Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62200
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor許文翰
dc.contributor.authorSheng-Feng Wangen
dc.contributor.author王聖鋒zh_TW
dc.date.accessioned2021-06-16T13:33:26Z-
dc.date.available2013-07-19
dc.date.copyright2013-07-19
dc.date.issued2013
dc.date.submitted2013-07-19
dc.identifier.citation[1] Prashanta Dutta and Ali Beskok,
Analytical solution of combined electroosmotic/pressure driven flows in two-dimensional straight channels:Finite Debye layer effects,Anal. Chem.,
Vol 73, pp. 1979-7986, 2001
[2] Zhang Yao, Wu Jiankang. and Chen Bo,
A coordinate transformation method for numerical solutions of the
electric double layer and electroosmotic flows in a microchannel,
Int. J. for Numerical Methods in Fluids,
Vol 68, pp. 671-685, 2012
[3] Grahame, D.C.,
The Electrical Double layer and the Theory of Electrocapillary,
Chem. Rev., Vol. 44, pp. 441-501, 1947
[4] Neelesh A. Patankar, Howard H. Hu,
Numerical Simulation of Electroosmotic Flow,
Anal. Chem., Vol. 70, pp. 1870-1881, 1998
[5] Shizhi Qian, Haim H. Bau,
Theoretical investigation of electro-osmotic flows and chaotic stirring in rectangular cavities,Applied Mathematical Modelling, Vol. 29, pp. 726-753, 2005
[6] R.-J. Yang, L.-M. Fu, and C.-C. Hwang,
Electroosmotic Entry Fwlow in a Microchannel, Journal of Colloid and Interface Science, Vol 244, pp. 173-179, 2001
[7] W.B. Russel, D.A. Saville, and W.R. Schowalter,
Colloidal dispersions, cambridge monographs on mechanics and applied mathematics Cambridge University Press, cambridge, 1989.
[8] S. V. Ptankar, Numerical Heat Transfer and Fuild Flow, Hemisphere, New York, 1980.
[9] Chun Yang, Dongqing Li, Jacob H. Masliyah, Modeling forced liquid convection in rectangularmicrochannels with electrokinetic effects, Int. J. Heat and Mass Transfer,
Vol. 41, pp. 4229-4249, 1998
[10] Jahrul Alam, John C. Bowman, Energy-Conserving Simulation of Incompressible Electro-Osmotic and Pressure-Driven Flow, Theoretical and computational Fluid Dynamics ,pp. 1-17, 2002.
[11] U. Ghia, K. N. Ghia, High Re Solutions for incompressible Flow Using the Navier-Stokes Equation and a Multigrid Method, J. Comp. Physics, Vol. 48,
pp. 387-411, 1982
[12] Tony W. H. Sheu and P. H. Chiu, A divergence-free-condition compensated method for incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering,
Vol. 196, pp. 4479-4494, 2007.
[13] Tony W. H. Sheu and R. K. Lin, An incompressible Navier-Stokes model implemented on non-staggered grids, Numer. Heat Transf., B Fundam.,
Vol. 44(3), pp. 277-294, 2003.
[14] 林瑞國, 不可壓縮黏性熱磁流之科學計算方法, 國立台灣大學博士論文, 2005.
[15] Christopher K. W. Tam, Jay C. Webb, Dispersion-ralation-preserving finite difference schemes for computational acoustics, Journal of Computational Physics.,
Vol. 194, pp. 194-214, 1993.
[16] Richard D. Handy, A Frank von der Kammer, A Jamie R. Lead A, Martin Hassellov, A Richard Owen, A Mark Crane, The ecotoxicology and chemistry of manufactured nanoparticles, Ecotoxicology, Vol. 17, pp. 287-314, 2008.
[17] 袁聖宗,在曲線座標下求解非線性EHD方程, 國立台灣大學碩士論文,
2013.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62200-
dc.description.abstract本論文在有限差分的架構下發展一數值方法
以求解二維之對流-擴散方程。
首先發展兩個具有無條件單調性之五點離散格式,
再引入權重係數將兩離散格式做一線性之疊加,
使其具有色散關係保持的九點離散格式。
利用此一數值方法求解電液動(EHD)之非線性動力系統方程,
此系統包含了描述外加電場之Laplace方程、描述壁面所施加之電位分佈以及離子濃度分佈的Poisson-Nernst-Planck方程組及由庫倫力所驅動的不可壓縮Navier-Stokes方程組。
論文之內容主要是使用離子守恆Poisson-Nernst-Planck方程組,以描述電滲流模型,以觀察流速對離子分佈的影響,
以及描述受zeta電位所產生之電雙層,及描繪靠近壁面之速度邊界層、電荷擴散層等物理行為。
zh_TW
dc.description.abstractIn this study the numerical scheme for solving the unsteady
convection-diffusion scalar equation is developed in a domain of two dimensions.
Two newly developed unconditionally monotonic five-point schemes,
which have one common nodal point,
are linearly combined through a weighting coefficient to
yield the proposed nine-point conditionally monotonic scheme.
Our main objective is to get a dispersively more accurate
result from the nine-point stencil conditionally monotonic scheme.
We also apply the nine-point stencil scheme to simulate Eelectroosmotic flow.The electroosmotic flow details in plannar and channels are revealed through this study with the emphasis placed an the formation of Coulomb force.
The competition among the pressure gradient, diffusion and Coulomb forces leadings to the convective electroosmotic flow motion is also investigated in detail.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:33:26Z (GMT). No. of bitstreams: 1
ntu-102-R00525059-1.pdf: 11002549 bytes, checksum: 5465aef5f4acd2447c283c62ab2cd53e (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
第一章 序論
1.1 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 論文大綱. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
第二章 理論背景 8
2.1 電雙層之內涵. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 電泳(Electrophoresis)現象 . . . . . . . . . . . . . . . . . . . . . . . . 12
第三章 物理模型16
3.1 基本假設. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 統御方程式. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.1 描述外加電場電位勢之Laplace方程式. . . . . . . . . . . . . 17
3.2.2 描述壁面電位勢之Poisson方程式 . . . . . . . . . . . . . . . . 17
3.2.3 描述正負離子分佈之Nernst-Planck方程式. . . . . . . . . . . 18
3.2.4 不可壓縮黏性流之Navier-Stokes方程式[2] . . . . . . . . . . 18
3.3 二維無因次化Electrohydrodynamics方程組. . . . . . . . . . . . . . 20
3.4 將無因次方程組從卡式座標轉換到曲線座標系統. . . . . . . . . . . 22
第四章 數值方法之建構25
4.1 有限差分離散方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 時間之離散格式.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 空間之離散格式... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.1 二維CDR精確之差分格式.. . . . . . . . . . . . . . . . . . . . 27
4.3.2 二維角點CDR精確之差分格式.. . . . . . . . . . . . . . . . . . 28
4.3.3 二維九點CDR-DRP精確之差分格式.. . . . . . . . . . . . . . . 30
4.3.4 基本分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 求解不可壓縮流之無散度補償方法之推導.. . . . . . . . . . . . . . 48
4.5 壓力之離散格式.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.6 具面積比保持特性之緊緻格式.. . . . . . . . . . . . . . . . . . . . . . . 50
4.7 計算程序. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
第五章 程式驗證 56
5.1 流體、電方程組之驗證. . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.1.1 二維Navier-Stokes方程之實解驗證. . . . . . . . . . . . . . . 56
5.1.2 方腔拉穴流問題之測試. . . . . . . . . . . . . . . . . . . . . . 57
5.1.3 二維Poisson-Nernst-Planck (PNP)方程組之實解驗證. . . . 59
5.2 電滲流方程組解析解之驗證. . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.1 電滲直流管解析解I . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.2 電滲直流管解析解II . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.3 電滲直流管解析解III . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 數值驗證之結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
第六章 電滲流之數值模擬78
6.1 問題之描述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.1.1 參數設定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2 二維電滲流之流場分析. . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2.1 計算模型之初始與邊界條件.. . . . . . . . . . . . . . . . . . . . 78
6.2.2 結果討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
第七章 結論 118
7.1 研究成果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.2 未來工作與展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
附錄A 經簡化後之Poisson-Nernst-Planck方程組推導 120
A.1 基本假設. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A.2 Poisson-Nernst-Planck方程組轉換到Poisson-Boltzmann方程之推導121
A.3 電滲流直管解析解I方程組之推導. . . . . . . . . . . . . . . . . . . 122
A.4 電滲流直管解析解II方程組之推導. . . . . . . . . . . . . . . . . . . 123
A.5 電滲流直管解析解III方程組之推導. . . . . . . . . . . . . . . . . . 124
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
dc.language.isozh-TW
dc.subject色散關係保持zh_TW
dc.subjectNavier-Stokes 方程組zh_TW
dc.subject波浪狀流道zh_TW
dc.subject庫倫力zh_TW
dc.subject無條件單調性zh_TW
dc.subjectPoisson-Nernst-Planck 方程組zh_TW
dc.subjectCoulomb forceen
dc.subjectPNPen
dc.subjectNSen
dc.subjectunconditionably monotonicen
dc.subjectnine-point stencilen
dc.subjectwavyen
dc.title發展求解NS與PNP耦合方程之方法zh_TW
dc.titleDevelopment of a numerical method for solving the coupled NS and PNP equationsen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李佳翰,王安邦,林太家
dc.subject.keyword無條件單調性,色散關係保持,Poisson-Nernst-Planck 方程組,Navier-Stokes 方程組,波浪狀流道,庫倫力,zh_TW
dc.subject.keywordPNP,NS,unconditionably monotonic,nine-point stencil,wavy,Coulomb force,en
dc.relation.page127
dc.rights.note有償授權
dc.date.accepted2013-07-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
Appears in Collections:工程科學及海洋工程學系

Files in This Item:
File SizeFormat 
ntu-102-1.pdf
  Restricted Access
10.74 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved