No DNTayeNBry, (v5)

Then we have

o

/ e%(T—é)dx < Ce%(s*—é—é) + 06%(%%_5)
DmFd+2s

+ Ny / en(T=d) dx
Dan+EﬂBry* (y+)

Let
A* = / e%(T_é)dx_
Dmrd+smBT'y* (¥+)
Then (4.4.20) becomes
|E(f1)] > 2u(ch™ — Ch™2)A, — Ce i~ axe)
_ Ch_z{e%(s*_é_é) + on (=1 + A*}
G
3 Te
> 2uh‘4A*{c R
filse—0-3) 2 d)
€h d e +
— Ch*———— — Ch*———
A, A, }
Since

A, <|DNTgye N By, (y.)|en—a),
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we have

e%(s 5—%) - 2
e h
A, -
and
Far—a)
€ < Ce%(d+5 S*)
A,
Therefore we obtain
(5x—0—3)
€h d
—0, as h—0".
A,
and
e%(d}ks_%)
— =0, as h—0"
A,

1

. 1
since s, > 7> O

. Hence for A small enough, we have
E(f;) > Ch™*A,.

From (3.4.26), we have

A, > Cer™ 1B,

for some positive constant C' independent of h, where B, ., satisfies the
following estimate, see the detail in the proof of the case (B") of Theorem

341, forg <a<1
By, >Ch'ta, for 0<h<1

for some positive constant C' independent of h. Since 0D € C?, we can

choose o = 1 and obtain

1

E(fy) > Chiers==Dp? = Ch~2en (=0

for 0 < h < 1 and some positive constant C' independent of h.

O

4.5 Reconstruction in 3D by using CGO solutions
with linear phases

In this section, we reconstruct the shape and the location of the unknown D in

three dimension by using CGO solution to (4.1.3) with linear phases.
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4.5.1 CGO solutions to (4.1.3) with linear phases

We want to construct the CGO solutions to (4.1.3) in R3. Since the Lamé coeffi-
cients A\ and y are constants. we can reduce (4.1.3) to two Helmholtz equations
by Helmholtz decomposition. Suppose v € C°°(R3)? is a solution to (4.1.3),
then by Helmholtz decomposition there exist a smooth scalar function ¢ and

smooth vector field 1) such that
v=Vp+Vxa.
Therefore ¢ and ) satisfy
VIA+20) & o+ ko] +V x [p o o+ kap] =0.
Conversely, if we can construct CGO solutions ¢ and 1) to

Ap+kip=0 (45.22)

A+ k3p =0,

k
VAF2u

defining solutions as v = V¢ + V x ).

and ky = -, we can construct CGO solutions to (4.1.3) by

where ki = =,

Similar to section 4, we fix a compact interval J. Now choose w, w® € 52
with w - w' = 0 and a constant vector a € R3. For d € J and small parameter

h > 0, we define

pap = eh oDt o (4.5.23)
and
1 : 1 .
¢d7h _ 6ﬁ(x-w—d)+z\/ﬁx wLa _ epQ’ha, (4.5.24)

where, for j = 1, 2,

1 1
pin(x) = E(X w —d) + iy 2T kix - wt,
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then @gq 5, and v, satisfy (4.5.22) respectively. Therefore we can define vq;, =

Voan +V x 1, and have

1 1 1 1
vy = et <Ew + 14/ 72 + k%wL) + ef2n (Ew + i/ 5 - k:%wL) X a

(4.5.25)

and

1 1
Vg =€t (% +iyf 75+ k%wL) ® (% +iy/ 33 + k%wL) (4.5.26)
1 [1
—|—e”2vh<(% +i/ 33 +k§wi) x a) ® (% +i\/ 33 +k§wL),

(4.5.27)
where a ® b denotes the matrix with jk-th entry a;b; for any two vector a =
(ai,...,a,)" and b = (by,...,b,)T. Then v, satisfies (4.1.3). Moreover we
have the following estimates for |v, | and |Vvgy|. Here for any matrix A with

entries a;;, we denote its absolute value by [A| and [A[]* = 37,  |a;/|*.

Lemma 4.5.1. There exists a vector a € R? such that there exists h, > 0, for

all small h < h,,

C
Van| < Ee%@"w—d), (4.5.28)
C L(x-w—d)
|VVd7h| < ﬁeh (4529)
and
[Van| > %fﬁ(xw_d), (4.5.30)
NAZY = %6%(’”-@ (4.5.31)

for some positive constants c, C' independent of h.

Proof. From (4.5.25), we have

1 1 X W .
Van = Ee,{(x.w—d){e VR ( l)(w +in/1+ h%%wL)
iy/ 5 +k3(xwh) . 21.2,,,1
+eVh ((w+iy/1+ h?kdw™) x a)
11

_ = ﬁ(x-w—d)A
he 1
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where

A = {el ViHkiewt w—l—z\/1+h2k2 )
+é ’L%Jrk%(x'wL)((w +iy/1 4 h2kiw™) x a) }

It is easy to see that | A;| is bounded, therefore we obtain the upper bound of |v|,

(4.5.28). Now consider a = w + iw™. Then

(W+iy/1+h2k3wh) xa=1i(1 —/1+ h2k3)(w x w™) (4.5.32)

Since

|1 — /14 h%k3] -0, as h—0,

there exists 0 < hg < 1 such that

(w+iy/1+h2%k3w) xal <1, ¥V 0<h<hg.

Therefore for 0 < h < hyg

|Ay| >|w + iy /14 R2Eiw™| — |(w + iy /1 + h2k3w™) x a|
> |w + iy /1 + h2kiwt| — 1.

lw +i4/1 + h2kiw™|? = 2+ h?k] > 2,

we obtain for all 0 < h < hg < 1

Since

Van| > %e%(x-w—d)

for some positive constant ¢ independent of . In particular, c = v/2 — 1 > 0 in
the case of a = w + iw™.

To see the case of |Vv, |, recall (4.5.26) to obtain

VVah = hieh@““ d>{eiv D) (G iy T4 2Rwt) © (w + iy /1 + h2kiw™)
+ ¢V thEew ) [(w +iy/ 1+ R2kjwh) x a} ® (w+iy/1+ hzk%wl)}
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where

Ay = VRO (i 1 h2wt) © (w + iy/1+ B2k
4 eV az TR eee’) [(w+i\/mwl) X a ®(w+i\/m‘f)-

It is also easy to see that |As| is bounded and (4.5.29) follows. Now again

consider a = w + iw™, then by (4.5.32) we have

(w+iy/1+ kW) @ (w+iy/1 + h2kiw™)
— (1— \/1+h2k§)(w X wh) @ (w+iy/1+ h?kiwh)|.

Notice that, by compute directly, for all h > 0, we have

(w+iy/1+RPkiw") @ (w +iy/1+ h2kiw™)

2

|Aa| >

= ‘(w+i\/1 + RPkiw)| =2+ hk3 > 2. (4.5.33)
Since
1 —1/1+Rh2k2| -0, as h—0
and

[(wx wh) ® (w+iy/1+hkw")| <oco, V 0<h<l,

there exists 0 < hy < 1 such that for0 < h < hy

(1— \/1+h2k§)(w X wbh)® <w+i\/1+h2k§wL)

Combine (4.5.33) and (4.5.34), we obtain

<1 (4534

A3 >2—-1=1, V 0<h<hy.

Therefore

Vvanl > 55 Lertwd) g <h<hy

for some positive constant ¢ independent of h. In particular, ¢ = 1 in the case of
a=w+iw'.

Then we complete the proof by choosing h, = min(hg, h1). O
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4.5.2 The testing boundary data and Reconstruction of the
unknown D

As the previous section in two dimension, we also additionally assume the

Lamé constant satisfy the strongly convexity condition throughout this section

in three-dimension, that is,

2
)\+§u>0, >0,

and the unknown region D has C? boundary. Then (4.4.18), (4.4.19) and Corol-
lary 4.3.5 follows. Now in order to apply the enclosure-type method, we need
to choose appropriate testing boundary data. For a fixed compact interval J C
(0, 00), let the testing boundary data f; ;, on 0€2, for d € J and small » > 0, be

as follows:
fin = Vanrloa-
For d € J, define the testing region

Fd:{XERgix-de},

and denote by s, = sup,,p 7., (x) the value of the level curve of 7,(x) = x - w,
which just touches the unknown region D.
Then we reconstruct the unknown D by using the following theorem. The

procedure of reconstruction of the unknown region D is the same as in Chapter

3.

Theorem 4.5.2. For d € J and h > 0 small enough, the following conclusion

hold:
(A) fDNT, =0, then
|E(£4,)] < Ch™tei(s—4),

for 0 < h < 1 and some positive constant C' independent of h. Note that

in this case, s, < d. Therefore
|E(fd7h)| — 0, as h — 0.
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(B) If DN Ty # 0 and D has C? boundary, then

|E(£,,)] > Ch™leis=),

for 0 < h < 1 and some positive constant C' independent of h. Note that

in this case, s, > d. Therefore

|E(fs)| = 00, as h—0.

Proof. (A) Again by using Corollary 4.2.2 and Lemma 4.3.2, we obtain

(B)

[E(f)] < Cllaoll oy

for some positive constant C' independent of u, and f, where u is the so-
lution of (4.1.3) with the Dirichlet boundary condition ug|sq = f. There-

fore we have

|E(fan)] < Cllvanllnpyn

for some positive constant C' independent of 4. From (4.5.28) and (4.5.29),

we have

||Vd7h’|?'_[1(D)n:/ |Vd,h|2dX—|—/ ‘VVd,h|2dX
D D

2 2
S/ (96%("""_@) dx+/ (96%("""_‘”) dx
p\h p \?

1 1
< C|D|(— + —)eh =D,
Therefore for 0 < h <« 1,
|E(£4,)] < Ch™len(s—4)

for some positive constant C' independent of h. Note that in the case of

Dﬂrd:@,8*<d.

Since D has C? boundary, Corollary 4.3.5 can be applied. Therefore by

using Corollary 4.2.2 again and modifying the proof of (B) of Theorem
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4.4.1 to 3-dimension case, we can obtain

1

2
[EE)] = A+ 30V - ollz2 s + 21l e(uo) = (V- w0) Lnl|Z2 s

- CHuOH%?(DP

for some positive constant C' independent of uy and f, where u, satisfies
(4.1.3) with Dirichlet boundary condition ug|sq = f. Due to the strongly
convexity condition \ + %,u > 0, there exists a small constant 6 with
0 < ¢ < 1 such that

A+ g o > 0.
Therefore the above inequality becomes

1

2
[EE)] = A+ 310) IV - wol[Ze(pys + 2ulle(wo) = (V- wo) Ln 72 (py:

2
+ 5#(1 —0)|V- u0||%2(D)3 - C'||110||%2(D)3~

We notice that for any vector field v € H' in three dimension,

1

2 _ 2 1 2
e(v) = 5(V - V)L = [eW) = 5]V v

Hence, by A + % 1d > 0, we obtain

[E()] > (A + %/MDHV o[ 72 pys + 2ulle(uo) |7 (pys
— 281 w0l s — Cllmo o
> 2 (le(00) oy — 51V - BollFao)
+2u(1 = 8) (o) 3oy — Clluoll22(y
= 2t e(uo) — 5(V o) s
+ 201 = 8)le(wo) Bapys — Clluoll3pys
> 2p(1 = 8)le(wo) 72 (pys — CllwollZz(pys-
By the following Korn’s second inequality (see for instance Theorem 10.2
of [21]),

le(W) 1320y = el VT2 — ClIVIIZ2(nys
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for some positive constants ¢, C' independent of v € H'(D)3, we obtain

the lower bound for |E(f)|
[E(£)] > el VuollZ2(pys — ClluollZ2(pys

for some positive constants ¢, C' independent of f and u.

Now ford € Jand h > 0, let f = f;,, we have
|E(f10)] > cl[VVanll7zpys = Clivanlz2pys-

for some positive constants ¢, C' independent of h. From the (4.5.28) and

(4.5.31) of Lemma 4.5.1, we can compute directly that

|E(f.)] > (% — %) / en o= gy (4.5.35)
D

Now we need to compute the right hand side of the above inequality. Let

X be a point lying on 0D N ¢, where {,, is a plane defined as
b, ={x€eR* :x-w=s,}=0I,,.

Let

y = R(x — Xq),
where R is the rotation transformation such that Rw = (0, 1)”. Since D
is C?, O(R(D — xg)) is also C?. Therefore near y = 0, it is easy to see
there exists another C? function f, such that f,(0) = 0 and there exist

non-negative constants dy, 8, d2, 95 and d3 satisfying for y’ € (—d7,07) x
(=02, 05),

(=01, 01) x (=02, 05) x (=03, fu(y")) C R(D —x%0),
where y = (y',y3)".

Sometimes f, can be O(R(D — X)) if O(R(D — X)) can be parametrized
by (y', f.(y')) and f, is a C* function.
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Moreover, since f, is C? with f,(0) = 0, we have
L) < My'| < M(lya| + [y2l)

for some positive constant M dependent only on 9D, where y' = (y1,42)7.

On the other hand, under this change of coordinates, we can see

X W = Yz + Si.

Now we can compute that

5 a5 F(y")
/e%(xw—d)dXZ/l/Q/ e%(ySJFS*—d)dy
D 61 02

6/
Z g }g / / : (e%f*(Y) —e ﬁ(s‘i)dy
h 7(s g M(ly1l+ly2) g5 253
> §eh e i dy' — Ce™n
h/ g 2]%6/ _wél
Zieh 1—6 z 1)(1—6 hl)

— 06_363}.

Therefore for 0 < h < 1, we have
/ 6%(x-w—d)dx > Ch36%(8*_d)
D

for some positive constant C' independent of h. From (4.5.35), we obtain

forany 0 < h < 1,

for some positive constants ¢, C' independent of h.
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Chapter 5

Future work

5.1 Maxwell’s equations with anisotropic coefficients

The enclosure-type method have been applied to the isotropic time-harmonic
Maxwell’s equations [40, 18]. The regularity assumption on D in [40] is C?
and recently the assumption on 9D is reduced to Lipschitz in [18]. However, the
reconstruction problem for the “anisotropic” time-harmonic Maxwell’s equation
is still open. Our next work is to solve this reconstruction problem by applying

the enclosure-type method.

In the above papers, the CGO solutions for the isotropic time-harmonic
Maxwell’s equations are needed. They are chosen as the test data in the enclosure-
type method. But it is difficult to obtain the CGO solutions for the anisotropic
time-harmonic Maxwell’s equations. We try to construct another kind of spe-
cial solutions, oscillating-decaying solutions which are proposed in [25], as a

substitute.

To construct the oscillating-decaying solutions of anisotropic time-harmonic
Maxwell’s equations, our plan is to reduce the anisotropic Maxwell’s equations
to strongly elliptic systems. Recently we have already completed part of the

plan.
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5.2 Reconstruction of coefficients of anisotropic time-
harmonic Maxwell’s equations by using inter-
nal measurements

As is mentioned in the first chapter, the problem of reconstructing coefficients
from knowledge of the Dirichlet-to-Neumann map led to the development of
the Electrical Impedance Tomography (EIT). EIT is a medical imaging tech-
nique which have been applied to lung imaging and breast imaging. However,
as a diagnostic tool in medical imaging, although EIT has the advantage of high
contrast on imaging, the spatial resolution is low. Some methods combining
various physical effects are then developed to improve the quality of acquired
images. These ideas generally give rise to the so-called Hybrid Inverse Prob-
lems.

Mathematically, these hybrid inverse problems or hybrid imaging are usually
separated into two inverse problems [2]. The first step is to obtain some internal
data from the boundary. These internal data have high resolution but are not
clear enough to distinguish whether there is something different, such as cancer,
in normal tissue. So in the second step, we try to use the internal data obtaining
from the first step to reconstruct the high-contrastive coefficients. The photo-
acoustic and thermal-acoustic tomography are examples of hybrid imaging. See
[30, 3, 4]. My future plan is to extend the second step of [3, 4] to the case
of anisotropic time-harmonic Maxwell’s equations. We believe the oscillating-
decaying solutions of anisotropic Maxwell’s equations should be useful for our

problem.
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