請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61856完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃升龍(Sheng-Lung Huang) | |
| dc.contributor.author | Wei-Chen Lu | en |
| dc.contributor.author | 呂韋辰 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:15:57Z | - |
| dc.date.available | 2018-08-07 | |
| dc.date.copyright | 2013-08-07 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-29 | |
| dc.identifier.citation | [1] K. C. Neuman and S. M. Block, “Optical trapping.,” The Review of scientific instruments, vol. 75, pp. 2787–809, Sept. 2004.
[2] K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation.,” Chemical Society re- views, vol. 37, pp. 42–55, Jan. 2008. [3] Wikipedia, “Optical tweezer (http://en.wikipedia.org/wiki/Optical_tweezers).” [4] W. M. Lee, P. J. Reece, R. F. Marchington, N. K. Metzger, and K. Dholakia, “Construction and calibration of an optical trap on a fluorescence optical microscope.,” Nature protocols, vol. 2, pp. 3226–38, Jan. 2007. [5] D. Mcgloin and J. P. Reid, “Forty Years of Optical Manipulation,” 2010. [6] F. Arai, C. Ng, H. Maruyama, A. Ichikawa, H. El-Shimy, and T. Fukuda, “On chip single- cell separation and immobilization using optical tweezers and thermosensitive hydrogel.,” Lab on a chip, vol. 5, pp. 1399–403, Dec. 2005. [7] G. Boer, R. Johann, J. Rohner, F. Merenda, G. Delacretaz, P. Renaud, and R.-P. Salathe, “Combining multiple optical trapping with microflow manipulation for the rapid bioana- lytics on microparticles in a chip.,” The Review of scientific instruments, vol. 78, p. 116101, Nov. 2007. [8] X. Wang, Z. Wang, and D. Sun, “Cell Sorting with Combined Optical Tweezers and Mi- crofluidic Chip Technologies,” Int. Conf. Control, Automation, Robotics and Vision, 2010. [9] C. Jensen-McMullin, H. P. Lee, and E. R. L. Lyons, “Demonstration of trapping, motion control, sensing and fluorescence detection of polystyrene beads in a multi-fiber optical trap.,” Optics express, vol. 13, pp. 2634–42, Apr. 2005. [10] P. R. T. Jess, V. Garces-Chavez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Her- rington, W. Sibbett, and K. Dholakia, “Dual beam fibre trap for Raman micro-spectroscopy of single cells.,” Optics express, vol. 14, pp. 5779–91, June 2006. [11] C.-W. Lai, S.-K. Hsiung, C.-L. Yeh, A. Chiou, and G.-B. Lee, “A cell delivery and pre- positioning system utilizing microfluidic devices for dual-beam optical trap-and-stretch,” Sensors and Actuators B: Chemical, vol. 135, pp. 388–397, Dec. 2008. [12] N. Bellini, K. C. Vishnubhatla, F. Bragheri, L. Ferrara, P. Minzioni, R. Ramponi, I. Cris- tiani, and R. Osellame, “Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells.,” Optics express, vol. 18, pp. 4679–88, Mar. 2010. [13] K. Ono, S. Kaneda, T. Shiraishi, and T. Fujii, “Optofluidic tweezer on a chip.,” Biomi- crofluidics, vol. 4, p. 43012, Jan. 2010. [14] F. Merenda, J. Rohner, J.-m. Fournier, and R. P. Salathe, “Miniaturized high-NA focusing- mirror multiple optical tweezers,” Optics express, vol. 15, no. 10, pp. 101–111, 2007. [15] B.S.Schmidt,A.H.Yang,D.Erickson,andM.Lipson,“Optofluidictrappingandtransport on solid core waveguides within a microfluidic device.,” Optics express, vol. 15, pp. 14322– 34, Oct. 2007. [16] H. M. K. Wong, M. Righini, J. C. Gates, P. G. R. Smith, V. Pruneri, and R. Quidant, “On- a-chip surface plasmon tweezers,” Applied Physics Letters, vol. 99, no. 6, p. 061107, 2011. [17] S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments.,” Lab on a chip, vol. 11, pp. 1484–90, Apr. 2011. [18] I. Breault Research Organization, Wave optics in ASAP. 2004. [19] P. Wuytens, Design of a microfludic chip of optical trapping to enable single cell Raman Spectroscopy. Vrije Universiteit Brussel, 2012. [20] S. V. Overmeire, Novel micro-optical detection systems for microfluidic applications. PhD thesis, Vrije Universiteit Brussel, 2010. [21] A. E. Knight, G. Mashanov, and J. E. Molloy, “Single molecule measurements and biolog- ical motors (http://www2.bioch.ox.ac.uk/oubsu/ebjknight/title.html).” [22] A. N. Kapanidis, N. K. Lee, T. a. Laurence, S. Doose, E. Margeat, and S. Weiss, “Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating- laser excitation of single molecules.,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, pp. 8936–41, June 2004. [23] J. Kneipp, H. Kneipp, and K. Kneipp, “SERS–a single-molecule and nanoscale tool for bioanalytics.,” Chemical Society reviews, vol. 37, pp. 1052–60, May 2008. [24] A.Ashkin,“AccelerationandTrappingofParticlesbyRadiationPressure,”Physicalreview letters, vol. 24, no. 4, pp. 24–27, 1970. [25] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient-force optical trap for dielectric particles.,” Optics letters, vol. 11, pp. 288–290, June 1986. [26] A.Rohrbach,“Switchingandmeasuringaforceof25femtoNewtonswithanopticaltrap.,” Optics express, vol. 13, p. 9695, Nov. 2005. [27] A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophysical journal, vol. 61, no. February, pp. 569–582, 1992. [28] A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a fiber- optical light-force trap.,” Optics letters, vol. 18, pp. 1867–9, Nov. 1993. [29] J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Kas, “Optical de- formability of soft biological dielectrics.,” Physical review letters, vol. 84, pp. 5451–4, Oct. 2000. [30] K. Dholakia and P. Reece, “Optical micromanipulation takes hold,” nanotoday, vol. 1, no. 1, pp. 18–27, 2006. [31] A.AshkinandJ.M.Dziedzic,“Opticaltrappingandmanipulationofvirusesandbacteria.,” Science, vol. 235, pp. 1517–20, Mar. 1987. [32] A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature, vol. 330, no. 6150, pp. 769–771, 1987. [33] D. G. Grier, “A revolution in optical manipulation.,” Nature, vol. 424, pp. 810–6, Aug. 2003. [34] M. Lankers, J. Popp, and W. Kiefer, “Raman and Fluorescence Spectra of Single Optically Trapped Microdroplets in Emulsions,” Applied Spectroscopy, vol. 48, no. 9, pp. 1166– 1168, 1994. [35] C. Xie, M. a. Dinno, and Y.-Q. Li, “Near-infrared Raman spectroscopy of single optically trapped biological cells.,” Optics letters, vol. 27, pp. 249–51, Feb. 2002. [36] K. Ramser, K. Logg, M. Goksor, J. Enger, M. Kall, and D. Hanstorp, “Resonance Raman spectroscopy of optically trapped functional erythrocytes.,” Journal of biomedical optics, vol. 9, no. 3, pp. 593–600, 2004. [37] R. Gessner, C. Winter, P. Rosch, M. Schmitt, R. Petry, W. Kiefer, M. Lankers, and J. Popp, “Identification of biotic and abiotic particles by using a combination of optical tweezers and in situ Raman spectroscopy.,” Chemphyschem : a European journal of chemical physics and physical chemistry, vol. 5, pp. 1159–70, Aug. 2004. [38] R. Gauthier, “Optical trapping: optical machining R.,” Optics & Laser Technology, vol. 29, no. I, pp. 389–399, 1998. [39] L.Ferrara,E.Baldini,P.Minzioni,F.Bragheri,C.Liberale,E.D.Fabrizio,andI.Cristiani, “Experimental study of the optical forces exerted by a Gaussian beam within the Rayleigh range,” Journal of Optics, vol. 13, p. 075712, July 2011. [40] Y. Liu and M. Yu, “Multiple traps created with an inclined dual-fiber system.,” Optics express, vol. 17, pp. 21680–90, Nov. 2009. [41] K. Svoboda and S. M. Block, “Biological applications of optical forces.,” Annual review of biophysics and biomolecular structure, vol. 23, p. 247, Jan. 1994. [42] E. R. Lyons and G. J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical fiber trap,” Applied Physics Letters, vol. 66, no. 13, 1995. [43] Z. Hu, J. Wang, and J. Liang, “Manipulation and arrangement of biological and dielectric particles by a lensed fiber probe.,” Optics express, vol. 12, pp. 4123–8, Aug. 2004. [44] C. Debaes, J. V. Erps, M. Vervaeke, B. Volckaerts, H. Ottevaere, V. Gomez, P. Vynck, L. Desmet, R. Krajewski, Y. Ishii, a. Hermanne, and H. Thienpont, “Deep proton writing: a rapid prototyping polymer micro-fabrication tool for micro-optical modules,” New Journal of Physics, vol. 8, pp. 270–270, Nov. 2006. [45] Thorlabs, “Position Sensing Detectors.” [46] H. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, “Temperature control methods in a laser tweezers system.,” Biophysical journal, vol. 89, pp. 1308–16, Aug. 2005. [47] L. Eichner, “Thorlabs Optical Trap,” tech. rep., 2009. [48] F. Gittes and C. F. Schmidt, “Interference model for back-focal-plane displacement detec- tion in optical tweezers.,” Optics letters, vol. 23, pp. 7–9, Jan. 1998. [49] J. Gelles, B. J. Schnapp, and M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature, vol. 331, no. 6155, pp. 450–453, 1988. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61856 | - |
| dc.description.abstract | In the past decades, miniaturization has been the driving force for the development of technology. For the medical or biological research, traditionally they have to perform with bulky instruments and have to wait a long time to analyze the results. The research on lab-on-chip devices may lead to portable medical inspection devices. A lab-on-chip device is a versatile chip that integrates different kinds of functionalities into a small area ranging from millimeters to a few centimeters in size. The development of a lab-on-chip device can not only shrinks the experiment area to a small size but also enable a fast and reliable analysis. Recently, the research on single cells analysis is thriving. For this purpose, it is important to distinguish and to sort the cells based on their physical or chemical features. We want to develop a setup that is operating in a miniaturized area and that is able to hold a sample for a certain time so that we can gather its information. The technique of counter propagating dual fiber optical trap is appropriate to our demands, because the divergency of the optical fibers makes them possible to hold a larger sample in an optical trap. Besides, the optical fibers are flexible so that they can be easily integrated.
To quantify the optical trapping performance on a chip, we have to establish a model to calculate the forces exerted by a light beam when it interacts with matter. The model is based on a ray tracing approach with the use of a non-sequential ray tracing software. The non-sequential ray tracing method allows for the considerations of any order of the interactions due to the “child rays” caused by reflection, refraction, etc at the interface between the light propagating medium and the trapped object. The model provides a powerful tool that can be used to design and optimize a microfluidic chip. The optical trapping will be operated in a microfluidic environment. Therefore, the trapping forces in the direction of the flow should be higher to resist the forces induced by the flow. The basic design of the fiber trapping on chip can be further improved by implementing microlenses in the chip. The design of the microfluidic chip is limited by the boundary conditions of the fabrication technique. It limits the minimum diameter of the microfluidic channel and the distance between the fiber facet and the trapped position. By considering the limitations and with the aid of the ray tracing model, the radius of curvature and the height of the lenses can be optimized towards the maximum transverse trapping force. The improvement results from the use of the microlenses can be shown by comparing the modeling results of the two optical trapping schemes. In order to show the validity of the ray tracing model, the proof of concept optical setup is under construction. The motions of the trapped object in its equilibrium position should be recorded and analyzed for the quantification of the trapping forces exerted by the laser beam. The novelty of our design, to our knowledge, lies in the use of the integrated microlenses to enhance the performance of an dual fiber optical trap in a microfluidic chip. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:15:57Z (GMT). No. of bitstreams: 1 ntu-102-R99941046-1.pdf: 12759530 bytes, checksum: b8415e73c9cd100c2b1074dfe4029741 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 1 General introduction 1
1.1 Introduction.................................... 1 1.2 Lab-on-Chip:Conceptandperspective...................... 2 1.3 Motivation..................................... 3 2 Optical trapping and application 5 2.1 Introductiontoopticaltrapping.......................... 5 2.2 Trappingtechnique ................................ 8 2.2.1 Singlebeamopticaltrap-opticaltweezer . . . . . . . . . . . . . . . . 8 2.2.2 Dualbeamopticaltrap .......................... 10 2.2.3 Forcegeneratedbyopticaltrap...................... 11 2.3 Stateofart..................................... 12 2.3.1 Opticaltrapinmicrofluidicsystem.............. 13 2.3.2 Towardintegration ......................... 16 3 Design of microfluidic component for DFOT 25 3.1 Raytracingmodelforopticaltrapping.............. 25 3.1.1 Aboutraytracing............................ 25 3.1.2 Raytracingtheory ............................ 26 3.1.3 Modelingwithnon-sequentialraytracing . . .. . . 30 3.1.4 Conceptofmodelingdualfiberopticaltrap . . . . . . 33 3.2 Towarddualfiberopticaltrapinamicrofluidicdevice . . . . . . . . . . . . . . 35 3.2.1 Designconsideration........................ 35 3.2.2 Fabricationlimit ........................ 38 3.2.3 Forcesinthemicrofluidicsystem ............. 39 3.2.4 Forcesfromopticalfibers ................... 42 3.3 Modelingoftrappingefficiencyinamicrofluidicsystem . . . . .. . 44 3.3.1 Basicdesign .............................. 45 3.3.2 Maximize trapping efficiency with integrated lens . . . . . . . . . . . . 49 3.3.3 Conclusionofthesystemwithmicrolens . . . . . . . 59 4.1 Fabricationprocess ............................. 62 4.2 Conclusion ................................ 65 5 Construction of the optical setup for on-chip optical trapping 67 5.1 Experimentalsetupconstruction ......... 67 5.1.1 Schemeofopticaltrappingsetup............... 67 5.1.2 Designofthesetup...................... 68 5.1.3 Selectionofopticalcomponents ........... 71 5.1.4 Challenginganddifficulty .................... 75 5.2 Opticalforcemeasurement ..................... 76 5.2.1 Positiondetection........................ 77 5.2.2 Calibrationmethod....................... 78 5.3 Conclusionsoftheopticaltrappingsetupconstruction. . . . . . . . . . . . 84 6 Conclusions and perspectives87 | |
| dc.language.iso | en | |
| dc.subject | 微透鏡 | zh_TW |
| dc.subject | 晶片實驗室 | zh_TW |
| dc.subject | 微流體系統 | zh_TW |
| dc.subject | 光學捕捉 | zh_TW |
| dc.subject | 非序列性光線追跡 | zh_TW |
| dc.subject | microlens | en |
| dc.subject | microfluidic system | en |
| dc.subject | Lab-on-chip | en |
| dc.subject | optical trapping | en |
| dc.subject | non-sequential ray tracing | en |
| dc.title | 應用光學捕捉於微流體晶片之開發及研製 | zh_TW |
| dc.title | Development of a Microfluidic Chip for On-chip Optical Trapping | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃鼎偉,徐世祥,Heidi Ottevaere | |
| dc.subject.keyword | 晶片實驗室,微流體系統,光學捕捉,非序列性光線追跡,微透鏡, | zh_TW |
| dc.subject.keyword | Lab-on-chip,microfluidic system,optical trapping,non-sequential ray tracing,microlens, | en |
| dc.relation.page | 97 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-29 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 12.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
