Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6163
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭振牟
dc.contributor.authorShang-Yi Yangen
dc.contributor.author楊上逸zh_TW
dc.date.accessioned2021-05-16T16:22:13Z-
dc.date.available2013-07-30
dc.date.available2021-05-16T16:22:13Z-
dc.date.copyright2013-07-30
dc.date.issued2013
dc.date.submitted2013-07-23
dc.identifier.citation[ARM09] ARM Limited. ARM1136JF-S and ARM1136J-S Technical Reference Manual, Revision: r1p5, 2009. http://infocenter.arm.com/help/ topic/com.arm.doc.ddi0211k/DDI0211K_arm1136_r1p5_trm.pdf.
[BDL+ 12] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed high-security signatures. Jour- nal of Cryptographic Engineering, 2(2):77–89, 2012. Document- ID: a1a62a2f76d23f65d622484ddd09caf8, http://cryptojedi.org/ papers/#ed25519.
[Ber00] Daniel J. Bernstein. Floating-point arithmetic and message authentica- tion, 2000.
[Ber05] Daniel J. Bernstein. The poly1305-aes message-authentication code. In In Proc. FSE, pages 32–49, 2005.
[CFR+ 91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. Efficiently computing static single assignment form and the control dependence graph. ACM Trans. Program. Lang. Syst., 13(4):451–490, October 1991.
[Com90] P. G. Comba. Exponentiation cryptosystems on the ibm pc. IBM Syst. J., 29(4):526–538, October 1990.
[GPW+04] Nils Gura, Arun Patel, Arvinderpal Wander, Hans Eberle, and Sheuel- ing Chang Shantz. Comparing elliptic curve cryptography and rsa on 8-bit cpus. In CHES’04, pages 119–132, 2004.
[HS13] Michael Hutter and Peter Schwabe. Nacl on 8-bit avr microcontrollers. In Amr Youssef and Abderrahmane Nitaj, editors, Progress in Cryptol- ogy – AFRICACRYPT 2013, volume 7918 of Lecture Notes in Computer Science, pages 156–172. Springer-Verlag Berlin Heidelberg, 2013. Doc- ument ID: cd4aad485407c33ece17e509622eb554, http://cryptojedi. org/papers/#avrnacl.
[HW11] Michael Hutter and Erich Wenger. Fast multi-precision multiplication for public-key cryptography on embedded microprocessors. In Proceed- ings of the 13th international conference on Cryptographic hardware and embedded systems, CHES’11, pages 459–474, Berlin, Heidelberg, 2011. Springer-Verlag.
[JG02] Ghassem Jaberipur and Mohammad Ghodsi. High radix signed digit number systems: Representation paradigms. Scientia Iranica, 10:383– 391, 2002.
[Nat00] National Institute of Standards and Technology. FIPS PUB 186-2: Dig- ital Signature Standard (DSS). January 2000.
[PS99] Massimiliano Poletto and Vivek Sarkar. Linear scan register allocation. ACM Trans. Program. Lang. Syst., 21(5):895–913, September 1999.
[RDPJ10] Norman Ramsey, Joao Dias, and Simon Peyton Jones. Hoopl: a mod- ular, reusable library for dataflow analysis and transformation. In Pro- ceedings of the third ACM Haskell symposium on Haskell, Haskell ’10, pages 121–134, New York, NY, USA, 2010. ACM.
[Sch11] Peter Schwabe. High-Speed Cryptography and Cryptanalysis. PhD thesis, Eindhoven University of Technology, 2011. http://cryptojedi.org/ users/peter/thesis/.
[WM05] Christian Wimmer and Hanspeter Mossenbock. Optimized interval splitting in a linear scan register allocator. In Proceedings of the 1st ACM/USENIX international conference on Virtual execution environ- ments, VEE ’05, pages 132–141, New York, NY, USA, 2005. ACM.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6163-
dc.description.abstract近期高速密碼學研究中,往往透過電腦指令的排列組合來提升運算效率,但如果少了自動化工具,則需要耗費相當大的人力。
使用我們提出的工具,只需要準梅森質數作為輸入,就能透過窮舉找出在ARM11上最高效率的模乘法程式。窮舉的參數包含大數的表示方示及程式碼產生器參數,而提出的模乘法演算法則混合了乘法與模餘兩部份,特別適合提升準梅森質數體上的計算效率。
使用提出的演算法,自動產生出的高質量程式碼運行時間較GCC編譯器的結果快16.4%,且為GMP模乘法的4至8倍。
zh_TW
dc.description.abstractRecent research on high-speed cryptography has been striving for performance by twiddling with instructions, but without an automated tool, writing fast software takes much precious labor effort.
We present a tool with a simple interface for crypto developers to generate fast modular multiplication routines in a few keystrokes: you provide the prime as the modulus and it produces several candidate results or enumerates them all for benchmark.
Specifically, we automatized the choice of number representation and the code generation for multiplication modulo a pseudo-Mesenne prime on ARM11, using the proposed convolved multiplication method, which interleaves multiplication and modular reduction.
The high-quality code generated runs up to 16.4% faster than the convolved multiplication compiled by defacto-standard compilers such as gcc, and is 4 to 8 times faster than the GMP modular multiplication.
en
dc.description.provenanceMade available in DSpace on 2021-05-16T16:22:13Z (GMT). No. of bitstreams: 1
ntu-102-R00921035-1.pdf: 1099830 bytes, checksum: 07ab4270a3e626bc684005595d089af5 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents1 Introduction 1
1.1 Motivation................................. 1
1.2 ProblemStatement............................ 2
1.3 Contributions ............................... 2
2 Preliminaries 4
2.1 Pseudo-MersennePrimes......................... 4
2.2 RadixRepresentations .......................... 5
2.3 Multi-precisionMultiplicationTechniques. . . . . . . . . . . . . . . . 6
2.3.1 Row-WiseMethod ........................ 7
2.3.2 Column-WiseMethod ...................... 7
2.3.3 HybridMethod .......................... 8
3 Convolved Multiplication 10
3.1 TwoExamples............................... 10
3.1.1 FirstExample........................... 11
3.1.2 SecondExample ......................... 12
3.1.3 ReductionandCarryChains................... 14
3.2 Mixed-RadixRepresentation....................... 14
3.3 Formulating Representation Choice Criteria . . . . . . . . . . . . . . 14
4 Multiplication on Convolved Structures 18
4.1 ConvolvedMultiplication......................... 19
5 Implementation 21
5.1 SystemOverview ............................. 21
5.2 TheARM11ProcessorFamily...................... 22
5.2.1 Freeshiftsandrotates ...................... 22
5.2.2 Accessingthecyclecounter. ................... 23
5.3 LinearRegisterAllocation ........................ 23
5.4 Auto-Tuning................................ 24
6 Results and Discussion 26
6.1 ConvolvedMethodonARM11...................... 26
6.2 DrawbacksofTraditionalMethodsonARM11 . . . . . . . . . . . . . 27
7 Conclusion 29
dc.language.isoen
dc.subjectconvolved multiplicationen
dc.subjectmodular multiplicationen
dc.subjectmulti-precision multiplicationen
dc.subjectpseudo-Mersenne primesen
dc.subjecthigh-speed cryptographyen
dc.subjectARM11en
dc.titleARM 處理器上準梅森質數體的快速運算程式碼產生器zh_TW
dc.titleCode Generation for Fast Pseudo-Mersenne Prime Field Arithmetic on ARM Processorsen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊柏因,王柏堯,陳郁方
dc.subject.keyword多精度乘法,模乘法,準梅森質數,快速密碼學,ARM11,zh_TW
dc.subject.keywordmulti-precision multiplication,modular multiplication,pseudo-Mersenne primes,high-speed cryptography,ARM11,convolved multiplication,en
dc.relation.page33
dc.rights.note同意授權(全球公開)
dc.date.accepted2013-07-23
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf1.07 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved