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中中中文文文摘摘摘要要要

這篇博士論文討論的是如何重建彈性物體中未知物的形狀與位置。我們考

慮以下的反問題。有一個彈性物質位於Ω，Ω ⊂ Rn ，n = 2, 3。假設這個彈

性物質中有一個未知的物體位在D，D ⊂⊂ Ω，並且此未知的物體與背景已

知的彈性物質有相當差異的彈性性質。那麼我們要如何重新建構這個未知物

的形狀與位置？我們所使用的方法是包圍法 (enclosure-type methods)。包圍

法是一個只利用邊界測量來建構內部未知物的方法，它是由 Ikehata最先提出

的 [10,12]。所以它是一個非侵入性的探測方法。利用非侵入的方法探測物體的

內部是一個很重要的議題，因為它可以被當成一個安全的醫療診斷的工具。在

第二章的部份，我們會在數學上解釋包圍法的想法與相關的結果。

包圍法已被應用在許多不同的數學模型中，如 [14,15,16,23, 24,29,36,40]。

其中一個包圍法中主要的探測工具就是複幾何光學解Complex geometri-

cal optics (CGO) solutions。我們在這篇論文中把包圍法推廣應用在 time-

harmonic彈性波上。在我們所討論的數學模型中最大的困難是 time-

harmonic彈性波中有一個零階項。這個零階項的估計會影響我們如何去

應用包圍法。我們可以參考這篇survey paper [40]。在第三章及第四章中，我

們分別討論兩種不同的未知物：可滲透的未知物與不可滲透的未知物。在第

三章中我們只考慮二維情形，並採用CGO solutions with complex polynomial

phases作為主要的探測工具。關於第三章可滲透的情形，先前一些文章也有

討論過類似的問題，如 [23,29]。在 [23,29]中作者們給了一些邊界平滑性的假

設。在這一章中，我們修改並推廣 [29]中的做法，在二維的情形下將邊界的

平滑性從Lipschitz降為連續。在第四章不可滲透的情形中，二維跟三維的情

形都有考慮進去。在第四章中三維的情形下，我們採用了CGO solutions with

linear phases作為主要探測工具。這個探測工具只能探測出未知物的convex

hull。

關鍵字：反問題、包圍法 (enclosure method)、 time-harmonic彈性波方程

組、複幾何光學解、可滲透的、不可滲透的
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Abstract

The goal of this dissertation is to discuss how to reconstruct the shape and

location of the unknown inclusions in an elastic body. We consider the following

inverse problem. There is an elastic body occupying Ω, Ω ⊂ Rn, n = 2, 3.

Assume there is an unknown inclusion in Ω, which is denoted byD, and assume

the Lamé coefficients of D is definitely different from those of the background

material. Then how do we reconstruct the shape and location of the unknown

inclusions? The method we will use is the so-called enclosure-type method.

The enclosure-type method is a method of constructing inclusions only from

boundary measurements, which is initiated by Ikehata [10,12]. Therefore it is

a non-invasive reconstruction method. Utilizing non-invasive methods to detect

the internal information of subjects is a very important issue, because they are

probably proposed as a safe diagnostic tool in medical imaging. In the second

chapter of this thesis, we will mathematically explain the idea of the enclosure

method and discuss the related results.

The enclosure-type methods have been applied to many different mathemat-

ical models. See [14,15,16,23,24,29,36,40] for reference. One of the main

probing tools of the enclosure method is complex geometrical optics (CGO)

solutions. In this thesis, we extend and apply the enclosure-type methods to

the time-harmonic elastic waves. The most difficult point for this model is the

presence of zeroth order term in time-harmonic elastic waves. The estimate of

the zeroth order term will influence on how to apply the enclosure method. We

can see the survey paper [40] for Helmholtz-type equations. In chapter 3 and

4, we discuss the following two cases respectively: penetrable inclusions and

impenetrable inclusions.

In Chapter 3, we only consider the two dimension case and adopt the CGO

solutions with polynomial phases as a main probing tool. In the previous re-

search similar to our problem, such as [23,29], the authors gave some regularity
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assumptions on the boundary of inclusion D. In this chapter, we modify the

approach of [29] and reduce the regularity assumption on ∂D from Lipschitz

continuity to continuity. In Chapter 4, the impenetrable case, two and three di-

mension are considered. In three dimension, CGO solutions with linear phases

are adopted as the probing tool. However using such probing tool, only the con-

vex hull of D can be detected.

Keywords: inverse problems, enclosure method, time-harmonic elastic waves,

complex geometrical optics (CGO) solutions, penetrable, impenetrable
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Chapter 1

Introduction

Inverse boundary value problems is a field of discussing the inverse problems

of partial differential equations. Since A. P. Calderón published his pioneering

work “On an inverse boundary value problem” in 1980s, inverse boundary value

problems have become a popular field in mathematics. The problem Calderón

proposed is: whether we can determine the conductivity of an electrical mate-

rial by measuring the voltage and current on its boundary. More precisely, by

applying a specific voltage density on the boundary, there corresponds a current

which can also be measured on the boundary. This correspondence is the so-

called Direct-to-Neumann map. And the question is whether this map uniquely

determines the conductivity distribution of the whole material. This problem led

to the development of the Electrical Impedance Tomography (EIT), which is de-

signed as a safe and low cost device for medical diagnosis as well as many other

applications [37, 1, 8, 5, 17]. The problem then gives rise to the general idea

of gaining informations from boundary data, which applies to many other kind

of physical settings. Moreover, the questions gradually evolve from theoretical

determinations to practical reconstructions. That is, not only being satisfied by

knowing the boundary data will determine the material property, a great deal of

researches now make efforts to give concrete algorithms.

In this thesis, what we mainly discuss is how to reconstruct unknown inclu-

sions in a known background from the boundary information. This non-invasive

method that we use in this thesis is a type of enclosure method initiated by Ike-
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hata. We would give a more detailed description about the enclosure method

and its related results in Chapter 2. Besides, we will apply the enclosure-type

method to the time-harmonic elastic wave equations. A crucial point in this

model is the presence of the zeroth order term. See [39] for reference. In Chap-

ter 3 and 4, we will discuss our main results about penetrable and impenetrable

unknown inclusions respectively.

In Chapter 3, we only consider the two dimension case and adopt the CGO

solutions with polynomial phases as a main probing tool. In the previous re-

search similar to our problem, such as [23,29], the authors gave some regularity

assumptions on the boundary of inclusion D. In [23], the authors assumed the

regularity of ∂D is C2. And later in [29], the authors reduced the regularity

assumption on ∂D to Lipschitz. In this chapter, we modify the approach of

[29] and reduce again the regularity assumption on ∂D to continuity. In Chap-

ter 4, the impenetrable case, two and three dimension are considered. In three

dimension, CGO solutions with linear phases are adopted as the probing tool.

However using such probing tool, only the convex hull of D can be detected. In

the impenetrable case, we only assume the regularity of ∂D is C2. And in the

final chapter, some open problems and future work will be mentioned.
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Chapter 2

The enclosure-type method: a

reconstruction method of unknown

inclusions

The enclosure method is a method to reconstruct unknown inclusions in a known

background, which is initiated by Ikehata. See Ikehata’s survey paper [12] for

reference. The main tool of this reconstruction method is the following two

(which will be defined later): the indicator functional and the complex geomet-

rical optics (CGO) solutions. The idea of these two tools can be tracked back to

the Calderón’s work. Therefore in this chapter, we will start from the Calderón

problem and then show how these two tools work.

2.1 Calderón’s foundational paper

Since Calderón published his pioneering work “On an inverse boundary value

problem” in 1980s [6], his work has influenced deeply the development of the

inverse boundary value problems. Here we just briefly introduce the problem in

[6] and emphasize the influence on the enclosure method.

The problem he concerned is a very interesting and meaningful problem:

how to reconstruct conductivity of an unknown object by using boundary mea-

surements? Precisely, let us consider that a conducting material with unknown

conductivity occupy a bounded domain Ω. Then the conductivity and the volt-
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age of the material are governed by the conductivity equations

∇ · (γ∇u) = 0, in Ω, (2.1.1)

If the conductivity γ is known, then when applying a voltage u|∂Ω = f on

the boundary we can measure the corresponding current γ ∂u
∂ν
|∂Ω on the bound-

ary, where ν is the outer normal of ∂Ω. This correspondence is the so-called

Dirichlet-to-Neumann map (or called voltage-to-current map), which is given

by

Λγ(f) =
(
γ
∂u

∂ν

)∣∣
∂Ω
.

The inverse problem Calderón concerned can be therefore stated mathematically

as determining γ from the knowledge of Λγ . This problem is not easy to deal

with directly, so from the divergence theorem, Calderón consider the following

nonlinear map

Qγ(f) :=

∫

Ω

γ|∇u|2dx =

∫

∂Ω

Λγ(f)f̄ds,

where ds denotes the surface measure, and u solves (2.1.1) with Dirichlet bound-

ary condition u|∂Ω = f . Then the inverse problem becomes to determine γ from

Qγ . Calderón proved that the mapQγ is analytic in [6] and the Fréchet derivative

of it at γ0 is injective in γ, when γ0 is a constant. That means the linearization of

the map from γ to Qγ is injective at constant conductivities. Moreover, he also

gave an approximation formula to reconstruct a conductivity which is close to a

constant conductivity.

Calderón’s work has a deep influence in the development of inverse bound-

ary value problems. The idea of Qγ is widely applied to subsequent inverse

problems. For example, the indicator functional, which is a key tool in the

next section (enclosure-type method), is one application of Qγ . Besides, in [6],

Calderón took the special harmonic functions u = ex·(ρ+iρ⊥) as a helper in order

to show the injectivity of the linearized map, where ρ ∈ Cn with ρ · ρ⊥ = 0.

This is the origin of the complex geometrical optics solutions, which we will
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discuss later in the next section. Subsequently, the class of CGO solutions be-

comes a very important tool in studying inverse problems. For more details of

the development in inverse problems, we refer the survey paper [37].

By extending the brand new idea Calderón proposed, we can not only deter-

mine the conductivities within the subjects from boundary information, but also

reconstruct the unknown inclusions within a subject. The enclosure method is

the one example we want to discuss. The situation which the enclosure method

can be applied to is as follow: the subject contains unknown inclusions, of which

the conductivity is unknown and apparently different from that of the back-

ground. The enclosure method is not only a theoretical identification method

for unknown inclusions, but provides a reconstruction algorithm for drawing

the unknown inclusions. In the next section, we will describe the idea of the

enclosure method carefully.

2.2 The idea of the enclosure method

To describe the idea of the enclosure method clearly, we take the following case

as an example. Suppose the subject we concern is a conducting material, which

is governed by the conductivity equation. We suppose the subject occupies the

domain Ω ⊂ Rn and the unknown inclusion occupied D ⊂ Rn with D ⊂⊂ Ω.

Here we consider the simplest case: the known conductivity γ0 of the subject

(without the unknown inclusions) is 1. And we denote by γ the total conductivity

of the subject with the unknown inclusions. Therefore we have the following

two conductivity equations:

△u0 = 0 in Ω (2.2.2)

and

∇ · (γ∇u) = 0 in Ω, (2.2.3)
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where γ = 1 + χDγD. χD is the characteristic function of domain D and γD

is difference between the conductivities within D and within Ω \ D. u and

u0 denote the voltages of the situation with and without unknown inclusions D

respectively. Then we can define the Dirichlet-to-Neumann maps for (2.2.2) and

(2.2.3) as follows: for a Dirichlet boundary condition f ∈ H1/2(∂Ω)

Λγ(f) = γ
∂u

∂ν

∣∣∣∣
∂Ω

Λγ0(f) = γ0
∂u0
∂ν

∣∣∣∣
∂Ω

,

(2.2.4)

where ν is the outer normal of ∂Ω.

Now it is ready to introduce the idea of the enclosure method. There are two

main tools in this method: the indicator functional and a sequence of special

functions (in fact they will be called CGO solutions in next section).

First we introduce the indicator functional, of which the idea comes from

Qγ in the previous section: for a Dirichlet boundary condition f ∈ H1/2(Ω)n,

n = 2, 3,

E(f) =

∫

∂Ω

(
Λγ(f)− Λγ0(f)

)
· fds. (2.2.5)

Roughly speaking, it measures, for a given voltage on the boundary, the dif-

ference between currents or energies corresponding to the situations with and

without D. Moreover, we can easily deduce that

E(f) ≈ C

∫

D

|∇u0|2dx,

for some constantC independent of f and u0, where u0 is the solution of Laplace

equation (2.2.2) with u0|∂Ω = f .

On the other hand, we observe that for any h > 0, ω, ω⊥ ∈ Sn−1 with

ω · ω⊥ = 0,

e
1
h
(ω·x+iω⊥·x)

is a solution of Laplace equation. Notice that it is also the special function

Calderón proposed in [6]. Thus set, for any numbers d,

u0,d,h = e−
d
h e

1
h
(ω·x+iω⊥·x),
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then we have △ u0,d,h = 0.

Now let f0,d,h = u0,d,h|∂Ω and take f0,d,h into the indicator functional E.

Then we have

E(f0,d,h) ≈ C

∫

D

|∇u0,d,h|2dx

≈ C ′ 1

h2

∫

D

e
2
h
(ω·x−d)dx

for some constants C,C ′ independent of h. Then we can deduce as follows: for

convenience, we let

ρ(x) = ω · x+ iω⊥ · x

be the phase function and denote the real part of ρ by Re(ρ). We have

1. If D ∩ {x : Re(ρ)− d > 0} = ∅, then it means

ω · x− d < 0, ∀x ∈ D.

Therefore we have

E(f0,d,h) → 0, as hց 0.

2. If D ∩ {x : Re(ρ) − d > 0} 6= ∅, then it means there exist an open set

U ⊂ D such that

ω · x− d ≥ 0, if x ∈ U.

Therefore we have

E(f0,d,h) → ∞, as hց 0.

Now, denote the level set of the real part of the phase function ρ at t by ℓt.

That is,

ℓt := {x : Re(ρ(x)) = t}.

And let

Γd :=
⋃

d<t<∞
ℓt.

7



Ω

D
ℓd = {ω · x = d}

{ω · x > d}

(a) D ∩ {x : Re(ρ)− d > 0} = ∅

Ω
D ℓd = {ω · x = d}

{ω · x > d}

(b) D ∩ {x : Re(ρ)− d > 0} 6= ∅

Then from the above deduction we can conclude that if we choose these

f0,d,h as our testing data, then the limiting behavior of E(f0,d,h) will indicate

whether Γd intersects the unknown inclusion D. By varying d, we can theoreti-

cally find which level set ℓd just touches the unknown inclusion. Hence we the

following conclusion:

the limiting behavior of E(f0,d,h) will indicate which level set ℓd just touches

the unknown inclusion D.

Hence we call the functional E the indicator functional. Actually, in [11] Ike-

hata called E(f0,d,h) the indicator function.

Now we summarize the above idea as follows. First we establish the indica-

tor functional E. Next, we will construct a suitable sequence of test boundary

data {fd,h}h→0 such that, by taking in such a boundary data, the limiting be-

havior of E(fd,h) will indicate which specific hyperplane just touches D. Tech-

nically, we choose the special solutions Calderón proposed as the testing data

and the specific hyperplane is the level curve of the real part of the phase func-

tion ρ. And then we can prove that the limiting behavior of E(fd,h) has a sharp

difference between the cases of D̄ ∩ Γd = ∅ and D̄ ∩ Γd 6= ∅.

By performing such procedure repeatedly from different directions, that is

adopting different ω, we can collect more and more planes touching ∂D, and

find out the location and shape of D. It looks like one uses the planes to enclose

the unknown inclusion, hence the name enclosure method.
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2.3 Complex geometrical optics solutions and some

related results

Since Ikehata proposed the idea of the enclosure method, there have been many

results of extending the idea to many other kind of physical settings. In the

following we try to show how to extend the idea to different physical settings

and the related results.

Remember that the two main tools in the enclosure method are indicator

functional and a sequence of suitable special functions. In different mathemat-

ical models, it should be not difficult to define similar corresponding indicator

functionals. However it is not easy to find a suitable sequence of functions as test

data. We try to extend the idea of the above Calderón type functions e
1
h
x·(ω+iω⊥).

To do this, we notice that the above Calderón type functions are harmonic func-

tions and they have “complex phases”. So one idea of constructing a suitable

test data is to find solutions of the corresponding model having the form

ei
1
h
ρ(x)(a(x) +Rh(x))

with a “complex phase” function ρ, where Rh ≪ a as h → 0+. The solutions

with this form are the so-called “complex geometrical optics solutions”(CGO

solutions). This is the second tool in enclosure-type method.

There are some results for proving the existence of CGO solutions for var-

ious mathematical models, for example [31, 32, 16, 26, 27, 9, 35]. And these

articles also show that CGO solutions are useful in inverse boundary value prob-

lems. In particular, CGO solutions usually play the important role of the probing

utility in enclosure type method, see for example [10, 12, 14, 15, 28, 9, 33, 35,

40, 23, 29].

From line phases to general phases

In Ikehata’s early works, he used the Calderón type harmonic function ex·(ω+iω⊥)

to construct the test data. So, as mentioned in the previous section, it looks like

9



one uses lines (planes) to enclose the obstacle (and hence the name). As a con-

sequence a connected inclusion is required to be convex for a complete identi-

fication, and in general only its convex hull can be determined. One can refer

to the survey paper [13] for detailed explanation and early development of this

theory. In [28], [24] and [9], the authors utilize the complex spherical wave solu-

tions and some concave parts of unknown inclusions can be determined. In [35],

due to the complex structure, the authors proposed a framework of constructing

CGO solutions with general phases for some elliptic systems in two-dimension.

It means this work provides more choices of phase functions of CGO solutions

in 2D. They also gave a concrete example: the CGO solutions with complex

polynomial phases. In the same paper they also applied CGO solutions with

complex polynomial phases to conductivity equations, and then inclusions with

more general shapes can be determined. This type of CGO solutions were later

applied to other equations, for example [36] for static elastic systems and [23]

for Helmholtz equations.

Non-Laplacian leading term

The mathematical models we have mentioned above are almost equations or

systems with the Laplacian as the leading order term or which can be reduced to

the equations with the Laplacian as the leading term. To deal with more general

cases, we consider the equations (or systems) with non-Laplacian leading order

term. However, the anisotropy of non-Laplacian leading term prevents us from

constructing CGO solutions by traditional methods. As a result, the authors in

[25] proposed another type of CGO solutions, called “oscillating-decaying solu-

tions”. These oscillating-decaying solutions are also useful in inverse problems,

especially in detecting unknown inclusions.
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Chapter 3

Reconstruction of penetrable

inclusions

In this chapter we consider the inverse problem of reconstructing penetrable

unknown inclusions in a plane elastic body by boundary measurements. In [34]

and [36], the same problem is considered in the context of elastostatics. In

the present work we shall consider the situation when time-harmonic waves are

applied.

We use Ikehata’s enclosure method to reconstruct penetrable unknown in-

clusions in a plane elastic body in time-harmonic waves. Complex geometrical

optics solutions with complex polynomial phases are adopted as the probing

utility. In a situation similar to ours, due to the presence of a zeroth order term

in the equation, some technical assumptions need to be assumed in early re-

searches. In a recent work of Sini and Yoshida, they succeeded in abandoning

these assumptions by using a different idea to obtain a crucial estimate. In par-

ticular the boundaries of the inclusions need only to be Lipschitz. In this work

we apply the same idea to our model. It’s interesting that, with more careful

treatment, we find the boundaries of the inclusions can in fact be assumed to be

only continuous.

The content of this chapter comes from [19].
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3.1 Introduction

3.1.1 Mathematical model

Let Ω ⊂ R2 be a bounded domain (open connected set) occupied by our object,

which consists of an elastic body as background and some unknown inclusions

therein. For simplicity we assume Ω has C∞ boundary. The background elastic

body will be assumed to be homogeneous and isotropic with Lamé constants

denoted by λ0 and µ0. Denote the region of unknown inclusions by D. D is an

open subset of Ω with D̄ ⊂ Ω. The inclusions are also assumed to be isotropic

but may be inhomogeneous. Denote the differences between the Lamé coeffi-

cients of the inclusions and the background by λD and µD, which are assumed

to be in L∞(Ω), with λD = µD = 0 on Ω \ D̄. So the Lamé coefficients λ and

µ of the whole object on Ω are given by

λ = λ0 + λD and µ = µ0 + µD.

For simplicity we also assume our object has unit density. Now, consider we

send a time-harmonic elastic wave with time dependence eikt intoΩ. By singling

out the space part we have the displacement field u, which is a two-component

vector-valued function, satisfying

∇ · (σ(u)) + k2u = 0 in Ω. (3.1.1)

Here, for any displacement field v (which we will assumed to be a column

vector), σ(v) is the corresponding stress tensor, which is represented by a 2× 2

matrix:

σ(v) = λ(∇ · v)I2 + 2µǫ(v),

where I2 is the 2 × 2 identity matrix and ǫ(v) = 1
2
(∇v + (∇v)T ) denotes the

infinitesimal strain tensor. Note that for v = (v1, v2)
T , ∇v denotes the 2 × 2

matrix whose j-th row is ∇vj for j = 1, 2. And for a 2 × 2 matrix function A,

∇ ·A denotes the column vector whose j-th component is the divergence of the

j-th row of A for j = 1, 2.
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For D = ∅, that is for the case with no inclusion, the corresponding dis-

placement field will usually be denoted by u0, which satisfies

∇ · (σ0(u0)) + k2u0 = 0 in Ω, (3.1.2)

where

σ0(v) = λ0(∇ · v)I2 + 2µ0ǫ(v)

for any displacement field v. Accordingly, we will use σD(v) to denote σ(v)−

σ0(v), i.e.

σD(v) = λD(∇ · v)I2 + 2µDε(v).

We assume λ0, µ0 and λ, µ satisfy the conditions

λ0 + 2µ0 > 0, µ0 > 0, and

λ+ 2µ > 0, µ > 0 on Ω,

(3.1.3)

which ensure respectively that −∇ · σ0 and −∇ · σ are strongly elliptic opera-

tors. In particular the two operators both have at most countably many Dirichlet

eigenvalues. As a consequence, we can readily choose (and will choose) k ∈ R

so that k2 is neither an eigenvalue of −∇ · σ0 nor an eigenvalue of −∇ · σ. In

this situation, the Dirichlet boundary value problems corresponding to (3.1.1)

and (3.1.2) have unique solutions (see e.g. Ch.4 of [21]). Thus we can define

the Dirichlet-to-Neumann maps ΛD and Λ∅, both from H
1
2 (∂Ω)2 to H− 1

2 (∂Ω)2,

by

ΛDf = σ(u)ν|∂Ω and Λ∅f = σ0(u0)ν|∂Ω, (3.1.4)

where ν is the unit outer normal on ∂Ω and u and u0 solve respectively (3.1.1)

and (3.1.2) with Dirichlet boundary data f . The goal is to determine the un-

known inclusions from the knowledge of ΛD and Λ∅.

3.1.2 The method and improvement

We will utilize the enclosure-type method to reconstruct the unknown inclu-

sions. In this method, complex geometrical optics (CGO) solutions usually play
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the important role of the probing utility. Technically, the phases of these CGO

solutions influence what kind of shapes of inclusions we can detect. In this work

we will also apply CGO solutions with complex polynomial phases to our prob-

lem, of which the governing equations are the Helmholtz type elastic systems

(3.1.1) and (3.1.2). These special solutions are first proposed in [35, 23].

A crucial point in our problem, as in [12, 24, 23], is the presence of the

zeroth order term. Due to this, some technical assumptions are needed in early

researches. In particular ∂D is assumed to be C2. However in the recent work

[29] of Sini and Yoshida, by using a different idea to obtain a crucial estimate,

they succeeded in abandoning these technical assumptions, and in particular

∂D can be only Lipschitz. In this paper, we apply the same idea to our model.

With more careful treatment, we find the boundaries of the inclusions can in fact

be assumed to be only continuous. More detailed discussions are given in the

remark after our main theorem, Theorem 3.4.1.

In the following we give a sketch of this chapter as well as a rough idea of the

whole process of the enclosure method. In section 2, we introduce a functional

E on H
1
2 (∂Ω)2, which will be called the indicator functional for our model in

Chapter 3. And then we give an upper bound and a lower bound of E, which

play central roles in the proof of the main theorem. In fact, we will construct

a family fd,h ∈ H
1
2 (∂Ω)2 as input data into E, and the limiting behavior of the

output data, for various d, will indicate the location of ∂D. The construction

of fd,h is based on the construction of CGO solutions for (3.1.2), which is given

in section 3. By using the Helmholtz decomposition and the Vekua transform,

this construction is much the same as in [23]. The main theorem concerning the

limiting behavior of E on fd,h, as well as discussions on the implication, the idea

of proof and our improvement, are given in section 4.
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3.2 The indicator functional

In this section we introduce the functional E on H
1
2 (∂Ω) defined by

E(f) =

∫

∂Ω

[(ΛD − Λ∅)f ] · f̄ds,

where the Dirichlet-to-Neumann maps ΛD and Λ∅ are defined in (3.1.4). E

will be called the indicator functional (according to Ikehata’s indicator function

[11]), which plays a central role in the enclosure method. Intuitively, it mea-

sures, for a fixed Dirichlet boundary data, the difference between the tractions

corresponding to the situations with and without D.

Now let u and u0 ∈ H1(Ω)2 satisfy (3.1.1) and (3.1.2) respectively with the

same boundary condition f ∈ H
1
2 (∂Ω)2, and let w = u − u0. The goal in this

section is to prove Lemma 3.2.2, which gives a lower bound and an upper bound

of E(f) in terms of u0 and w. To this end, we first give two identities. Note that

we use |A| to denote
(∑

i,j a
2
ij

)1/2
for a matrix A = (aij).

Lemma 3.2.1. We have the following two identities:

E(f) =

∫

D

{
(λD + µD) |∇ · u0|2 + 2µD

∣∣∣∣ǫ(u0)−
1

2
(∇ · u0)I2

∣∣∣∣
2}

dx

−
∫

Ω

{
(λ+ µ) |∇ ·w|2 + 2µ

∣∣∣∣ǫ(w)− 1

2
(∇ ·w)I2

∣∣∣∣
2}

dx

+

∫

Ω

k2 |w|2 dx;

(3.2.1)

E(f) =

∫

D

{
(λD + µD) |∇ · u|2 + 2µD

∣∣∣∣ǫ(u)−
1

2
(∇ · u)I2

∣∣∣∣
2}

dx

+

∫

Ω

{
(λ0 + µ0) |∇ ·w|2 + 2µ0

∣∣∣∣ǫ(w)− 1

2
(∇ ·w)I2

∣∣∣∣
2}

dx

−
∫

Ω

k2 |w|2 dx.

(3.2.2)

Lemma 3.2.2. Assume that the Lamé coefficients λ0, µ0 and λ, µ satisfy the

strong convexity condition, that is

λ0 + µ0, µ0 > 0 and λ+ µ, µ > 0,
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then we have the following upper bound and lower bound of E(f):

E(f) ≤
∫

D

(λD + µD) |∇ · u0|2 dx

+ 2

∫

D

µD

∣∣∣∣ǫ(u0)−
1

2
(∇ · u0)I2

∣∣∣∣
2

dx+

∫

Ω

k2 |w|2 dx;

E(f) ≥
∫

D

(λD + µD)(λ0 + µ0)

λ+ µ
|∇ · u0|2 dx

+ 2

∫

D

µDµ0

µ

∣∣∣∣ǫ(u0)−
1

2
(∇ · u0)I2

∣∣∣∣
2

dx−
∫

Ω

k2 |w|2 dx.

Proof. The upper bound of E(f) follows immediately from (3.2.1) (by omitting

the second integral). On the other hand, from (3.2.2) we have

E(f) ≥
∫

D

{
(λD + µD)|∇ · u|2 + 2µD

∣∣∣∣ǫ(u)−
1

2
(∇ · u)I2

∣∣∣∣
2}

dx

+

∫

D

{
(λ0 + µ0)|∇ ·w|2 + 2µ0

∣∣∣∣ǫ(w)− 1

2
(∇ ·w)I2

∣∣∣∣
2}

dx

−
∫

Ω

k2|w|2dx.

(3.2.3)

And the lower bound follows from the following two identities, of which the

verifications are straightforward (by using w = u− u0).

(i)

(λD + µD) |∇ · u|2 + (λ0 + µ0) |∇ ·w|2

=

(√
λ+ µ∇ · u− λ0 + µ0√

λ+ µ
∇ · u0

)2

+
(λD + µD)(λ0 + µ0)

λ+ µ
|∇ · u0|2 .

(ii)

2µD

∣∣∣∣ǫ(u)−
1

2
(∇ · u)I2

∣∣∣∣
2

+ 2µ0

∣∣∣∣ǫ(w)− 1

2
(∇ ·w)I2

∣∣∣∣
2

=
∑

i,j

∣∣∣∣
√

2µbij −
2µ0√
2µ
b0ij

∣∣∣∣
2

+
2µDµ0

µ

∣∣∣∣ǫ(u0)−
1

2
(∇ · u0)I2

∣∣∣∣
2

,

where

(bij) := ǫ(u)− 1

2
(∇ · u)I2 and (b0ij) := ǫ(u0)−

1

2
(∇ · u0)I2.
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For completeness we give the proof of Lemma 3.2.1 in the following. Before

doing so, note that we have the following basic formulae:

∇ · (σ(u)v) = (∇ · σ(u)) · v + tr(σ(u)∇v); (3.2.4)

tr(σ(u)∇v) = tr(σ(v)∇u). (3.2.5)

Here tr(·) is the trace of matrices. And

tr(σ(u)∇ū) = (λ+ µ)|∇ · u|2 + 2µ

∣∣∣∣ǫ(u)−
1

2
(∇ · u)I2

∣∣∣∣
2

. (3.2.6)

These formulae are easy to check and we shall omit the proof. Also note that

we have similar formulae with σ replaced by σ0, σD, etc.

Now we give the proof of Lemma 3.2.1

Proof of Lemma 3.2.1. First note that
∫
∂Ω

ΛDf · f̄ds and
∫
∂Ω

Λ∅f · f̄ds are real.

In fact, by definition we have

∫

∂Ω

ΛDf · f̄ds =
∫

∂Ω

(σ(u)ν) · ūds =
∫

∂Ω

(σ(u)T ū) · νdx.

By divergence theorem and (3.2.4) we then get
∫

∂Ω

ΛDf · f̄ds =
∫

Ω

(∇ · σ(u)) · ūdx+
∫

Ω

tr(σ(u)∇ū)dx

=

∫

Ω

−k2u · ūdx+
∫

Ω

tr(σ(u)∇ū)dx,

(3.2.7)

which is real. Similarly
∫
∂Ω

Λ∅f · f̄ds is real.

Since u and u0 both equal f on ∂Ω, similar to (3.2.7) we have

∫

∂Ω

ΛDf · f̄ds =
∫

Ω

−k2u · ū0dx+

∫

Ω

tr(σ(u)∇ū0)dx; (3.2.8)

∫

∂Ω

Λ∅f · f̄ds =
∫

Ω

−k2u0 · ūdx+
∫

Ω

tr(σ0(u0)∇ū)dx. (3.2.9)

Take complex conjugation of (3.2.8) and by (3.2.5) we get

∫

∂Ω

ΛDf · f̄ds =
∫

Ω

−k2u0 · ūdx+
∫

Ω

tr(σ(u0)∇ū)dx. (3.2.10)

Then subtract (3.2.9) from (3.2.10) we obtain

E(f) =

∫

Ω

tr(σD(u0)∇ū)dx. (3.2.11)
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On the other hand,

∫

Ω

k2w · w̄dx =

∫

Ω

(k2u− k2u0) · w̄dx = −
∫

Ω

∇ · (σ(u)− σ0(u0)) · w̄dx.

Note that w ∈ H1
0 (Ω)

2, thus integration by parts gives

k2
∫

Ω

|w|2 dx =

∫

Ω

tr [(σ(u)− σ0(u0))∇w̄] dx. (3.2.12)

Now, substituting u = w + u0 into the right-hand side of (3.2.12), and by

(3.2.11), we get

k2
∫

Ω

|w|2dx =

∫

Ω

tr(σ(w)∇w̄)dx−
∫

Ω

tr(σD(u0)∇ū0)dx+ E(f).

(3.2.13)

And the first identity (3.2.1) follows from (3.2.6).

Similarly, by substituting u0 = u − w into the right-hand side of (3.2.12)

we will obtain (3.2.2).

3.3 The testing boundary data

In this section we construct the boundary data to be input into E for detecting

the location of ∂D. For this purpose, we first introduce the CGO solutions with

complex polynomial phases.

3.3.1 CGO solutions with complex polynomial phases

We are to construct CGO solutions with complex polynomial phases to

∇ · σ0(v) + k2v = 0 (in R
2). (3.3.1)

Suppose that v ∈ C∞(R2)2 satisfies the above eqaution. By Helmholtz decom-

position, we can write

v = ∇ϕ+∇⊥ψ

for some smooth scalar functions ϕ and ψ, where ∇⊥ψ := (−∂2ψ, ∂1ψ)T (and

here we also regard ∇ϕ as a column vector). Then ϕ and ψ satisfy

∇((λ0 + 2µ0)∆ϕ+ k2ϕ) +∇⊥(µ0∆ψ + k2ψ) = 0.
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Let k1 =
(

k2

λ0+2µ0

)1/2
and k2 =

(
k2

µ0

)1/2
. From the above equation it’s easy to

see that conversely for any ϕ and ψ ∈ C∞(R2) satisfying




△ ϕ+ k21ϕ = 0

△ ψ + k22ψ = 0,
(3.3.2)

v = ∇ϕ+∇⊥ψ is a solution to (3.3.1). Moreover, if ϕ and ψ are CGO solutions

to (3.3.2), then v is a CGO solution to (3.3.1).

It is not difficult to construct CGO solutions to (3.3.2) by using the Vekua

transform, which transforms a harmonic function to a solution to a Helmholtz

equation. Precisely, for any real constant ω, the Vekua transform Tω associated

with ω is defined as follows:

Tω(u)(x) = u(x)−
∫ 1

0

u(tx)
∂

∂t

{
J0(ω|x|

√
1− t)

}
dt

for a function u, where J0 is the zero order Bessel function of the first kind. If u

is a harmonic function, then Tω(u) satisfies

△ (Tω(u)) + ω2(Tω(u)) = 0.

This formula is derived by I. N. Vekua. One can refer to [38] for details and

other related results.

In the following we adopt the same idea as in [36] and [23] to construct

CGO solutions with complex polynomial phases. GivenN ∈ N and β ∈ C with

|β| = 1, let ρ = ρN,β be the function on R2 defined by

ρ(x) = β(x1 + ix2)
N , (3.3.3)

which, by regarding R2 as the complex plane C, is a complex polynomial. Then

we define

Γ = ΓN,β :=
{
r(cos θ, sin θ) : r > 0, |θ − θ0| <

π

2N

}
, (3.3.4)

the open cone with axis θ = θ0 and open angle π/N , where θ0 is such that

β = e−iNθ0 . Let τ = τN,β := Re{ρN,β}. Note that in Γ we have

τ(x) = rN cosN(θ − θ0) > 0,
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where x = r(cos θ, sin θ).

Now for any constant h > 0, e
ρ
h is harmonic (since it is holomorphic by

regarding R2 as C), and hence

ϕ = ϕh := Tk1(e
ρ
h ) and ψ = ψh := Tk2(e

ρ
h )

satisfy (3.3.2). Moreover, ϕh and ψh are CGO solutions. In fact, we can write

ϕh(x) = e
ρ(x)
h (1 +Rh,1(x)) and ψh(x) = e

ρ(x)
h (1 +Rh,2(x)) (3.3.5)

with Rh,l (l = 1, 2) satisfying the following estimates in Γ:

|Rh,l| ≤ h
k2l |x|2
4τ(x)

;

∣∣∣∣
∂Rh,l(x)

∂xj

∣∣∣∣ ≤
Nk2l |x|N+1

4τ(x)
+ h

k2l |xj |
2τ(x)

, j = 1, 2.

(3.3.6)

These estimates are established in [23, Lemma 2.1]. In this study we will also

need estimates of the second derivatives of Rh,l, which are not hard to derive in

the same manner as the derivation of (3.3.6) given in [23]. Actually, by repeat-

edly applying the following well-known recurrence formulae

d

dt
(tJ1) = tJ0(t),

dJ0(t)

dt
= −J1(t), ∀t ≥ 0,

where J1 is the Bessel function of the first kind of order 1, and using the basic

estimates

|J1(t)| ≤
t

2
, |J0(t)| ≤ 1, ∀t ≥ 0,

the verification of the following estimates are direct (although somewhat lengthy):

∣∣∣∣
∂2Rh,l(x)

∂xi∂xj

∣∣∣∣ ≤
1

h

(
k2lN

2|x|2N
4τN(x)

)

+

(
k2lN(N − 1)|x|N

4τN (x)
+
k2lN |x|N−1(|xi|+ |xj |)

2τN(x)

)

+ h

(
k4l |xi||xj|
4τN (x)

+
k2l δij
2τN (x)

)
(3.3.7)

in Γ, for 1 ≤ l, i, j ≤ 2, where δij is the Kronecker delta.
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Let diam(Ω) denote the diameter of Ω. By (3.3.6) and (3.3.7) there exists a

constant CR = CR(λ0, µ0, k, N, β, diam(Ω)) > 0 such that for any 0 < h ≤ 1,

1 ≤ l, i, j ≤ 2 and x ∈ Γ ∩ Ω,

|Rh,l(x)| ≤ h
CR

τN(x)
;

∣∣∣∣
∂Rh,l(x)

∂xj

∣∣∣∣ ≤
CR

τN(x)
;

∣∣∣∣
∂2Rh,l(x)

∂xi∂xj

∣∣∣∣ ≤
1

h

CR

τN (x)
.

(3.3.8)

Now v = vh := ∇ϕh + ∇⊥ψh is a CGO solution to (3.3.1). vh can be

written down explicitly as follows:

vh(x) = e
ρ(x)
h




Qh,1(x)

Qh,2(x)


 ,

where

Qh,1(x) =

[
1

h

∂ρ(x)

∂x1
(1 +Rh,1(x)) +

∂Rh,1(x)

∂x1

]

−
[
1

h

∂ρ(x)

∂x2
(1 +Rh,2(x)) +

∂Rh,2(x)

∂x2

] (3.3.9)

and

Qh,2(x) =

[
1

h

∂ρ(x)

∂x2
(1 +Rh,1(x)) +

∂Rh,1(x)

∂x2

]

+

[
1

h

∂ρ(x)

∂x1
(1 +Rh,2(x)) +

∂Rh,2(x)

∂x1

]
.

(3.3.10)

Thus for 0 < h ≤ 1 and i = 1, 2, from (3.3.8) we have the following estimates

for Qh,i in Γ ∩ Ω:

|Qh,i(x)| ≤
2N |x|N−1

h

(
1 + h

CR

τ(x)

)
+

2CR

τ(x)

≤ C̃R

h
+

C̃R

τ(x)
,

(3.3.11)

and for j = 1, 2
∣∣∣∣
∂Qh,i(x)

∂xj

∣∣∣∣ ≤
2N |x|N−2

h

[
(N + |x|) CR

τ(x)
+N

]
+

2CR

τ(x)

≤ C̃R

h

(
1 +

1

τ(x)

)
+

C̃R

τ(x)
.

(3.3.12)

where C̃R = C̃R(λ0, µ0, k, N, β, diam(Ω)) > 0 is a constant.
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3.3.2 The testing boundary data

Note that from the discussion above the CGO solutions vh are controllable in

Γ ∩ Ω. In the following we go on to follow the idea in [36] and [23] to modify

vh into a family of functions localized in Γ.

From the idea of enclosure method the previous chapter stated, we know the

level curve of real part of the phase function is very important. So let, for t > 0,

ℓt := {x ∈ Γ : τ(x) =
1

t
}, (3.3.13)

the level curve of τ in Γ at 1
t
.

ltlt

Γ

θ0

In fact, any level curve of τ = τN,β has N branches, and the cone Γ = ΓN,β

just contains one branch with the two edges of Γ being the asymptotes of that

branch. On the other hand, we here choose one cone (or branch) which intersects

the subject Ω. Also note that when t is larger, the curve ℓt is closer to the origin.

(We refer to Figure 2 in [23] for an illustration.) Then for d > 0 let

Γd = ΓN,β,d :=
⋃

0<t<d

ℓt. (3.3.14)

Note that for d1 > d2 > 0 we have Γd2 ⊂ Γd1 .

In the following we fix an ε > 0 and a compact interval J ⊂ (0,∞). Let

{φd}d∈J be a family of smooth cut-off functions such that

(i) 0 ≤ φd(x) ≤ 1,

(ii) φd(x) = 1 (resp. 0) for x ∈ Γd+ε (resp. x ∈ R
2 \ Γd+2ε), and
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(iii) for some Cφ > 0, we have |∂αx φd(x)| ≤ Cφ for each multiindex α with

|α| ≤ 2, for each x ∈ Ω and for each d ∈ J .

The existence of such family {φd} is obvious and we omit a precise construction.

Now let

pd,h(x) := φd(x)e
− 1

hdvh ∈ C∞(R2)2. (3.3.15)

It is the traces of these pd,h on ∂Ω that will be the testing data to be input into

E. In fact, we will see that the behavior of E(pd,h|∂Ω) as h → 0+ tells whether

Γd intersects D or not. Now note that although pd,h is controllable from the dis-

cussion above, it is no longer a solution to (3.3.1). However, to get information

from E(pd,h|∂Ω) we will need estimates related to the solution of (3.3.1) with

boundary condition pd,h|∂Ω. But indeed for small h controllability of pd,h gives

controllability of the true solution of (3.3.1) with the same boundary condition.

We explain this precisely in the following.

Let u0,d,h satisfy





∇ · σ0(u0,d,h) + k2u0,d,h = 0 in Ω

u0,d,h = pd,h|∂Ω on ∂Ω.
(3.3.16)

And let

wh = pd,h − u0,d,h, (3.3.17)

then wh satisfies





∇ · σ0(wh) + k2wh = ∇ · σ0(pd,h) + k2pd,h in Ω

wh = 0 on ∂Ω.
(3.3.18)

Let

gh = ∇ · σ0(pd,h) + k2pd,h, (3.3.19)

then we have the following lemma.
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Lemma 3.3.1. There exists positive constantsC1 andC (depending onΩ, λ0, µ0, k)

such that for 0 < h ≤ 1 and d ∈ J

‖wh‖H1(Ω)2 ≤ C1‖gh‖L2(Ω)2 ≤
C

h2
e−

1
h
( 1
d
− 1

d+ε
).

In particular, there exists 0 < h0 < 1 such that for 0 < h < h0 and d ∈ J , there

is a positive constant C ′ = C ′(Ω, λ0, µ0, k) such that

‖wh‖H1(Ω)2 ≤ C1‖gh‖L2(Ω)2 ≤ C ′e−
1
h
( 1
d
− 1

d+ε
).

Proof. Note that in this paper for any two vectors a and b, we define a ⊗ b to

be the matrix whose ij-th entry is aibj .

That ‖wh‖H1(Ω)2 ≤ C1‖gh‖L2(Ω)2 for some C1 is classical. So we need only

to estimate ‖gh‖L2(Ω)2 .

Since pd,h(x) = φd(x)e
− 1

hdvh, we have

gh = e−
1
hd

{
λ0∇(∇ · (φdvh)) + µ0∇ · (∇(φdvh) + (∇(φdvh))

T ) + k2φdvh

}

= e−
1
hd

{
λ0
[
∇(∇φd · vh) +∇φd(∇ · vh)

]

+ µ0∇ ·
[
vh ⊗∇φd +∇φd ⊗ vh

]

+ µ0(∇vh + (∇vh)
T )∇φd

+ φd[∇ · σ0(vh) + k2vh]
}
.

Because ∇ · σ0(vh) + k2vh = 0 and ∇φd = 0 outside Γd+2ε \ Γd+ε, we have

‖gh‖L2(Ω)2 ≤ Cge
− 1

hd‖vh‖H1((Γd+2ε\Γd+ε)∩Ω)2 (3.3.20)

for some positive constant Cg = Cg(λ0, µ0, Cφ).

By (3.3.11), for x ∈ (Γd+2ε \ Γd+ε) ∩ Ω,

|vh(x)| = e
τ(x)
h

√
|Qh,1(x)|2 + |Qh,2(x)|2

≤
√
2e

τ(x)
h

{
C̃R

h
+

C̃R

τ(x)

}
≤ C ′

R

h
e

τ(x)
h
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for some positive constant C ′
R = C ′

R(λ0, µ0, k, diamΩ). Hence we have the

following estimate:

‖vh‖L2((Γd+2ε\Γd+ε)∩Ω)2 ≤
C ′

R

h

(∫

(Γd+2ε\Γd+ε)∩Ω
e

2τ(x)
h dx

) 1
2

.

Similarly by (3.3.11) and (3.3.12) we have

‖∇vh‖L2((Γd+2ε\Γd+ε)∩Ω)2 ≤
C

′′

R

h2

(∫

(Γd+2ε\Γd+ε)∩Ω
e

2τ(x)
h dx

) 1
2

.

Since ∫

(Γd+2ε\Γd+ε)∩Ω
e

2τ(x)
h dx ≤ |(Γd+2ε \ Γd+ε) ∩ Ω|e 2

h
1

d+ε ,

we have

‖gh‖L2(Ω)2 ≤ Cge
− 1

hd‖vh‖H1((Γd+2ε\Γd+ε)∩Ω)2 ≤
C

h2
e−

1
h
( 1
d
− 1

d+ε
), (3.3.21)

where C depends only on λ0, µ0, k and Ω.

3.4 The main theorem for the reconstruction of un-

known inclusions

We now come to considering our inverse problem of reconstructing D. For the

main theorem we make the following three assumptions (in addition to those

already made in the introduction) throughout this section.

1. We assume ∇·σ0 and ∇·σ satisfy the strong convexity condition (but not

only the strong elliptic condition (3.1.3)):

λ0 + µ0 > 0, µ0 > 0;

λ+ µ > 0, µ > 0 on Ω.

Thus, in particular, Lemma 3.2.2 applies.

2. (λD + µD)µD ≥ 0 on D.
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3. For any y ∈ ∂D, there exists a ball Br(y) such that one of the following

jump conditions holds:

(i) µD(x) > r, λD(x) + µD(x) ≥ 0, ∀x ∈ Br(y) ∩D;

(ii) µD(x) < −r, λD(x) + µD(x) ≤ 0, ∀x ∈ Br(y) ∩D.
(3.4.1)

Now assume the origin 0 is outside Ω̄.1 As in section 3, in the following

we fix an N ∈ N, a β ∈ C with |β| = 1, an ε > 0, and a compact interval

J ⊂ (0,∞). And recall the definition of ρ, Γ, ℓt, Γd, and pd,h in (3.3.3), (3.3.4),

(3.3.13), (3.3.14), and (3.3.15) respectively. Also recall that we use τ to denote

Re(ρ). Let

s∗ :=






sup
x∈D∩Γ

τ(x), if D ∩ Γ 6= ∅

0 , if D ∩ Γ = ∅.

Note that D ∩ Γ 6= ∅ if and only if s∗ > 0, and in this situation ℓ1/s∗ is a curve

just touching ∂D, i.e. ℓ1/s∗ ∩ D̄ = ℓ1/s∗ ∩ ∂D 6= ∅.

For notational simplicity let fd,h := pd,h|∂Ω. Recall that u0,d,h satisfies






∇ · σ0(u0,d,h) + k2u0,d,h = 0 in Ω

u0,d,h = fd,h on ∂Ω.

Similarly let ud,h be the solution when the inclusion D exists:





∇ · σ(ud,h) + k2ud,h = 0, in Ω

ud,h = fd,h on ∂Ω.

1In general, for a = (a1, a2)
T a point outside Ω̄, we should use ρ = β((x1 − a1) + i(x2 −

a2))
N , and similar modifications of Γ, Γd, etc., and there is a similar result as Theorem 3.4.1.

However as we can always set the coordinates so that 0 /∈ Ω̄ in practice, such consideration is

not needed.
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Now let wd,h = ud,h − u0,d,h. We have the following two inequalities from

Lemma 3.2.2:

E(fd,h) ≤
∫

D

(λD + µD)|∇ · u0,d,h|2dx

+ 2

∫

D

µD

∣∣∣∣ǫ(u0,d,h)−
1

2
(∇ · u0,d,h)I2

∣∣∣∣
2

dx+ k2‖wd,h‖2L2(Ω);

(3.4.2)

E(fd,h) ≥
∫

D

(λ0 + µ0)(λD + µD)

λ+ µ
|∇ · u0,d,h|2dx

+ 2

∫

D

µ0µD

µ

∣∣∣∣ǫ(u0,d,h)−
1

2
(∇ · u0,d,h)I2

∣∣∣∣
2

dx− k2‖wd,h‖2L2(Ω).

(3.4.3)

They are the key to the following main theorem of this paper.

Theorem 3.4.1. For d ∈ J and h > 0 small enough, the following conclusions

hold:

(A) If D̄ ∩ Γd = ∅, then

|E(fd,h)| ≤ Ch−4e−
2
h
( 1
d
−sd)

for some C > 0 independent of h, where sd = max( 1
d+ε

, s∗) <
1
d
.

(B) IfD∩Γd 6= ∅ andD has continuous boundary, then there exists a constant

δ, 0 < δ < s∗ − 1
d
, such that

|E(fd,h)| ≥ Ch−3e
2
h
(s∗− 1

d
−δ)

for some C > 0 independent of h.

(B′) If D̄ ∩ Γd 6= ∅ and D has C0,α boundary for 1
3
< α ≤ 1, then

|E(fd,h)| ≥ Ch−3+ 1
α e

2
h
(s∗− 1

d
)

for some C > 0 independent of h.

Before going into the proof of Theorem 3.4.1, we give two remarks.
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Remark 3.4.1.

1. From Theorem 3.4.1, we have the following conclusions. In (A), since

sd <
1
d
, |E(fd,h)| tends to zero as h tends to zero. On the other hand, in

(B) and in (B′), since s∗ ≥ 1
d
, |E(fd,h)| tends to infinity as h tends to zero.

In particular, from (A) and (B), we have

s∗ = inf

{
1

d
: lim
h→0+

|E(fd,h)| = 0

}
. (3.4.4)

Hence, although we don’t know the limiting behavior of E(fd,h) when Γd

just touches ∂D, we can reconstruct ∂D in principle. (Of course, due to

the geometric nature of Γd, in fact only “detectable” points can be recon-

structed. An explanation of this point can be found in [35, Corollary 5.4].

Also see [36] or [23] for a reconstruction algorithm, which is easily mod-

ified to be suited for our case. We omit such discussions in this paper.)

From this point of view, almost no regularity assumption on ∂D is essen-

tial in the reconstruction. Nevertheless, for a complete characterization of

the limiting behavior of E(fd,h), we include (B′) in our theorem, while for

this purpose more regularity assumption has to be made.

Ω

D

a

Figure 3.1: The reconstruction algorithm is to find more and more touching

curves

2. We will use (3.4.2) and (3.4.3) to prove Theorem 3.4.1. Roughly speak-

ing we have better knowledge of u0,d,h than wd,h, and the crucial step is

to give an appropriate control of ‖wd,h‖L2(Ω) in terms of u0,d,h. For this
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purpose, in the corresponding parts of early researches, e.g. [12, 24, 23],

some technical assumptions (precisely, positivity of the relative curvature

and finiteness of the number of touching points of ℓ1/s∗ (or say Γ1/s∗) and

∂D) have to be made. In particular ∂D is usually assumed to be C2. (In or-

der to apply CGO solutions with complex polynomial phases, even more

technicalities are involved. For example, in [23, Lemma 3.7], the authors

proposed an estimate which is based on a rather technical result in [20].)

In [29], Sini and Yoshida came up with a totally different method to con-

trol ‖wd,h‖L2(Ω) (while they did not adopt CGO solutions with complex

polynomial phases). Precisely, they proposed (in our terminology)

‖wd,h‖L2(Ω) ≤ C‖u0,d,h‖W 1,p(D) (3.4.5)

for some p < 2, which was proved by using an Lp regularity estimate of

Meyers and the Friedrichs’ inequality. In this way the technical assump-

tions on the touching point are no more needed and ∂D can be assumed

to be only Lipschitz. Inspired by this result, we tried to adopt their idea

in our situation. We find it’s interesting that, with more careful treatment,

we find the boundaries of the inclusions can in fact be assumed to be only

continuous. Moreover, we find in the case of Γd just touching ∂D, the reg-

ularity assumption on ∂D can be reduced to be C0,α for any α ∈ (1
3
, 1].

To save notation, in the remaining of this chapter we will freely use C to

denote a constant, which may represent different values at different places.

The following lemma is just (3.4.5), we give the proof here for the sake of

completeness.

Lemma 3.4.2. There exist constants C > 0 and 1 ≤ q0 < 2 such that for

q0 < q ≤ 2,

‖w‖L2(Ω) ≤ C‖∇u0‖Lq(D),

whenever u and u0 ∈ H1(Ω)2 satisfy (3.1.1) and (3.1.2) respectively, u and u0

have the same traces on ∂Ω, and w = u− u0.
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Proof. Let q be the element in H1
0 (Ω)

2 satisfying

∇ · (σ(q)) + k2q = w̄ in Ω.

Then, by taking inner product with w and integration by parts, we have

∫

Ω

|w|2dx = −
∫

Ω

tr(σ(q)∇w)dx+ k2
∫

Ω

q ·wdx

= −
∫

Ω

tr(σ(w)∇q)dx+ k2
∫

Ω

q ·wdx. (3.4.6)

On the other hand, note that

∇ · σ(w) + k2w = −∇ · σD(u0),

which, by taking inner product with q and integration by parts, gives

−
∫

Ω

tr(σ(w)∇q)dx+ k2
∫

Ω

w · qdx =

∫

Ω

tr(σD(u0)∇q)dx. (3.4.7)

From (3.4.6) and (3.4.7) we get

∫

Ω

|w|2dx =

∫

Ω

tr(σD(u0)∇q)dx.

Then by Hölder’s inequality we have for any 1 ≤ p ≤ ∞
∫

Ω

|w|2dx ≤ ‖σD(u0)‖Lq(D)‖∇q‖Lp(Ω), (3.4.8)

where q is the conjugate exponent of p.

Now let Q = q. By definition of q we have




∇ · (σ(Q)) = w̄ − k2q in Ω

Q = 0 on Ω.

Then by [22, Theorem 1], there exist p0 > 2 such that for each 2 ≤ p < p0,

‖∇q‖Lp(Ω) = ‖∇Q‖Lp(Ω) ≤ C
{
‖q‖L2(Ω) + ‖w‖L2(Ω)

}
(3.4.9)

for some C = C(k, λ, µ) > 0. Note that also by definition of q, we have

‖q‖L2(Ω) ≤ C‖w‖L2(Ω) for some C = C(k, λ, µ) > 0 (see e.g. [7, Section 6.2,

Theorem 6]). So from (3.4.9) we have

‖∇q‖Lp(Ω) ≤ C‖w‖L2(Ω) (3.4.10)
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for some C = C(k, λ, µ) > 0. Combining (3.4.8) and (3.4.10), we have

‖w‖2L2(Ω) ≤ C‖∇u0‖Lq(D)2‖w‖L2(Ω)

for some C = C(k, λ, µ) > 0 and 2 ≤ p < p0, and therefore

‖w‖L2(Ω) ≤ C‖∇u0‖Lq(D)

for some C = C(k, λ, µ) > 0 and q0 < q ≤ 2, where 1 ≤ q0 < 2 is the

conjugate exponent of p0.

Remark 3.4.2. Remember that we assume Ω has a smooth boundary for simplic-

ity. In fact, it is so assumed only to allow direct application of the Lp estimates

in [22]. In other words, the regularity condition on ∂Ω really required is just that

guarantees the validity of (3.4.9).

To make the proof of Theorem 3.4.1 more concise, some computational re-

sults are collected in the following lemma.

Lemma 3.4.3. For d ∈ J , we have the following conclusions.

(i) There exsists a constant C > 0 such that for q > 0 and 0 < h ≤ 1, we

have

‖∇pd,h‖Lq(D) ≤ Ch−2

(∫

D∩Γd+2ε

e
q
h
(τ(x)− 1

d
)dx

) 1
q

. (3.4.11)

In particular, since s∗ ≥ τ(x) for x ∈ D ∩ Γd+2ε, we have

‖∇pd,h‖Lq(D) ≤ Ch−2e
1
h
(s∗− 1

d
)

for some C > 0 independent of h.

(ii) There exist positive constants c and C such that, for 0 < h ≤ 1 and for

any open set U with D ∩ Γd+ε ∩ U 6= ∅, we have

∥∥∥∥ǫ(pd,h)−
1

2
(∇ · pd,h)I2

∥∥∥∥
2

L2(D∩Γd+ε∩U)

≥ (ch−4 − Ch−2)

∫

D∩Γd+ε∩U
e

2
h
(τ(x)− 1

d
)dx.

(3.4.12)
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(iii) There exist constants C > 0 and q0 < 2 such that for each q0 < q ≤ 2

and 0 < h≪ 1, we have

‖wd,h‖2L2(Ω) ≤ Ce
2
h
( 1
d+ε

− 1
d
) + Ch−4

(∫

D∩Γd+2ε

e
q
h
(τ(x)− 1

d
)dx

)2/q

.

(3.4.13)

Proof. (i) Remember that

pd,h = (p1d,h, p
2
d,h)

T = φde
1
h
(ρ(x)− 1

d
)(Qh,1, Qh,2)

T ,

where Qh,1 and Qh,2 are defined in (3.3.9) and (3.3.10) respectively. Then

by definition of φd (in page 23), for x ∈ D \ Γd+2ε, we have pd,h(x) = 0.

On the other hand, by (3.3.11) and (3.3.12), we have for x ∈ D ∩ Γd+2ε

and 0 < h ≤ 1,

|∇pd,h(x)|2 =
∑

j,l=1,2

∣∣∣∣∣
∂pjd,h
∂xl

∣∣∣∣∣

2

=
∑

j,l=1,2

e
2
h
(τ(x)− 1

d
)

∣∣∣∣
∂φd(x)

∂xl
Qh,j(x)

+φd(x)

[
1

h

∂ρ(x)

∂xl
Qh,j(x) +

∂Qh,j(x)

∂xl

]∣∣∣∣
2

≤ Ce
2
h
(τ(x)− 1

d
)h−4,

(3.4.14)

for some positive constant C independent of h. Since s∗ = sup
x∈D∩Γ

τ(x)

and |∇pd,h|q = (|∇pd,h|2)q/2, we have for 0 < h ≤ 1

‖∇pd,h‖Lq(D) ≤ Ch−2

(∫

D∩Γd+2ε

e
q
h
(τ(x)− 1

d
)dx

) 1
q

≤ Ce
1
h
(s∗− 1

d
)h−2,

for some positive constant C independent of h.

(ii) We can compute
∂pjd,h
∂xl

directly by (3.3.9) and (3.3.10) for x ∈ D ∩ Γd+2ε:

∂p1d,h(x)

∂xl
= e−

1
hd e

ρ(x)
h

(
∂φd(x)

∂xl
Qh,1 +

1

h
φd
∂ρ(x)

∂xl
Qh,1 + φd

∂Qh,1(x)

∂xl

)

= e−
1
hd e

ρ(x)
h

(
1

h2

(
∂ρ(x)

∂x1
− ∂ρ(x)

∂x2

)
∂ρ(x)

∂xl
φd(x) + Ih−1

)
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and

∂p2d,h(x)

∂xl
= e−

1
hd e

ρ(x)
h

(
∂φd(x)

∂xl
Qh,2 +

1

h
φd
∂ρ(x)

∂xl
Qh,2 + φd

∂Qh,2(x)

∂xl

)

= e−
1
hd e

ρ(x)
h

(
1

h2

(
∂ρ(x)

∂x1
+
∂ρ(x)

∂x2

)
∂ρ(x)

∂xl
φd(x) + I ′h−1

)
,

where

Ih−1 =
1

h2
φd
∂ρ

∂xl

(
∂ρ

∂x1
Rh,1 −

∂ρ

∂x2
Rh,2

)

+
1

h

∂φd

∂xl

[
∂ρ

∂x1
(1 +Rh,1)−

∂ρ

∂x2
(1 +Rh,2)

]

+
1

h
φd

[
∂ρ

∂xl

(
∂Rh,1

∂x1
− ∂Rh,2

∂x2

)
+

∂ρ

∂x1

∂Rh,1

∂xl
− ∂ρ

∂x2

∂Rh,2

∂xl

]

+
1

h
φd

[
∂2ρ

∂xl∂x1
(1 +Rh,1)−

∂2ρ

∂xl∂x2
(1 +Rh,2)

]

+ φd

(
∂2Rh,1

∂xl∂x1
− ∂2Rh,2

∂xl∂x2

)
+
∂φd

∂xl

(
∂Rh,1

∂x1
− ∂Rh,2

∂x2

)
;

I ′h−1 =
1

h2
φd
∂ρ

∂xl

(
∂ρ

∂x2
Rh,1 +

∂ρ

∂x1
Rh,2

)

+
1

h

∂φd

∂xl

[
∂ρ

∂x2
(1 +Rh,1) +

∂ρ

∂x1
(1 +Rh,2)

]

+
1

h
φd

[
∂ρ

∂xl

(
∂Rh,1

∂x2
+
∂Rh,2

∂x1

)
+

∂ρ

∂x2

∂Rh,1

∂xl
+

∂ρ

∂x1

∂Rh,2

∂xl

]

+
1

h
φd

[
∂2ρ

∂xl∂x2
(1 +Rh,1) +

∂2ρ

∂xl∂x1
(1 +Rh,2)

]

+ φd

(
∂2Rh,1

∂xl∂x2
+
∂2Rh,2

∂xl∂x1

)
+
∂φd

∂xl

(
∂Rh,1

∂x2
+
∂Rh,2

∂x1

)
.

By (3.3.8), for any x ∈ D ∩ Γd+2ε and 0 < h ≤ 1,

|Ih−1(x)|, |I ′h−1(x)| ≤ Ch−1

for some positive constant C independent of h.
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Then we have for x ∈ D ∩ Γd+2ε and 0 < h ≤ 1

2

∣∣∣∣ǫ (pd,h)−
1

2
(∇ · pd,h)I2

∣∣∣∣
2

≥
∣∣∣∣
∂p1d,h
∂x1

−
∂p2d,h
∂x2

∣∣∣∣
2

≥
∣∣∣∣e

1
h
(ρ− 1

d
)φdh

−2

[
∂ρ

∂x1

(
∂ρ

∂x1
− ∂ρ

∂x2

)
− ∂ρ

∂x2

(
∂ρ

∂x2
+

∂ρ

∂x1

)]∣∣∣∣
2

−
∣∣∣e

1
h
(ρ− 1

d
) (Ih−1 − I ′h−1)

∣∣∣
2

≥ e
2
h
(τ− 1

d
)(cφ2

dh
−4 − 2Ch−2)

for some positive constants c, C independent of h. Then (ii) of this lemma

is valid.

(iii) By Lemma 3.4.2, there exist constants C > 0 and 1 ≤ q0 < 2 such that

‖wd,h‖L2(Ω) ≤ C‖∇u0,d,h‖Lq(D)

for each q0 < q ≤ 2. Therefore replacing u0,d,h by pd,h−wh and applying

Hölder’s inequality, we have

‖wd,h‖L2(Ω) ≤ C
{
‖∇wh‖Lq(D) + ‖∇pd,h‖Lq(D)

}

≤ C
{
‖∇wh‖L2(D) + ‖∇pd,h‖Lq(D)

}

≤ C
{
‖∇wh‖H1(D) + ‖∇pd,h‖Lq(D)

}
.

Then by Lemma 3.3.1 and (3.4.11), (3.4.13) follows.

Now we give the proof of the main theorem.

Proof of Theorem 3.4.1. (A) By (3.4.3), we have

−E(fd,h) ≤
∫

D

−(λ0 + µ0)(λD + µD)

λ+ 2µ
|∇ · u0,d,h|2dx

+ 2

∫

D

−µ0µD

µ

∣∣∣∣ǫ(u0,d,h)−
1

2
(∇ · u0,d,h)I2

∣∣∣∣
2

dx

+

∫

Ω

k2|wd,h|2dx.
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Therefore, together with (3.4.2), we have

|E(fd,h)| ≤ C
{
‖∇u0,d,h‖2L2(D) + ‖wd,h‖2L2(Ω)

}

for some positive constant C independent of h. Therefore from Lemma

3.3.1 and Lemma 3.4.3, we have, by choosing q = 2, the following esti-

mate:

|E(fd,h)| ≤ C
{
‖∇wh‖2L2(Ω) + ‖∇pd,h‖2L2(D) + ‖wd,h‖2L2(Ω)

}

≤ C
{
e

2
h
( 1
d+ε

− 1
d
) + h−4e

2
h
(s∗− 1

d
)
}
.

Therefore for 0 < h ≤ 1,

|E(fd,h)| ≤ C
(
h−4e

2
h
(sd− 1

d
)
)
,

where sd = max( 1
d+ε

, s∗). Moreover we notice that D̄ ∩ Γd = ∅ implies

s∗ <
1
d
, and the conslusion (A) follows.

(B) We first consider case (i) of (3.4.1) and prove the conclusion (B) from

(3.4.3).

Suppose D ∩ Γd 6= ∅, then s∗ >
1
d
≥ 1

d+ε
since D is open. Therefore for

any y ∈ ∂D∩Γd+ε, each neighborhood Uy of y satisfies D∩Γd+ε∩Uy 6=

∅. By the assumption (i) of (3.4.1), for each y ∈ ∂D, there exists ry such

that

µD(x) > ry, λD + µD ≥ 0, ∀x ∈ Bry ∩D. (3.4.15)

Set K := ∂D ∩ {τ = s∗} = ∂D ∩ ℓ1/s∗ . It’s easy to see that K 6= ∅.

Since K is compact and is contained in ∪y∈KBry(y), there exsits N ∈ N

such that K ⊂ ∪N
j=1Brj(yj), where ryj

is abbreviated to rj . Let DR =

D \ ∪N
j=1Brj (yj), then it is easy to see that there exists δ′ > 0 such that

τ(x) ≤ s∗ − δ′ in DR.
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Therefore for q0 < q ≤ 2 we have

∫

D∩Γd+2ε

e
q
h
(τ− 1

d
)dx ≤

∫

DR

e
q
h
(τ− 1

d
)dx+

N∑

j=1

∫

Brj
(yj)∩D∩Γd+2ε

e
q
h
(τ− 1

d
)dx

≤ Ce
q
h
(s∗− 1

d
−δ′) +N

∫

Br∗(y∗)∩D∩Γd+2ε

e
q
h
(τ− 1

d
)dx

for some y∗ ∈ {yj}Nj=1 and r∗ ∈ {rj}Nj=1 such that

∫

Br∗ (y∗)∩D∩Γd+2ε

e
q
h
(τ− 1

d
)dx = max

j=1,...,N

(∫

Brj (yj)∩D∩Γd+2ε

e
q
h
(τ− 1

d
)dx

)
.

Moreover, we can compute more finely that
∫

Br∗ (y∗)∩D∩Γd+2ε

e
q
h
(τ− 1

d
)dx

=

∫

Br∗(y∗)∩D∩Γd+ε

e
q
h
(τ− 1

d
)dx+

∫

Br∗ (y∗)∩D∩(Γd+2ε\Γd+ε)

e
q
h
(τ− 1

d
)dx

≤
∫

Br∗(y∗)∩D∩Γd+ε

e
q
h
(τ− 1

d
)dx+ Ce

q
h
( 1
d+ε

− 1
d
).

Therefore by combining the above inequalities, we have
∫

D∩Γd+2ε

e
q
h
(τ− 1

d
)dx ≤ C

∫

Br∗(y∗)∩D∩Γd+ε

e
q
h
(τ− 1

d
)dx

+ Ce
q
h
( 1
d+ε

− 1
d
) + Ce

q
h
(s∗− 1

d
−δ′).

Set

Aq,∗,h :=

∫

Br∗(y∗)∩D∩Γd+ε

e
q
h
(τ− 1

d
)dx.

Now we come back to (3.4.3), from Lemma 3.3.1 we have for 0 < h≪ 1

E(fd,h) ≥ C

{∫

D

µ0µD

µ

∣∣∣∣ǫ(pd,h)−
1

2
(∇ · pd,h)I2

∣∣∣∣
2

dx− ‖wh‖2H1(Ω)

}

− k2‖wd,h‖2L2(Ω)

≥ C

(∫

D

µ0µD

µ

∣∣∣∣ǫ(pd,h)−
1

2
(∇ · pd,h)I2

∣∣∣∣
2

dx

)

×
(
1− e

2
h
( 1
d+ε

− 1
d
)

∫
D

µ0µD

µ

∣∣ǫ(pd,h)− 1
2
(∇ · pd,h)I2

∣∣2 dx

−
‖wd,h‖2L2(Ω)∫

D
µ0µD

µ

∣∣ǫ(pd,h)− 1
2
(∇ · pd,h)I2

∣∣2 dx

)
.

(3.4.16)
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In the following we estimate each term separately.

First, by Lemma 3.4.3 we can compute

∫
D

µ0µD

µ

∣∣ǫ(pd,h)− 1
2
(∇ · pd,h)I2

∣∣2 dx
‖wd,h‖2L2(Ω)

≥ C
A2,∗,h(c− Ch−2)

e
2
h
( 1
d+ε

− 1
d
) + h−4

(∫
D∩Γd+2ε

e
q
h
(τ− 1

d
)dx
)2/q

≥ C
A2,∗,h(ch−4 − Ch2)

(Aq,∗,h)2/q + e
2
h
( 1
d+ε

− 1
d
) + e

2
h
(s∗− 1

d
−δ′)

,

(3.4.17)

for q0 < q ≤ 2.

Now we need to compute Aq,∗,h carefully. For y∗ ∈ ℓ1/s∗ ∩ ∂D, we

consider the following change of coordinates as in [23]. First, let T be

the composition of the following two rigid motions: i) translate y∗ to the

origin, and ii) rotate so that the unit inward normal of T (Γ1/s∗) at the

origin is the vector (0, 1)T . Then set z = (z1(x), z2(x))
T = T (x) and

ξ = (ξ1(z), ξ2(z))
T = Ξ(z), where

Ξ(z) =




z1

τ(T −1z)− s∗


 .

Then Ξ ◦ T gives a C2 diffeomorphism in a neighborhood Uy∗
of y∗.

Geometrically, under the transformation Ξ ◦ T the point y∗ becomes the

origin of the new frame (ξ1, ξ2)
T , ξ1-axis coincides with the curve ℓ1/s∗ ,

and the positive direction of ξ2-axis coincides with the unit inward normal

of T (Γ1/s∗) at y∗.

We do the above change of coordinates, then we have Ξ ◦ T (y∗) = 0 and

Ce
q
h
(s∗− 1

d
)

(∫

Ξ◦T (Br∗ (y∗)∩D∩Γd+ε)

e
q
h
ξ2dξ

)

≤ Aq,∗,h ≤ Ce
q
h
(s∗− 1

d
)

(∫

Ξ◦T (Br∗ (y∗)∩D∩Γd+ε)

e
q
h
ξ2dξ

)
.

(3.4.18)

Since ∂D is continuous, Ξ ◦ T (∂D) is also continuous and is able to

be parametrized by a continuous function near ξ = 0 under a suitable
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rotation. So, we consider a rotation T̃ with T̃ (ξ) = ξ̃ = (ξ̃1, ξ̃2)
T such

that T̃ (Ξ◦T (∂D)) can be parametrized by f∗(ξ̃1) near ξ̃ = 0 with f∗(0) =

0.

Actually, we can choose T̃ such that

ξ2 = (sin θ)ξ̃1 + (cos θ)ξ̃2 with |θ| < π

2
,

because Ξ◦T (D) ⊂ {ξ2 ≤ 0} andD is open. Let a = sin θ and b = cos θ,

then b > 0. Without loss of generality, we assume T̃ (Ξ ◦ T (∂D)) can be

parametrized by f∗(ξ̃1) in ξ̃1 < diam(T̃ (Ξ ◦ T (Br∗(y∗) ∩ D ∩ Γd+ε))).

Set Ũ = T̃ (Ξ ◦ T (Br∗(y∗) ∩D ∩ Γd+ε)).

Here we note that f∗ is continuous in Ũ since we assume ∂D has contin-

uous boundary, and Ũ ⊂ {aξ̃1 + bξ̃2 ≤ 0} since Ξ ◦ T (D) ⊂ {ξ2 ≤ 0}.

Now it’s easy to see that there exist positive constants δ1, δ2, δ
′
1, δ

′
2 inde-

pendent of h with δ2 < δ′2 such that

∫ δ1

−δ′1

∫ f∗(ξ̃1)

−δ2

e
q
h
(aξ̃1+bξ̃2)dξ̃

≤
∫

Ξ◦T (Br∗ (y∗)∩D∩Γd+ε)

e
q
h
ξ2dξ =

∫

Ũ

e
q
h
(aξ̃1+bξ̃2)dξ̃

≤
∫ δ1

−δ′1

∫ f∗(ξ̃1)

−δ′2

e
q
h
(aξ̃1+bξ̃2)dξ̃

=

∫ δ1

−δ′1

∫ f∗(ξ̃1)

−δ2

e
q
h
(aξ̃1+bξ̃2)dξ̃ +

∫ δ1

−δ′1

∫ −δ2

−δ′2

e
q
h
(aξ̃1+bξ̃2)dξ̃.

Since Ũ ⊂ {aξ̃1 + bξ̃2 ≤ 0},

δ2 ≤ f∗(ξ̃1) ≤ −a
b
ξ̃1 in Ũ .

Therefore, we can compute directly and obtain that

∫ δ1

−δ′1

∫ f∗(ξ̃1)

−δ2

e
q
h
(aξ̃1+bξ̃2)dξ̃

≤
∫

Ξ◦T (Br∗ (y∗)∩D∩Γd+ε)

e
q
h
ξ2dξ

=

∫ δ1

−δ′1

∫ f∗(ξ̃1)

−δ2

e
q
h
(aξ̃1+bξ̃2)dξ̃ + (δ′1 + δ1)(δ

′
2 − δ2).

(3.4.19)
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In order to make the computation clear, we set

Bq,∗,h =

∫ δ1

−δ′1

∫ f∗(ξ̃1)

−δ2

e
q
h
(aξ̃1+bξ̃2)dξ̃. (3.4.20)

By combining (3.4.17), (3.4.18) and (3.4.19), we have

∫
D

µ0µD

µ

∣∣ǫ(pd,h)− 1
2
(∇ · pd,h)I2

∣∣2 dx
‖wd,h‖2L2(Ω)

≥ C
e

2
h
(s∗− 1

d
)B2,∗,h(c− Ch2)

e
2
h
(s∗− 1

d
)(Bq,∗,h + C)2/q + e

2
h
( 1
d+ε

− 1
d
) + e

2
h
(s∗− 1

d
−δ′)

= C
B2,∗,h(c− Ch2)

(Bq,∗,h)2/q + C + e
2
h
( 1
d+ε

−s∗) + e
2
h
(−δ′)

.

(3.4.21)

Now we compute Bq,∗,h more carefully. We note that since f∗ is con-

tinuous near ξ̃ = 0, for all 0 < δ < min(δ2, s∗− 1
d+ε

, δ′), there exists

0 < δ′′1 < min(δ1, δ
′
1) such that

|f∗(ξ̃1)| = |f∗(ξ̃1)− f∗(0)| < δ, ∀ξ̃1 ∈ (−δ′′1 , δ′′1).

Therefore,

Bq,∗,h ≥
∫ δ′′1

−δ′′1

e
q
h
aξ̃1

(∫ f∗(ξ̃1)

−δ2

e
q
h
bξ̃2dξ̃2

)
dξ̃1

=

∫ δ′′1

−δ′′1

e
q
h
aξ̃1

h

qb

(
e

q
h
bf∗(ξ̃1) − e−

q
h
δ2
)
dξ̃1

≥
∫ δ′′1

−δ′′1

e
q
h
aξ̃1

h

qb

(
e−

q
h
δ − e−

q
h
δ2
)
dξ̃1

≥ h

qb
e−

q
h
bδ(1− e−

q
h
(δ2−δ))

∫ δ′′1

0

e
q
h
aξ̃1dξ̃1.

Then for 0 < h≪ 1, we obtain the following estimate

Bq,∗,h ≥ C
h

qb
e−

q
h
bδ, (3.4.22)

for all 0 < δ < min(δ2, s∗− 1
d+ε

, δ′) and for some C independent of h.

Moreover, we observe that for 0 < h≪ 1

e
2
h
( 1
d+ε

−s∗)

B2,∗,h
≤ Ch−1e

2
h
( 1
d+ε

−s∗+δ)
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and

e−
2
h
δ′

B2,∗,h
≤ Ch−1e

1
h
(−δ′+δ).

Then (3.4.21) becomes the following estimate

∫
D

µ0µD

µ

∣∣ǫ(pd,h)− 1
2
(∇ · pd,h)I2

∣∣2 dx
‖wd,h‖2L2(Ω)

≥ C
B2,∗,h

(Bq,∗,h)2/q
,

for q0 < q ≤ 2 and 0 < h≪ 1.

Actually, we can directly compute and use the Hölder inequality to obtain

that for q0 < q ≤ 2,

(Bq,∗,h)
2/q =

[∫ δ1

−δ′1

e
q
h
aξ̃1

h

qb

(
e

q
h
bf∗(ξ̃1) − e−

q
h
bδ2
)
dξ̃1

]2/q

=

(
h

qb

)2/q
[∫ δ1

−δ′1

e
q
h
aξ̃1e

q
h
bf∗(ξ̃1)

(
1− e−

q
h
b(δ2+f∗(ξ̃1))

)
dξ̃1

]2/q

≤ C

(
h

qb

)2/q ∫ δ1

−δ′1

e
2
h
aξ̃1e

2
h
bf∗(ξ̃1)

(
1− e−

q
h
b(δ2+f∗(ξ̃1))

)2/q
dξ̃1.

Since δ2 + f∗(ξ̃1) ≥ 0 for ξ̃1 ∈ [−δ′1, δ1], we have

0 < e−
q
h
(δ2+f∗(ξ̃1)) ≤ 1

and therefore for q ≤ 2

(
1− e−

q
h
(δ2+f∗(ξ̃1))

)2/q
≤ 1− e−

2
h
(δ2+f∗(ξ̃1)).

Hence we obtain for q0 < q ≤ 2

(Bq,∗,h)
2/q ≤ C

(
h

qb

)2/q ∫ δ1

−δ′1

e
2
h
aξ̃1e

2
h
bf∗(ξ̃1)

(
1− e−

2
h
(δ2+f∗(ξ̃1))

)
dξ̃1

= C

(
h

qb

)2/q (
2b

h

)∫ δ1

−δ′1

∫ f∗(ξ̃1)

−δ2

e
2
h
(aξ̃1+bξ̃2)dξ̃

= C

(
h

qb

)2/q (
2b

h

)
B2,∗,h,

and then the most difficult part of the proof of Theorem 3.4.1 can be con-

cluded that for 0 < h≪ 1 and q0 < q < 2

∫
D

µ0µD

µ

∣∣ǫ(pd,h)− 1
2
(∇ · pd,h)I2

∣∣2 dx
‖wd,h‖2L2(Ω)

≥ Ch1−
2
q , (3.4.23)
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for some constant C independent of h.

Back to (3.4.16), by (3.4.23) we have for 0 < h≪ 1 and q0 < q < 2

E(fd,h) ≥ C

(∫

D

µ0µD

µ

∣∣∣∣ǫ(pd,h)−
1

2
(∇ · pd,h)I2

∣∣∣∣
2

dx

)

×
(
1− e

2
h
( 1
d+ε

− 1
d
)

∫
D

µ0µD

µ

∣∣ǫ(pd,h)− 1
2
(∇ · pd,h)I2

∣∣2 dx
− h(

2
q
−1)

)
.

(3.4.24)

By direct computation we have

e
2
h
( 1
d+ε

− 1
d
)

∫
D

µ0µD

µ

∣∣ǫ(pd,h)− 1
2
(∇ · pd,h)I2

∣∣2 dx
≤ Ce

2
h
( 1
d+ε

−s∗),

therefore

e
2
h
( 1
d+ε

− 1
d
)

∫
D

µ0µD

µ

∣∣ǫ(pd,h)− 1
2
(∇ · pd,h)I2

∣∣2 dx
= o(1). (3.4.25)

Hence by using Lemma 3.4.3 and by computing directly from (3.4.24)

and (3.4.25), we have for 0 < h≪ 1

|E(fd,h)| ≥ Ch−4A2,∗,h ≥ Ch−4e
2
h
(s∗− 1

d
)B2,∗,h. (3.4.26)

Therefore by (3.4.22), for all 0 < δ < min(δ2, s∗− 1
d+ε

, δ′) and for 0 <

h≪ 1 we have

|E(fd,h)| ≥ Ch−3e
2
h
(s∗− 1

d
−δ), (3.4.27)

for some constant C independent of h. Choose δ such that δ < s∗−1
d
, then

the proof of (B) is complete.

For case (ii) of (3.4.1), instead of using (3.4.3), we shall consider the

negative of (3.4.2):

−E(fd,h) ≥
∫

D

−(λD + µD)|∇ · u0,d,h|2dx

− 2

∫

D

µD

∣∣∣∣ǫ(u0,d,h)−
1

2
(∇ · u0,d,h)I2

∣∣∣∣
2

dx−
∫

Ω

k2|wd,h|2dx.

And a similar argument will also give (3.4.27).
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(B′) As in (B), we will only prove case (i) of (3.4.1) by (3.4.3), and case (ii) of

(3.4.1) can be treated similarly by using the negative of (3.4.2). Suppose

that D̄ ∩ Γd 6= ∅ and D has C0,α boundary. Since D̄ ∩ Γd 6= ∅, s∗ ≥ 1
d
>

1
d+ε

and K = ∂D ∩ ℓ1/s∗ 6= ∅.

In fact, we have proved in (B) that s∗− 1
d+ε

> 0 and continuity of ∂D

ensure (3.4.23) holds. So (3.4.23) also holds under this assumption of

(B′) and therefore (3.4.26) also holds.

However, since D has C0,α boundary, we have the better estimate than

(3.4.22). Without loss of generality, we assume f∗(ξ̃1) is C0,α for ξ̃1 ∈

[−δ1, δ′1]. Then there exists a positive constant L such that for ξ̃1 ∈ [−δ −

1, δ′1]

|f∗(ξ̃1)| = |f∗(ξ̃1)− f∗(0)| ≤ L|ξ̃1|α.

Therefore we can compute directly as follows:

B2,∗,h =

∫ δ1

−δ′1

∫ f∗(ξ̃1)

−δ2

e
2
h
(aξ̃1+bξ̃2)dξ̃

≥
∫ 0

−δ′1

e
2a
h
ξ̃1

(∫ f∗(ξ̃1)

−δ2

e
2b
h
ξ̃2dξ̃2

)
dξ̃1

=

∫ 0

−δ′1

e
2a
h
ξ̃1
h

2b

(
e

2b
h
f∗(ξ̃1) − e

−2bδ2
h

)
dξ̃1

≥ h

2b

(∫ 0

−δ′1

e
2
h
(aξ̃1−bL|ξ̃1|α) − e

2a
h
ξ̃1e

−2bδ2
h dξ̃1

)

=
h

2b

(∫ δ′1

0

e−
2
h
(aξ̃1+bLξ̃1

α
) − e−

2a
h
ξ̃1e

−2bδ2
h dξ̃1

)
.

Without loss of generality, we assume that 0 < δ1 < 1. Since 0 < α ≤ 1,

we have

∫ δ′1

0

e
−2
h

(aξ̃1+bLξ̃1
α
)dξ̃1 ≥

∫ δ′1

0

e
−2
h

(a+bL)ξ̃1
α

dξ̃1

= h
1
α

∫ δ′1

h1/α

0

e−2(a+bL)ξ̃1
α

dξ̃1.
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Then by computing directly, we have

B2,∗,h ≥ h

2b




h
1
α

∫ δ′1

h1/α

0

e−2(a+bL)ξ̃1
α

dξ̃1 − he
−2δ2

h

∫ δ′1
h

0

e−2aξ̃1dξ̃1




 .

Since

∫ δ′1

h1/α

0

e−2(a+bL)ξ̃1
α

dξ̃1 →
∫ ∞

0

e−2(a+bL)ξ̃α1 dξ̃1 <∞ as h→ 0+

and ∫ δ1
h

0

e−2aξ̃1dξ̃1 →
∫ ∞

0

e−2aξ̃1dξ̃1 <∞ as h→ 0+,

we have

B2,∗,h ≥ Ch1+
1
α for 0 < h≪ 1.

Then by (3.4.26)

E(fd,h) ≥ Ce
2
h
(s∗− 1

d
)h−4h1+

1
α = Ce

2
h
(s∗− 1

d
)h−3+ 1

α

for each 0 < h ≪ 1. If α > 1
3
, then even when s∗=

1
d
, |E(fd,h)| tends to

infinity as h tends to zero.

3.5 Remarks

In this work, we succeed in applying the enclosure-type method and CGO so-

lutions to the theory of reconstructing unknown inclusions in time-harmonic

elastic waves. At the same time, we observe that only Lipschitz assumption

on the boundary regularity is needed. This is a very low regularity assumption

on the boundary. Besides, we also find the effect of CGO solutions is taken in

the enclosure-type method by utilizing the relationship between the reflection

solution w and the solution u0 of (3.1.2), for example Lemma 3.4.2. Actually

this relationship is the key point in reflecting the regularity assumption on the

boundary. In other words, if we can have sharper description of this relation, we

may reduce the assumptions on the boundary regularity.
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Chapter 4

Reconstruction of impenetrable

inclusions

4.1 Introduction

In this chapter, we consider the following inverse problem: reconstructing the

shape and location of an impenetrable obstacle or cracks in an elastic body by

using boundary measurements. We also use the enclosure-type method intro-

duced in Chapter 2 to do the work of reconstructing the unknown obstacles. In

the following we give the precise mathematical model of this inverse problem.

