Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61856
標題: 應用光學捕捉於微流體晶片之開發及研製
Development of a Microfluidic Chip for On-chip Optical Trapping
作者: Wei-Chen Lu
呂韋辰
指導教授: 黃升龍(Sheng-Lung Huang)
關鍵字: 晶片實驗室,微流體系統,光學捕捉,非序列性光線追跡,微透鏡,
Lab-on-chip,microfluidic system,optical trapping,non-sequential ray tracing,microlens,
出版年 : 2013
學位: 碩士
摘要: In the past decades, miniaturization has been the driving force for the development of technology. For the medical or biological research, traditionally they have to perform with bulky instruments and have to wait a long time to analyze the results. The research on lab-on-chip devices may lead to portable medical inspection devices. A lab-on-chip device is a versatile chip that integrates different kinds of functionalities into a small area ranging from millimeters to a few centimeters in size. The development of a lab-on-chip device can not only shrinks the experiment area to a small size but also enable a fast and reliable analysis. Recently, the research on single cells analysis is thriving. For this purpose, it is important to distinguish and to sort the cells based on their physical or chemical features. We want to develop a setup that is operating in a miniaturized area and that is able to hold a sample for a certain time so that we can gather its information. The technique of counter propagating dual fiber optical trap is appropriate to our demands, because the divergency of the optical fibers makes them possible to hold a larger sample in an optical trap. Besides, the optical fibers are flexible so that they can be easily integrated.
To quantify the optical trapping performance on a chip, we have to establish a model to calculate the forces exerted by a light beam when it interacts with matter. The model is based on a ray tracing approach with the use of a non-sequential ray tracing software. The non-sequential ray tracing method allows for the considerations of any order of the interactions due to the “child rays” caused by reflection, refraction, etc at the interface between the light propagating medium and the trapped object. The model provides a powerful tool that can be used to design and optimize a microfluidic chip. The optical trapping will be operated in a microfluidic environment. Therefore, the trapping forces in the direction of the flow should be higher to resist the forces induced by the flow.
The basic design of the fiber trapping on chip can be further improved by implementing microlenses in the chip. The design of the microfluidic chip is limited by the boundary conditions of the fabrication technique. It limits the minimum diameter of the microfluidic channel and the distance between the fiber facet and the trapped position. By considering the limitations and with the aid of the ray tracing model, the radius of curvature and the height of the lenses can be optimized towards the maximum transverse trapping force. The improvement results from the use of the microlenses can be shown by comparing the modeling results of the two optical trapping schemes. In order to show the validity of the ray tracing model, the proof of concept optical setup is under construction. The motions of the trapped object in its equilibrium position should be recorded and analyzed for the quantification of the trapping forces exerted by the laser beam. The novelty of our design, to our knowledge, lies in the use of the integrated microlenses to enhance the performance of an dual fiber optical trap in a microfluidic chip.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61856
全文授權: 有償授權
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
12.46 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved