請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62200| 標題: | 發展求解NS與PNP耦合方程之方法 Development of a numerical method for solving the coupled NS and PNP equations |
| 作者: | Sheng-Feng Wang 王聖鋒 |
| 指導教授: | 許文翰 |
| 關鍵字: | 無條件單調性,色散關係保持,Poisson-Nernst-Planck 方程組,Navier-Stokes 方程組,波浪狀流道,庫倫力, PNP,NS,unconditionably monotonic,nine-point stencil,wavy,Coulomb force, |
| 出版年 : | 2013 |
| 學位: | 碩士 |
| 摘要: | 本論文在有限差分的架構下發展一數值方法
以求解二維之對流-擴散方程。 首先發展兩個具有無條件單調性之五點離散格式, 再引入權重係數將兩離散格式做一線性之疊加, 使其具有色散關係保持的九點離散格式。 利用此一數值方法求解電液動(EHD)之非線性動力系統方程, 此系統包含了描述外加電場之Laplace方程、描述壁面所施加之電位分佈以及離子濃度分佈的Poisson-Nernst-Planck方程組及由庫倫力所驅動的不可壓縮Navier-Stokes方程組。 論文之內容主要是使用離子守恆Poisson-Nernst-Planck方程組,以描述電滲流模型,以觀察流速對離子分佈的影響, 以及描述受zeta電位所產生之電雙層,及描繪靠近壁面之速度邊界層、電荷擴散層等物理行為。 In this study the numerical scheme for solving the unsteady convection-diffusion scalar equation is developed in a domain of two dimensions. Two newly developed unconditionally monotonic five-point schemes, which have one common nodal point, are linearly combined through a weighting coefficient to yield the proposed nine-point conditionally monotonic scheme. Our main objective is to get a dispersively more accurate result from the nine-point stencil conditionally monotonic scheme. We also apply the nine-point stencil scheme to simulate Eelectroosmotic flow.The electroosmotic flow details in plannar and channels are revealed through this study with the emphasis placed an the formation of Coulomb force. The competition among the pressure gradient, diffusion and Coulomb forces leadings to the convective electroosmotic flow motion is also investigated in detail. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62200 |
| 全文授權: | 有償授權 |
| 顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 10.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