4.1.1 Mathematical model and some notations

Let Ω be an open bounded domain in R
n, n = 2, 3. For simplicity, we assume

Ω has C∞ boundary. In this chapter we suppose that the elastic subject occupies

Ω, and there is an impenetrable and sound-hard obstacles, which is denoted by

D with D ⊂⊂ Ω. In our assumptions, for simplicity, we consider the elastic

subject is isotropic and homogeneous with Lamé constants λ and µ. λ and µ are

real numbers.

We send a time-harmonic elastic wave with time dependence eikt into Ω in

order to detect the unknown D. By singling out the space part, the displacement

field u satisfying





∇ · σ(u) + k2u = 0 in Ω \D,

σ(u)ν = 0 on ∂D,

(4.1.1)
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when D is not empty. Here σ denotes the stress tensor of the elastic body, that

is

σ(v) = λ∇ · vIn + µ(∇v + (∇v)T ) (4.1.2)

for any vector field v and In denotes the n× n identity matrix.

If D = ∅, that is there is no unknown obstacles or cracks, then we denote

the corresponding displacement field by u0 which satisfies

∇ · σ(u0) + k2u0 = 0 in Ω. (4.1.3)

In the following when saying k2 is not a Dirichlet eigenvalue of problem

(4.1.1), it means the following corresponding homogeneous problem has only

one trivial solution:





∇ · σ(v) + k2v = 0, in Ω \ D̄

σ(v)ν = 0, on ∂D

v = 0, on ∂Ω.

Similarly, when saying k2 not a Dirichlet eigenvalue of the problem (4.1.3), it

means the following corresponding homogeneous problem has only one trivial

solution:





∇ · σ(v) + k2v = 0, in Ω

v = 0, on ∂Ω.

We note that if k2 is neither an eigenvalue of problem (4.1.1) nor (4.1.3), then

given any Dirichlet boundary condition f on ∂Ω, problem (4.1.1) and (4.1.3)

have the only one solution respectively. Therefore under this assumption on k2,

we can define the Dirichlet-to-Neumann operators ΛD and Λ∅ from H
1
2 (∂Ω)n

to H− 1
2 (∂Ω)n as follows: for any Dirichlet boundary condition f ∈ H

1
2 (∂Ω)n,

< ΛDf , g >=

∫

Ω\D̄
tr(σ(u)∇v)dx− k2

∫

Ω\D̄
u · vdx

for any g ∈ H
1
2 (∂Ω)n and some v ∈ H1(Ω \ D̄)n satisfying v|∂Ω = g, where u

solves (4.1.1) with Dirichlet boundary condition u|∂Ω = f .
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Similarly, for any Dirichlet boundary condition f ∈ H
1
2 (∂Ω)n,

< Λ∅f , g >=

∫

Ω

tr(σ(u0)∇v)dx−
∫

Ω

u0 · vdx

for any g ∈ H
1
2 (∂Ω) and some v ∈ H1(Ω) satisfying v|∂Ω = g, where u0

solves (4.1.3) with Dirichlet boundary condition u0|∂Ω = f .

4.1.2 A remark on regularity assumptions

To establish an applicable algorithm, the regularity results for the reflection so-

lution w = u−u0 is crucial, where u and u0 are solutions of (4.1.1) and (4.1.3)

with the same Dirichlet boundary conditions respectively. Precisely, what kind

of regularity results of w we can get, will influence what kind of regularity

assumptions on the boundary we can give. Actually, in [19] the regularity as-

sumptions on ∂D can be reduced to C0,α, α > 1/3 or even only continuity.

However, the situation in the impenetrable case is totally different. It is hard to

assume the regularity of ∂D is less than “Lipschitz”. This is because we can not

obtain “good” estimate for w when the regularity of ∂D is less than Lipschitz.

In this chapter, in order to emphasize the influence of the reflected solution,

we just assume the regularity of ∂D is C2.

4.2 The corresponding indicator functional

In our reconstruction method, we hope to detect the unknownD but not to invade

the elastic body occupying Ω. So all the information we can obtain only comes

from ∂Ω.

As mentioned before, we note that if we assume k2 is neither the Dirichlet

eigenvalue of problem (4.1.1) nor (4.1.3), then ΛD and Λ∅ are well-defined.

Then we can use ΛD and Λ∅ to deal with our problem.

From now on, assume we can obtain all information such as follows: if we

set a displacement f on ∂Ω, we can measure the corresponding tractions σ(u)ν

and σ(u0)ν on ∂Ω associated to (4.1.1) and (4.1.3) respectively. This means ΛD
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and Λ∅ are known. In other words, this assumption can let us make the most of

ΛD and Λ∅.

Next, we consider the following corresponding indicator functional E de-

fined as follows: for any f ∈ H
1
2 (∂Ω)n

E(f) :=< (Λ∅ − ΛD)f , f̄ > .

It measures the difference between the energies corresponding to the situation

with and without the impenetrable inclusion D. And it is one of the main tools

in the enclosure-type method. To show how E comes into effect in the impene-

trable case, we need to understand it more and establish useful identity in terms

of the known term u0.

Here for a matrix A, we denote the trace of A by tr(A).

Lemma 4.2.1. For any f ∈ H
1
2 (∂Ω)n,

E(f) =

∫

Ω\D̄
tr(σ(w)∇w̄)−

∫

Ω\D̄
k2w · w̄+

∫

D

tr(σ(u0)∇ū0)−
∫

D

k2u0 · ū0

where u and u0 are the corresponding solutions to (4.1.1) and (4.1.3) with the

boundary condition u|∂Ω = u0|∂Ω = f , and w = u− u0.

Proof. The proof is simple. First, we notice that, due to the definition and prop-

erty of σ, for any vector fields v and ṽ

tr(σ(v)∇ṽ) = tr(σ(ṽ)∇v). (4.2.4)

and

tr(σ(v)∇v̄) is real. (4.2.5)

Since u|∂Ω = u0|∂Ω = f , we have

< ΛDf , f̄ > =

∫

Ω\D̄
tr(σ(u)∇ū)−

∫

Ω\D̄
k2u · ū (4.2.6)

=

∫

Ω\D̄
tr(σ(u)∇ū0)−

∫

Ω\D̄
k2u · ū0. (4.2.7)
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From (4.2.6) and (4.2.5), we know < ΛDf , f̄ > is real. Therefore taking com-

plex conjugate of (4.2.7) and using the formula (4.2.4), we have

< ΛDf , f̄ >=

∫

Ω\D̄
tr(σ(u0)∇ū)−

∫

Ω\D̄
k2u0 · ū. (4.2.8)

Similarly,

< Λ∅f , f̄ >=

∫

Ω

tr(σ(u0)∇ū0)−
∫

Ω

k2u0 · ū0 (4.2.9)

is also real. By subtracting (4.2.8) from (4.2.9), we obtain the energy difference

functional E

E(f) = −
∫

Ω\D̄
tr(σ(u0)∇w̄) +

∫

Ω\D̄
k2u0 · w̄

+

∫

D

tr(σ(u0)∇ū0)−
∫

D

k2u0 · ū0,

(4.2.10)

where w = u− u0.

On the other hand, by subtracting (4.2.6) from (4.2.9) we have

E(f) = −
∫

Ω\D̄
tr
(
σ(u)∇ū− σ(u0)∇ū0

)
+

∫

Ω\D̄
k2(u · ū− u0 · ū0)

+

∫

D

tr
(
σ(u0)∇ū0

)
−
∫

D

k2u0 · ū0

= −
∫

Ω\D̄
tr
(
σ(w)∇w̄ + σ(w)∇ū0 + σ(u0)∇w̄

)

+

∫

Ω\D̄
k2(w · w̄ +w · ū0 + u0 · w̄)

+

∫

D

tr
(
σ(u0)∇ū0

)
−
∫

D

k2u0 · ū0.

By using formula (4.2.4) again, we get

tr
(
σ(w)∇ū0

)
= tr

(
σ(ū0)∇w

)
.

Therefore,

E(f) = −
∫

Ω\D̄
tr
(
σ(w)∇w̄

)
+

∫

Ω\D̄
k2w · w̄

+

∫

D

tr
(
σ(u0)∇ū0

)
−
∫

D

k2u0 · ū0

−
∫

Ω\D̄
2Re

{
tr
(
σ(u0)∇w̄

)
− k2u0 · w̄

}
(4.2.11)
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From (4.2.10), we have

−
∫

Ω\D̄
tr
(
σ(u0)∇w̄

)
+

∫

Ω\D̄
k2u0 · w̄

= E(f)−
∫

D

tr
(
σ(u0)∇ū0

)
+

∫

D

k2u0 · ū0

and is real. Therefore we can deduce (4.2.11) becomes

E(f) = −
∫

Ω\D̄
tr
(
σ(w)∇w̄

)
+

∫

Ω\D̄
k2w · w̄

+

∫

D

tr
(
σ(u0)∇ū0

)
−
∫

D

k2u0 · ū0

+ 2E(f)− 2

∫

D

tr
(
σ(u0)∇ū0

)
+ 2

∫

D

k2u0 · ū0.

Hence the conclusion of this lemma holds.

From the Lemma 4.2.1, it is easy to obtain the following simple upper bound

and lower bound of the indicator functional E.

Corollary 4.2.2. For n = 2, 3, assume that λ, µ are constants which satisfy the

strongly convexity condition, that is,

λ+
2

n
µ > 0, and µ > 0.

For f ∈ H1/2(∂Ω)n, we have the following two inequalities:

|E(f)| ≤ C‖w‖2H1(Ω\D̄)n + C‖u0‖2H1(D)n

for some constant C dependent only on λ, µ and

|E(f)| ≥ (λ+
2

n
µ)‖∇ · u0‖2L2(D)n + 2µ‖ǫ(u0)−

1

n
(∇ · u0)In‖2L2(D)n

− k2‖u0‖2L2(D)n − k2‖w‖2L2(Ω\D̄)n ,

where In denotes the n× n identity matrix and u and u0 are the corresponding

solutions to (4.1.1) and (4.1.3) with the boundary condition u|∂Ω = u0|∂Ω = f ,

and w = u− u0.
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Proof. From Lemma (4.2.1), it is easy to see the first inequality immediately

follows.

To see the second inequality, we recall the following formula: for any v ∈

H1, we have

tr(σ(v)∇v̄) = (λ+
2

n
µ)|∇ · v|2 + 2µ|ǫ(v)− 1

n
(∇ · v)In|2. (4.2.12)

Then by strongly convexity condition, we have

tr(σ(w)∇w) ≥ 0

and therefore from Lemma (4.2.1),

E(f) ≥
∫

D

tr(σ(u0)∇ū0)−
∫

D

k2u0 · ū0 −
∫

Ω\D̄
k2w · w̄.

By applying (4.2.12) again, we obtain the second result of this corollary.

4.3 The regularity results of reflected solution

We call w the reflected solution corresponding to problem (4.1.1) with u0 if

w = u − u0, where u satisfies problem (4.1.1) with boundary condition u0 on

∂Ω, that is, 



∇ · σ(u) + k2u = 0 in Ω \D,

σ(u)ν = 0 on ∂D

u = u0 on ∂Ω.

From the inequalities in the previous section, we know the key point of estimat-

ing the E(f) is to estimate reflected solution w, because u0 is a known solution.

So, let us see which equation w (corresponding to problem (4.1.1) with u0)

satisfies:




∇ · (σ(w)) + k2w = 0, in Ω \D

σ(w)ν = −σ(u0)ν, on ∂D

w = 0, on ∂Ω.

(4.3.13)
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From a standard proof, we can obtain the existence and uniqueness of the

problem (4.3.13), and furthermore a simple regularity result of w. The following

theorem tell us this.

Theorem 4.3.1. Assume that D and Ω are two Lipschitz domain with D ⊂⊂ Ω

in Rn, n = 2, 3. Let f ∈ (H1(Ω \ D̄)n)∗, g ∈ H−1/2(∂D)n. We consider the

following problem






∇ · σ(u) + k2u = f , in Ω \D

σ(u)ν = g, on ∂D

u = 0, on ∂Ω,

(4.3.14)

where σ has the form (4.1.2) with Lamé constants λ and µwhich satisfy λ+2µ >

0 and µ > 0. Now we also assume that k2 is not a Dirichlet eigenvalue of

(4.3.14). Then there exists the unique weak solution u ∈ H1(Ω\D̄)n to (4.3.14).

That is, u satisfies

∫

∂D

g ·ψ −
∫

Ω\D̄
tr(σ(u)∇ψ) +

∫

Ω\D̄
k2u ·ψ =< f ,ψ >,

for any ψ ∈ H1(Ω \ D̄)n with ψ|∂Ω = 0. Moreover, we have

‖u‖H1(Ω\D̄)n ≤ C{‖f‖(H1(Ω\D̄)n)∗ + ‖g‖H−1/2(∂D)n},

where C is a positive constant independent of u, f and g.

Notice that from now on c and C denote constants, which may represent

different values at different places.

Proof. We refer to [21, Theorem 4.10] for the standard proof. Nevertheless, we

write down it here for the sake of convenience.

In order to deal with the problem within Ω \ D, a special function space is

needed to be defined and discussed. Set a subspace of H1(Ω \D)n

H1
D :=

{
u ∈ H1(Ω \D)n : u|∂Ω = 0

}
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with the inner product

(u,v)H1
D
:= (u,v)H1(Ω\D̄)n

for u,v ∈ H1
D. It is a Hilbert space. Clearly, the inclusion H1

D ⊂ L2(Ω \ D̄)n is

compact. Moreover, it is also easy to see that H1
D is dense in L2(Ω \ D̄)n, since

H1
0 (Ω \ D̄)n ⊂ H1

D ⊂ L2(Ω \ D̄)n

and H1
0 (Ω \ D̄) is dense in L2(Ω \ D̄). Then L2(Ω \ D̄)n acts as a pivot space

for H1
D. The definition of a pivot space can be found in [21, p. 44]. (Let H and

V be two Hilbert spaces. We say H acts as a pivot space on V , if V is a closed

dense subspace of H with ‖ · ‖H ≤ ‖ · ‖V . Then we can write V ⊆ H ⊆ V ∗ and

say H acts as a pivot space of V .)

Next, let B be a bilinear form on H1
D ×H1

D defined as follows:

B(u,v) :=

∫

Ω\D̄
tr(σ(u)∇v)−

∫

Ω\D̄
k2u · v,

for u,v ∈ H1
D. Since λ+ 2µ, µ > 0, we have

Re{B(u,u)} ≥ c‖u‖2H1
D
− C‖u‖2L2(Ω\D̄).

Therefore, B is coercive on H1
D (with respect to the pivot space L2(Ω \ D̄)n).

Consider the linear operator A from H1
D to (H1

D)
∗ defined as follows:

< Au,v >:= B(u,v), u,v ∈ H1
D.

Then from Theorem 2.34 in [21]A is a Fredholm operator with zero index. From

Theorem 2.27 in [21], the results of Fredholm Alternative holds. By assumption,

0 is not a Dirichlet eigenvalue of (4.3.14), thereforeA has a bounded inverseA−1

(see [21, Corollary 2.2]). Define F ∈ (H1
D)

∗ as follows:

F (ψ) :=

∫

∂D

g ·ψds− < f,ψ > .

Then

‖u‖H1
D
= ‖A−1F‖H1

D
≤ C‖F‖(H1

D)∗ .
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Moreover, we obtain the following estimate by computing directly

‖F‖(H1
D)∗ ≤ ‖g‖

H−
1
2 (∂D)n

+ ‖f‖(H1(Ω\D̄))∗ .

Hence the conclusion of this theorem follows.

We apply Theorem 4.3.1 to the problem (4.3.13), then we can immediately

obtain the following lemma.

Lemma 4.3.2. Let u0 solves (4.1.3). The reflected solution w corresponding to

(4.1.1) with u0 has the following estimate:

‖w‖H1(Ω\D̄) ≤ C1‖σ(u0)ν‖H−1/2(∂D)n

≤ C2‖u0‖H1(D)n

for some constant C1, C2 independent of w and u0.

Therefore from Corollary 4.2.2 we get

|E(f)| ≤ C‖u0‖2H1(D)n ≤ C‖u0‖2H1(Ω)n .

In other words, |E(f)| has a known upper bound in terms of u0.

But how about the lower bound? Evidently, the result (4.3.2) is not enough.

We must seek a better regularity result for w if it is possible.

Theorem 4.3.3. Assume that ∂D is of class C2 and u0 solves (4.1.3). Let w

be the reflected solution corresponding to (4.1.1) with u0. Then we have the

following estimate:

‖w‖L2(Ω\D̄)n ≤ C‖u0‖H−t(∂D)n (4.3.15)

for 1
2
≤ t ≤ 3

2
and some positive constant C independent of w, u0 and t.

Proof. As in [23] or [11], consider the following special function p ∈ H1(Ω \

D̄)n satisfying




∇ ·
(
σ(p)

)
+ k2p = w̄, in Ω \ D̄

σ(p)ν = 0, on ∂D

p = 0, on ∂Ω.

(4.3.16)
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It means that for any ϕ ∈ H1(Ω \ D̄) with ϕ|∂Ω = 0, i.e. ϕ ∈ H1
D, we have

−
∫

Ω\D̄
tr
(
σ(p)∇ϕ

)
dx+

∫

Ω\D̄
k2p · ϕdx =

∫

Ω\D̄
w̄ · ϕdx.

Therefore, we can obtain the following identity by substitute ϕ by w:

∫

Ω\D̄
|w|2dx = −

∫

Ω\D̄
tr
(
σ(p)∇w

)
dx+

∫

Ω\D̄
k2p ·wdx.

Moreover, since w satisfies (4.3.13) and (4.2.4), we have

∫

Ω\D̄
|w|2dx = −

∫

∂D

σ(w)ν · pds =
∫

∂D

σ(u0)ν · pds. (4.3.17)

This identity tells us that we can estimate ‖w‖L2(Ω\D̄) by estimating σ(u0)ν|∂D
and p|∂D.

Since ∂D is of class C2, from [McLean Theorem 4.18] we have the follow-

ing regularity results for p:

‖p‖H2(Ω\D̄)n ≤ C‖p‖H1(Ω\D̄)n + C‖w‖L2(Ω\D̄)n

≤ C‖w‖L2(Ω\D̄)n .

Therefore, by trace theorem, we obtain

‖p‖
H

3
2 (∂D)n

≤ C‖w‖L2(Ω\D̄)n .

and the conclusion (4.3.15) follows.

Lemma 4.3.4. Let u0 be any solution to (4.1.3), then for 1
2
≤ t ≤ 3

2

‖σ(u0)ν‖H−t(∂D)n ≤ C‖u0‖H−t+3
2 (D)n

for some positive constant C independent of u0 and t.

Proof. Since u0 satisfies (4.1.3), for any ϕ ∈ H1(D)n we have

∫

∂D

σ(u0)ν · ϕds−
∫

D

tr
(
σ(u0)∇ϕ

)
dx+

∫

D

k2u0 ·ϕdx = 0
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Thus, for t > 1
2

we can regard σ(u0)ν as an element of H−t(∂D)n by

< σ(u0),φ >=

∫

D

tr
(
σ(u0)∇ϕ

)
dx−

∫

D

k2u0 · ϕ

for any φ ∈ H t(∂D)n and ϕ ∈ H t+1/2(D)n withϕ|∂D = φ. Therefore, for any

φ ∈ H t(∂D)n

| < σ(u0),φ > | ≤ ‖σ(u0)‖H 1
2−t(D)n

‖∇ϕ‖
Ht−1

2 (D)n
+ ‖u0‖L2‖ϕ‖L2(D)n

for any ϕ|∂D = φ. Then for 1
2
≤ t ≤ 3

2

| < σ(u0,φ) > | ≤ C‖u0‖H3/2−t(D)n‖ϕ‖Ht+1/2(D)n

for some positive constant C independent of u0 and t. Hence,

‖u0‖H−t(∂D)n ≤ C‖u0‖H3/2−t(D)n

for some positive constant C independent of u0 and t.

Combining the above two theorem, we immediately obtain the following

estimate.

Corollary 4.3.5. Assume that D is of class C2. Let u0 be a solution to (4.1.3)

and w be the reflected solution corresponding (4.1.1) with u0. Then we have for

1
2
≤ t ≤ 3

2

‖w‖L2(Ω\D̄) ≤ C‖u0‖H3/2−t(D)n

for some constant C independent of u0, w and t.

Remark 4.3.1. From the proof of Theorem (4.3.3), we know the regularity result

of p help us obtain the sharper estimate for ‖w‖L2(Ω\D̄)n , where p is the solution

to (4.3.16). In [29], the authors consider the similar problem for the case of the

Helmholtz equation. They adopt another method to prove the similar result as

(4.3.5) when D has only Lipschitz boundary. Therefore it should be possible

to extend the case that D has Lipschitz boundary to Lamé systems by imitating

their method.
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4.4 Reconstruction in 2D by using CGO solutions

with complex polynomial phases

In this section, we reconstruct the unknown D in two dimension by using CGO

solutions to (4.1.3) with complex polynomial phases.

4.4.1 CGO solutions with complex polynomial phases in 2D

and the testing data

We use the CGO solutions constructed in the previous chapter. Precisely, given

N ∈ N and β ∈ C with |β| = 1, we consider the following complex polynomial,

which is defined in (3.3.3),

ρ(x) = ρN,β(x) = β(x1 + ix2)
N ,

where x = (x1, x2)
T .

Then the CGO solution vh with a parameter h is defined as

vh = ∇(Tk1(e
ρ
h )) +∇⊥(Tk2(e

ρ
h )),

where Tω is the Vekua transform associated to ω, defined in the previous chapter.

Here Tω can transform a harmonic function to a solution of Helmholtz equation

(△ +ω2)v = 0.

On the other hand, we also use the same testing boundary data as in the

previous chapter. Precisely, for h > 0 and d > 0, define the testing data ph,d

ph,d := φde
− 1

hdvh,

where φd is defined in section 3.3.2.

Recall that although pd,h is not a solution to (4.1.3), it is close to the real

solution u0,d,h which satisfies (4.1.3) with u0,d,h|∂Ω = pd,h|∂Ω. Lemma 3.3.1

proves that.
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4.4.2 Reconstruction of the unknown D

Throughout this section, we additionally assume that the Lamé constants λ and

µ satisfy the strongly convexity:

λ+ µ > 0, µ > 0,

and that the unknown region D has C2 boundary. The strongly convexity con-

dition implies we have the following two key inequalities from Corollary 4.2.2:

|E(f)| ≤ C‖w‖2H1(Ω\D̄)n + C‖u0‖2H1(D)n (4.4.18)

for some positive constant C depending only on λ and µ, and

|E(f)| ≥ 2µ‖ǫ(u0)−
1

2
(∇ · u0)In‖2L2(D)n − k2‖u0‖2L2(D)n − k2‖w‖2L2(Ω\D̄)n ,

(4.4.19)

where In denotes the n × n identity matrix. On the other hand, the boundary

regularity of D implies that Corollary 4.3.5 holds.

From now on we fix a compact interval J ⊂ (0,∞), ε > 0, N ∈ N and

β ∈ C. These parameters are set in Section 4.1 and 4.2 to construct the CGO

solutions to (4.1.3) and corresponding testing data. Let s∗ be the value of the

level curve of τ which touches unknown D, that is,

s∗ =





sup
x∈D∩Γ

τ(x), if D ∩ Γ 6= ∅

0, if D ∩ Γ = ∅.

Then we can reconstruct the unknown D by using the following main theorem.

Remark that the procedure of reconstructing D is the same as in [19].

Theorem 4.4.1. For d ∈ J and h > 0 small enough, the following conclusions

hold:

(A) If D̄ ∩ Γd = ∅, then

|E(fd,h)| ≤ Ch−4e
2
h
(sd− 1

d
),

for 0 < h ≪ 1 and some positive constant C independent of h, where

sd = max( 1
d+ε

, s∗) <
1
d
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(B) If D̄ ∩ Γd 6= ∅ and D has C2 boundary, then

|E(fd,h)| ≥ Ch−2e
2
h
(s∗− 1

d
)

for 0 < h≪ 1 and some positive constant C independent of h.

In order to simplify the proof of Theorem 4.4.1, we give the following

lemma.

Lemma 4.4.2. For d ∈ J ,

‖pd,h‖L2(D)2 ≤ Ch−1
( ∫

D∩Γd+2ε

e
2
h
(τ− 1

d
)dx
) 1

2

for some positive constant C independent of h.

Proof. The result of this lemma is obtained by direct computing. From the

definition of pd,h, we have

‖pd,h‖2L2(D)2 ≤
∫

D∩Γd+2ε

|φde
1
h
(ρ− 1

d
)Qh|2dx,

where Qh = (Qh,1, Qh,2)
T . By the estimate (3.3.11) forQh,i, i = 1, 2, we obtain

‖pd,h‖2L2(D)2 ≤ C

∫

D∩Γd+2ε

e
2
h
(τ− 1

d
)(

1

h2
+

1

τ 2(x)
)dx

≤ Ch−2

∫

D∩Γd+2ε

e
2
h
(τ− 1

d
)dx

for some positive constant C independent of h.

proof of Theorem 4.4.1. (A) Suppose that D̄∩Γd = ∅. By (4.4.18) and Lemma

4.3.2, for any solution u0 to (4.1.3) with Dirichlet boundary condition

u0|∂Ω = f , we have

|E(f)| ≤ C
{
‖u0‖2H1(D)n + ‖σ(u0)ν‖2

H−
1
2 (∂D)n

}

for some positive constant C independent of u0 and f . Then by trace

theorem, we have

|E(f)| ≤ C‖u0‖H1(D)n
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for some positive constant C independent of u0 and f . For given d ∈ J ,

let fd,h = pd,h|∂Ω, then by substituting fh,d for f ,

|E(fh,d)| ≤ C‖u0,d,h‖2H1(D)n

for some positive constantC independent of h, where u0,d,h is the solution

to (4.1.3) with Dirichlet boundary condition u0,d,h|∂Ω = fd,h.

From Lemma 3.3.1, we obtain

|E(fh,d)| ≤ C
{
‖u0,d,h − pd,h‖2H1(D)n + ‖pd,h‖2H1(D)n

}

≤ C
{
e−

2
h
( 1
d
− 1

d+ε
) + ‖pd,h‖2H1(D)n

}

for some positive constant C independent of h. By Lemma 4.4.2 and

Lemma 3.4.3, we obtain

|E(fh,d)| ≤ C
{
e−

1
h
( 1
d
− 1

d+ε
) + h−2

∫

D∩Γd+2ε

e
2
h
(τ− 1

d
)dx

+ Ch−4

∫

D∩Γd+2ε

e
2
h
(τ− 1

d
)dx
}

≤ C
{
e−

2
h
( 1
d
− 1

d+ε
) + (h−2 + h−4)e

2
h
(s∗− 1

d
)|Ω|

}

for come positive constant C independent of h.

Since D̄ ∩ Γd = ∅,

sd = max(s∗,
1

d+ ε
) <

1

d
.

Therefore we have

|E(fd,h)| ≤ Ch−4e
2
h
(sd− 1

d
)

for some positive constant C independent of h.

(B) Suppose that D̄ ∩ Γd 6= ∅, then s∗ ≥ 1
d
. Since ∂D ∈ C2, by (4.4.19) and

Corollary 4.3.5, we have

|E(f)| ≥ 2µ‖ǫ(u0)−
1

2
(∇·u0)In‖2L2(D)n−k2‖u0‖2L2(D)n−C‖u0‖2

H
3
2−t(D)n
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for some positive constant C independent of u0, f and t, where u0 is

the solution to (4.1.3) with Dirichlet boundary condition u0|∂Ω = f and

1
2
≤ t ≤ 3

2
. Therefore

|E(f)| ≥ 2µ‖ǫ(u0)−
1

2
(∇ · u0)In‖2L2(D)n − C‖u0‖2L2(D)n

for some positive constant C independent of u0 and f . By substituting fd,h

for f , we have

|E(fd,h)| ≥ 2µ‖ǫ(u0,d,h)−
1

2
(∇ · u0,d,h)In‖2L2(D)n − C‖u0,d,h‖2L2(D)n

for some positive constant C independent of h. From Lemma 3.3.1, we

have

|E(fd,h)| ≥ 2µ‖ǫ(pd,h)−
1

2
(∇ · pd,h)In‖2L2(D)n

− 2µ‖ǫ(wh)−
1

2
(∇ ·wh)In‖2L2(D)n − C‖pd,h‖2L2(D)n − C‖wh‖2L2(D)n

≥ 2µ‖ǫ(pd,h)−
1

2
(∇ · pd,h)In‖2L2(D)n − C‖pd,h‖2L2(D)n − C‖wh‖2H1(D)n

≥ 2µ‖ǫ(pd,h)−
1

2
(∇ · pd,h)In‖2L2(D)n − C‖pd,h‖2L2(D)n − Ce−

2
h
( 1
d
− 1

d+ε
)

for some positive constant C independent of h.

Since D̄ ∩ Γd 6= ∅, s∗ ≥ 1
d

and D̄ ∩ Γd+ε 6= ∅. By Lemma 3.4.3 and

Lemma 4.4.2, for any open set U with D ∩ Γd+ε ∩ U 6= ∅, we have

|E(fd,h)| ≥ 2µ(ch−4 − Ch−2)

∫

D∩Γd+ε∩U
e

2
h
(τ− 1

d
)dx (4.4.20)

− Ch−2

∫

D∩Γd+2ε

e
2
h
(τ− 1

d
)dx− Ce−

2
h
( 1
d
− 1

d+ε
) (4.4.21)

for some positive constants c, C independent of h.

Let

K := ∂D ∩ {τ = s∗} = ∂D ∩ ℓ1/s∗ .

It is easy to seeK 6= ∅. SinceK is compact and contained in∪y∈KBry(y),

there exists N0 ∈ N such that K ⊂ ∪1≤j≤N0Bryj
(yj). Here we can
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assume each ry satisfies ∂D can be parametrized by a C2 function in

Bry(y).

Let DR = D \
(
∪1≤j≤N0 Bryj

(yj)
)
, then it is also easy to see that there

exists small constant δ > 0 such that

τ ≤ s∗ − δ in DR.

Therefore by similar computation of Theorem 3.4.1, we have

∫

D∩Γd+2ε

e
2
h
(τ− 1

d
)dx ≤

∫

DR

e
2
h
(τ− 1

d
)dx+

∫

D∩(Γd+2ε\Γd+ε)

e
2
h
(τ− 1

d
)dx

+

N0∑

j=1

∫

D∩Γd+ε∩Bryj
(yj)

e
2
h
(τ− 1

d
)dx

Let y∗ ∈ ∪N0
j=1{yj} satisfy

∫

D∩Γd+ε∩Bry∗ (y∗)

e
2
h
(τ− 1

d
)dx = max

j=1,...,N0

(∫

D∩Γd+ε∩Bryj
(yj)

e
2
h
(τ− 1

d
)dx

)
.

Then we have

∫

D∩Γd+2ε

e
2
h
(τ− 1

d
)dx ≤ Ce

2
h
(s∗−δ− 1

d
) + Ce

2
h
( 1
d+ε

− 1
d
)

+N0

∫

D∩Γd+ε∩Bry∗ (y∗)

e
2
h
(τ− 1

d
)dx

Let

A∗ :=

∫

D∩Γd+ε∩Bry∗ (y∗)

e
2
h
(τ− 1

d
)dx.

Then (4.4.20) becomes

|E(fd,h)| ≥ 2µ(ch−4 − Ch−2)A∗ − Ce−
2
h
( 1
d
− 1

d+ε
)

− Ch−2
{
e

2
h
(s∗−δ− 1

d
) + e

2
h
( 1
d+ε

− 1
d
) + A∗

}

≥ 2µh−4A∗

{
c− Ch2 − Ch4

e−
2
h
( 1
d
− 1

d+ε
)

A∗

− Ch2
e

2
h
(s∗−δ− 1

d
)

A∗
− Ch2

e
2
h
( 1
d+ε

− 1
d
)

A∗

}

Since

A∗ ≤ |D ∩ Γd+ε ∩ Bry∗ (y∗)|e
2
h
(s∗− 1

d
),
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we have

e
2
h
(s∗−δ− 1

d
)

A∗
≤ Ce−

2δ
h

and

e
2
h
( 1
d+ε

− 1
d
)

A∗
≤ Ce

2
h
( 1
d+ε

−s∗).

Therefore we obtain

e
2
h
(s∗−δ− 1

d
)

A∗
→ 0, as h→ 0+.

and

e
2
h
( 1
d+ε

− 1
d
)

A∗
→ 0, as h→ 0+

since s∗ ≥ 1
d
> 1

d+ε
. Hence for h small enough, we have

E(fd,h) ≥ Ch−4A∗.

From (3.4.26), we have

A∗ ≥ Ce
2
h
(s∗− 1

d
)B2,∗,h

for some positive constant C independent of h, where B2,∗,h satisfies the

following estimate, see the detail in the proof of the case (B′) of Theorem

3.4.1, for 1
3
< α ≤ 1

B2,∗,h ≥ Ch1+
1
α , for 0 < h≪ 1

for some positive constant C independent of h. Since ∂D ∈ C2, we can

choose α = 1 and obtain

E(fd,h) ≥ Ch−4e
2
h
(s∗− 1

d
)h2 = Ch−2e

2
h
(s∗− 1

d
)

for 0 < h≪ 1 and some positive constant C independent of h.

4.5 Reconstruction in 3D by using CGO solutions

with linear phases

In this section, we reconstruct the shape and the location of the unknown D in

three dimension by using CGO solution to (4.1.3) with linear phases.
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4.5.1 CGO solutions to (4.1.3) with linear phases

We want to construct the CGO solutions to (4.1.3) in R3. Since the Lamé coeffi-

cients λ and µ are constants. we can reduce (4.1.3) to two Helmholtz equations

by Helmholtz decomposition. Suppose v ∈ C∞(R3)3 is a solution to (4.1.3),

then by Helmholtz decomposition there exist a smooth scalar function ϕ and

smooth vector field ψ such that

v = ∇ϕ+∇×ψ.

Therefore ϕ and ψ satisfy

∇
[
(λ+ 2µ) △ ϕ+ k2ϕ

]
+∇×

[
µ △ ψ + k2ψ

]
= 0.

Conversely, if we can construct CGO solutions ϕ and ψ to





△ ϕ+ k21ϕ = 0

△ ψ + k22ψ = 0,

(4.5.22)

where k1 =
k√

λ+2µ
and k2 =

k√
µ

, we can construct CGO solutions to (4.1.3) by

defining solutions as v = ∇ϕ+∇×ψ.

Similar to section 4, we fix a compact interval J . Now choose ω,ω⊥ ∈ S2

with ω · ω⊥ = 0 and a constant vector a ∈ R3. For d ∈ J and small parameter

h > 0, we define

ϕd,h = e
1
h
(x·ω−d)+i

√
1
h2

+k21x·ω⊥

= eρ1,h (4.5.23)

and

ψd,h = e
1
h
(x·ω−d)+i

√
1
h2

+k22x·ω⊥

a = eρ2,ha, (4.5.24)

where, for j = 1, 2,

ρj,h(x) =
1

h
(x · ω − d) + i

√
1

h2
+ k2jx · ω⊥,
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then ϕd,h and ψd,h satisfy (4.5.22) respectively. Therefore we can define vd,h =

∇ϕd,h +∇×ψd,h and have

vd,h = eρ1,h
(
1

h
ω + i

√
1

h2
+ k21ω

⊥
)
+ eρ2,h

(
1

h
ω + i

√
1

h2
+ k22ω

⊥
)
× a

(4.5.25)

and

∇vd,h =eρ1,h
(
ω

h
+ i

√
1

h2
+ k21ω

⊥
)
⊗
(
ω

h
+ i

√
1

h2
+ k21ω

⊥
)

(4.5.26)

+ eρ2,h

((
ω

h
+ i

√
1

h2
+ k22ω

⊥
)
× a

)
⊗
(
ω

h
+ i

√
1

h2
+ k22ω

⊥
)
,

(4.5.27)

where a ⊗ b denotes the matrix with jk-th entry ajbk for any two vector a =

(a1, ..., an)
T and b = (b1, ..., bn)

T . Then vd,h satisfies (4.1.3). Moreover we

have the following estimates for |vd,h| and |∇vd,h|. Here for any matrix A with

entries aij , we denote its absolute value by |A| and |A|2 =∑i,j |aij|2.

Lemma 4.5.1. There exists a vector a ∈ R3 such that there exists h∗ > 0, for

all small h < h∗,

|vd,h| ≤
C

h
e

1
h
(x·ω−d), (4.5.28)

|∇vd,h| ≤
C

h2
e

1
h
(x·ω−d) (4.5.29)

and

|vd,h| ≥
c

h
e

1
h
(x·ω−d), (4.5.30)

|∇vd,h| ≥
c

h2
e

1
h
(x·ω−d) (4.5.31)

for some positive constants c, C independent of h.

Proof. From (4.5.25), we have

vd,h =
1

h
e

1
h
(x·ω−d)

{
e
i
√

1
h2

+k21(x·ω⊥)(
ω + i

√
1 + h2k21ω

⊥)

+ e
i
√

1
h2

+k22(x·ω⊥)(
(ω + i

√
1 + h2k22ω

⊥)× a
)}

=
1

h
e

1
h
(x·ω−d)A1,
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where

A1 =

{
e
i
√

1
h2

+k21(x·ω⊥)(
ω + i

√
1 + h2k21ω

⊥)

+ e
i
√

1
h2

+k22(x·ω⊥)(
(ω + i

√
1 + h2k22ω

⊥)× a
)}
.

It is easy to see that |A1| is bounded, therefore we obtain the upper bound of |v|,

(4.5.28). Now consider a = ω + iω⊥. Then

(ω + i
√
1 + h2k22ω

⊥)× a = i(1−
√

1 + h2k22)(ω × ω⊥) (4.5.32)

Since

|1−
√

1 + h2k22| → 0, as h→ 0,

there exists 0 < h0 < 1 such that

|(ω + i
√

1 + h2k22ω
⊥)× a| < 1, ∀ 0 < h < h0.

Therefore for 0 < h < h0

|A1| ≥|ω + i
√

1 + h2k21ω
⊥| − |(ω + i

√
1 + h2k22ω

⊥)× a|

≥ |ω + i
√

1 + h2k21ω
⊥| − 1.

Since

|ω + i
√
1 + h2k21ω

⊥|2 = 2 + h2k21 ≥ 2,

we obtain for all 0 < h < h0 < 1

|vd,h| ≥
c

h
e

1
h
(x·ω−d)

for some positive constant c independent of h. In particular, c =
√
2− 1 > 0 in

the case of a = ω + iω⊥.

To see the case of |∇vd,h|, recall (4.5.26) to obtain

∇vd,h =
1

h2
e

1
h
(x·ω−d)

{
e
i
√

1
h2

+k21(x·ω⊥)(
ω + i

√
1 + h2k21ω

⊥)⊗
(
ω + i

√
1 + h2k21ω

⊥)

+ e
i
√

1
h2

+k22(x·ω⊥)

[(
ω + i

√
1 + h2k21ω

⊥)× a

]
⊗
(
ω + i

√
1 + h2k21ω

⊥)
}

=
1

h2
e

1
h
(x·ω−d)A2,
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where

A2 = e
i
√

1
h2

+k21(x·ω⊥)(
ω + i

√
1 + h2k21ω

⊥)⊗
(
ω + i

√
1 + h2k21ω

⊥)

+ e
i
√

1
h2

+k22(x·ω⊥)

[(
ω + i

√
1 + h2k21ω

⊥)× a

]
⊗
(
ω + i

√
1 + h2k21ω

⊥).

It is also easy to see that |A2| is bounded and (4.5.29) follows. Now again

consider a = ω + iω⊥, then by (4.5.32) we have

|A2| ≥
∣∣∣∣∣
(
ω + i

√
1 + h2k21ω

⊥)⊗
(
ω + i

√
1 + h2k21ω

⊥)
∣∣∣∣∣

−
∣∣∣∣∣

(
1−

√
1 + h2k22

)
(ω × ω⊥)⊗

(
ω + i

√
1 + h2k21ω

⊥)
∣∣∣∣∣.

Notice that, by compute directly, for all h > 0, we have
∣∣∣∣∣
(
ω + i

√
1 + h2k21ω

⊥)⊗
(
ω + i

√
1 + h2k21ω

⊥)
∣∣∣∣∣

=

∣∣∣∣
(
ω + i

√
1 + h2k21ω

⊥)
∣∣∣∣
2

= 2 + h2k22 ≥ 2. (4.5.33)

Since

|1−
√

1 + h2k22| → 0, as h→ 0

and

|(ω × ω⊥)⊗
(
ω + i

√
1 + h2k22ω

⊥)| <∞, ∀ 0 < h < 1,

there exists 0 < h1 < 1 such that for 0 < h < h1∣∣∣∣∣

(
1−

√
1 + h2k22

)
(ω × ω⊥)⊗

(
ω + i

√
1 + h2k22ω

⊥
)∣∣∣∣∣ ≤ 1. (4.5.34)

Combine (4.5.33) and (4.5.34), we obtain

|A2| ≥ 2− 1 = 1, ∀ 0 < h < h1.

Therefore

|∇vd,h| ≥
c

h2
e

1
h
(x·ω−d), ∀ 0 < h < h1

for some positive constant c independent of h. In particular, c = 1 in the case of

a = ω + iω⊥.

Then we complete the proof by choosing h∗ = min(h0, h1).
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4.5.2 The testing boundary data and Reconstruction of the

unknown D

As the previous section in two dimension, we also additionally assume the

Lamé constant satisfy the strongly convexity condition throughout this section

in three-dimension, that is,

λ+
2

3
µ > 0, µ > 0,

and the unknown regionD has C2 boundary. Then (4.4.18), (4.4.19) and Corol-

lary 4.3.5 follows. Now in order to apply the enclosure-type method, we need

to choose appropriate testing boundary data. For a fixed compact interval J ⊂

(0,∞), let the testing boundary data fd,h on ∂Ω, for d ∈ J and small h > 0, be

as follows:

fd,h = vd,h|∂Ω.

For d ∈ J , define the testing region

Γd =
{
x ∈ R

3 : x · ω ≥ d
}
,

and denote by s∗ = supx∈D τω(x) the value of the level curve of τω(x) = x ·ω,

which just touches the unknown region D.

Then we reconstruct the unknown D by using the following theorem. The

procedure of reconstruction of the unknown region D is the same as in Chapter

3.

Theorem 4.5.2. For d ∈ J and h > 0 small enough, the following conclusion

hold:

(A) If D̄ ∩ Γd = ∅, then

|E(fd,h)| ≤ Ch−4e
2
h
(s∗−d),

for 0 < h ≪ 1 and some positive constant C independent of h. Note that

in this case, s∗ < d. Therefore

|E(fd,h)| → 0, as h→ 0.
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(B) If D̄ ∩ Γd 6= ∅ and D has C2 boundary, then

|E(fd,h)| ≥ Ch−1e
2
h
(s∗−d),

for 0 < h ≪ 1 and some positive constant C independent of h. Note that

in this case, s∗ ≥ d. Therefore

|E(fd)| → ∞, as h→ 0.

Proof. (A) Again by using Corollary 4.2.2 and Lemma 4.3.2, we obtain

|E(f)| ≤ C‖u0‖H1(D)n

for some positive constant C independent of u0 and f , where u0 is the so-

lution of (4.1.3) with the Dirichlet boundary condition u0|∂Ω = f . There-

fore we have

|E(fd,h)| ≤ C‖vd,h‖2H1(D)n

for some positive constantC independent of h. From (4.5.28) and (4.5.29),

we have

‖vd,h‖2H1(D)n =

∫

D

|vd,h|2dx+

∫

D

|∇vd,h|2dx

≤
∫

D

(
C

h
e

1
h
(x·ω−d)

)2

dx+

∫

D

(
C

h2
e

1
h
(x·ω−d)

)2

dx

≤ C|D|( 1
h2

+
1

h4
)e

2
h
(s∗−d).

Therefore for 0 < h≪ 1,

|E(fd,h)| ≤ Ch−4e
2
h
(s∗−d)

for some positive constant C independent of h. Note that in the case of

D̄ ∩ Γd = ∅, s∗ < d.

(B) Since D has C2 boundary, Corollary 4.3.5 can be applied. Therefore by

using Corollary 4.2.2 again and modifying the proof of (B) of Theorem
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4.4.1 to 3-dimension case, we can obtain

|E(f)| ≥ (λ+
2

3
µ)‖∇ · u0‖2L2(D)3 + 2µ‖ǫ(u0)−

1

3
(∇ · u0)In‖2L2(D)3

− C‖u0‖2L2(D)3

for some positive constant C independent of u0 and f , where u0 satisfies

(4.1.3) with Dirichlet boundary condition u0|∂Ω = f . Due to the strongly

convexity condition λ + 2
3
µ > 0, there exists a small constant δ with

0 < δ < 1 such that

λ+
2

3
µδ ≥ 0.

Therefore the above inequality becomes

|E(f)| ≥ (λ+
2

3
µδ)‖∇ · u0‖2L2(D)3 + 2µ‖ǫ(u0)−

1

3
(∇ · u0)In‖2L2(D)3

+
2

3
µ(1− δ)‖∇ · u0‖2L2(D)3 − C‖u0‖2L2(D)3 .

We notice that for any vector field v ∈ H1 in three dimension,

|ǫ(v)− 1

3
(∇ · v)I3|2 = |ǫ(v)|2 − 1

3
|∇ · v|2.

Hence, by λ+ 2
3
µδ ≥ 0, we obtain

|E(f)| ≥ (λ+
2

3
µδ)‖∇ · u0‖2L2(D)3 + 2µ‖ǫ(u0)‖2L2(D)3

− 2

3
µδ‖∇ · u0‖2L2(D)3 − C‖u0‖2L2(D)3

≥ 2µδ
(
‖ǫ(u0)‖2L2(D)3 −

1

3
‖∇ · u0‖2L2(D)3

)

+ 2µ(1− δ)‖ǫ(u0)‖2L2(D)n − C‖u0‖2L2(D)3

= 2µδ‖ǫ(u0)−
1

3
(∇ · u0)I3‖2L2(D)3

+ 2µ(1− δ)‖ǫ(u0)‖2L2(D)3 − C‖u0‖2L2(D)3

≥ 2µ(1− δ)‖ǫ(u0)‖2L2(D)3 − C‖u0‖2L2(D)3 .

By the following Korn’s second inequality (see for instance Theorem 10.2

of [21]),

‖ǫ(v)‖2L2(D)3 ≥ c‖∇v‖2L2(D)3 − C‖v‖2L2(D)3
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for some positive constants c, C independent of v ∈ H1(D)3, we obtain

the lower bound for |E(f)|

|E(f)| ≥ c‖∇u0‖2L2(D)3 − C‖u0‖2L2(D)3

for some positive constants c, C independent of f and u0.

Now for d ∈ J and h > 0, let f = fd,h, we have

|E(fd,h)| ≥ c‖∇vd,h‖2L2(D)3 − C‖vd,h‖2L2(D)3 .

for some positive constants c, C independent of h. From the (4.5.28) and

(4.5.31) of Lemma 4.5.1, we can compute directly that

|E(fd,h)| ≥
(
c

h4
− C

h2

)∫

D

e
2
h
(x·ω−d)dx. (4.5.35)

Now we need to compute the right hand side of the above inequality. Let

x0 be a point lying on ∂D ∩ ℓs∗ , where ℓs∗ is a plane defined as

ℓs∗ = {x ∈ R
3 : x · ω = s∗} = ∂Γs∗ .

Let

y = R(x− x0),

where R is the rotation transformation such that Rω = (0, 1)T . Since ∂D

is C2, ∂(R(D − x0)) is also C2. Therefore near y = 0, it is easy to see

there exists another C2 function f∗ such that f∗(0) = 0 and there exist

non-negative constants δ1, δ
′
1, δ2, δ

′
2 and δ3 satisfying for y′ ∈ (−δ1, δ′1)×

(−δ2, δ′2),

(−δ1, δ′1)× (−δ2, δ′2)× (−δ3, f∗(y′)) ⊂ R(D − x0),

where y = (y′, y3)T .

Sometimes f∗ can be ∂(R(D−x0)) if ∂(R(D−x0)) can be parametrized

by (y′, f∗(y
′)) and f∗ is a C2 function.
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Moreover, since f∗ is C2 with f∗(0) = 0, we have

|f∗(y′)| ≤ M |y′| ≤ M(|y1|+ |y2|)

for some positive constantM dependent only on ∂D, where y′ = (y1, y2)
T .

On the other hand, under this change of coordinates, we can see

x · ω = y3 + s∗.

Now we can compute that

∫

D

e
2
h
(x·ω−d)dx ≥

∫ δ′1

−δ1

∫ δ′2

−δ2

∫ f∗(y′)

−δ3

e
2
h
(y3+s∗−d)dy

≥ h

2
e

2
h
(s∗−d)

∫ δ′1

0

∫ δ′2

0

(
e

2
h
f∗(y′) − e−

2
h
δ3
)
dy′

≥ h

2
e

2
h
(s∗−d)

{∫ δ′1

0

∫ δ′2

0

e−
2
h
M(|y1|+|y2|)dy′ − Ce−

2
h
δ3

}

≥ h

2
e

2
h
(s∗−d)

{( h

2M

)2(
1− e−

2M
h

δ′1
)(
1− e−

2M
h

δ′1
)

− Ce−
2
h
δ3

}
.

Therefore for 0 < h≪ 1, we have

∫

D

e
2
h
(x·ω−d)dx ≥ Ch3e

2
h
(s∗−d)

for some positive constant C independent of h. From (4.5.35), we obtain

for any 0 < h≪ 1,

|E(f)| ≥
( c
h
− Ch

)
e

2
h
(s∗−d)

≥ ch−1e
2
h
(s∗−d)

for some positive constants c, C independent of h.
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Chapter 5

Future work

5.1 Maxwell’s equations with anisotropic coefficients

The enclosure-type method have been applied to the isotropic time-harmonic

Maxwell’s equations [40, 18]. The regularity assumption on ∂D in [40] is C2

and recently the assumption on ∂D is reduced to Lipschitz in [18]. However, the

reconstruction problem for the “anisotropic” time-harmonic Maxwell’s equation

is still open. Our next work is to solve this reconstruction problem by applying

the enclosure-type method.

In the above papers, the CGO solutions for the isotropic time-harmonic

Maxwell’s equations are needed. They are chosen as the test data in the enclosure-

type method. But it is difficult to obtain the CGO solutions for the anisotropic

time-harmonic Maxwell’s equations. We try to construct another kind of spe-

cial solutions, oscillating-decaying solutions which are proposed in [25], as a

substitute.

To construct the oscillating-decaying solutions of anisotropic time-harmonic

Maxwell’s equations, our plan is to reduce the anisotropic Maxwell’s equations

to strongly elliptic systems. Recently we have already completed part of the

plan.
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5.2 Reconstruction of coefficients of anisotropic time-

harmonic Maxwell’s equations by using inter-

nal measurements

As is mentioned in the first chapter, the problem of reconstructing coefficients

from knowledge of the Dirichlet-to-Neumann map led to the development of

the Electrical Impedance Tomography (EIT). EIT is a medical imaging tech-

nique which have been applied to lung imaging and breast imaging. However,

as a diagnostic tool in medical imaging, although EIT has the advantage of high

contrast on imaging, the spatial resolution is low. Some methods combining

various physical effects are then developed to improve the quality of acquired

images. These ideas generally give rise to the so-called Hybrid Inverse Prob-

lems.

Mathematically, these hybrid inverse problems or hybrid imaging are usually

separated into two inverse problems [2]. The first step is to obtain some internal

data from the boundary. These internal data have high resolution but are not

clear enough to distinguish whether there is something different, such as cancer,

in normal tissue. So in the second step, we try to use the internal data obtaining

from the first step to reconstruct the high-contrastive coefficients. The photo-

acoustic and thermal-acoustic tomography are examples of hybrid imaging. See

[30, 3, 4]. My future plan is to extend the second step of [3, 4] to the case

of anisotropic time-harmonic Maxwell’s equations. We believe the oscillating-

decaying solutions of anisotropic Maxwell’s equations should be useful for our

problem.
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