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摘要

近期高速密碼學研究中，往往透過電腦指令的排列組合來提升運算效率，但如

果少了自動化工具，則需要耗費相當大的人力。

使用我們提出的工具，只需要準梅森質數作為輸入，就能透過窮舉找出

在ARM11上最高效率的模乘法程式。窮舉的參數包含大數的表示方示及程式碼產
生器參數，而提出的模乘法演算法則混合了乘法與模餘兩部份，特別適合提升準

梅森質數體上的計算效率。

使用提出的演算法，自動產生出的高質量程式碼運行時間較GCC編譯器的結
果快16.4%，且為GMP模乘法的4至8倍。

關鍵字: 多精度乘法、準梅森質數、快速密碼學、ARM11。



Abstract

Recent research on high-speed cryptography has been striving for performance by
twiddling with instructions, but without an automated tool, writing fast software
takes much precious labor effort.

We present a tool with a simple interface for crypto developers to generate fast
modular multiplication routines in a few keystrokes: you provide the prime as the
modulus and it produces several candidate results or enumerates them all for bench-
mark. Specifically, we automatized the choice of number representation and the
code generation for multiplication modulo a pseudo-Mesenne prime on ARM11, us-
ing the proposed convolved multiplication method, which interleaves multiplication
and modular reduction.

The high-quality code generated runs up to 16.4% faster than the convolved
multiplication compiled by defacto-standard compilers such as GCC, and is 4 to 8
times faster than the GMP modular multiplication.

Keywords: multi-precision multiplication, modular multiplication, pseudo-Mersenne
primes, high-speed cryptography, ARM11, convolved multiplication.
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Chapter 1

Introduction

Multi-precision arithmetic is essential in public-key cryptography, such as RSA and

elliptic Curve Cryptography (ECC); even some hash functions and message authen-

tication codes are based on multi-precision modular arithmetic (MASH-1, Poly1305

[Ber05]). They all require efficient computations in Fp.

Why is software performance so important in cryptography? Imagine a cloud

server cluster that encrypts transmitted data. Most of the time, these computers

do nothing but perform cryptographic operations. Even a 10% speedup would save

10% less power and time, and leaves more processor resources for other operations.

1.1 Motivation

Recent research on high-speed cryptography has been striving for performance by

exploiting hardware limitations and twiddling with instructions, but the precious

labor effort is hardly regarded. Without an automated tool for producing and auto-

tuning code for best performance, implementers would struggle with assembly to

come up with programs that outperform a compiler-optimized C counterpart.

Although the literature exhibits a number of multiplication and reduction tech-

niques, translating each method into assembly does not automate the overall process.

A good choice of number representation, a proper application of algorithms and a
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thorough knowledge of variant architectural irregularities and specialties, all of the

three intervene the process, and make it even more complicated.

In the thesis, we investigate the viability of automation by starting with one

of the most fundamental cryptographic primitives: multi-precision modular mul-

tiplication. Specifically, we automatized the choice of number representation and

the code generation for multiplication modulo a pseudo-Mesenne prime. We chose

to benchmark on the ARM11 processor family because these RISC processors are

less complex than other CISC variants as x86, and sufficiently serve as our primary

experimental target.

1.2 Problem Statement

We formally define the problem as follows.

Problem Given p = 2m − k, a pseudo-Mersenne prime with small positive k, pro-

duce efficient routines for the function f(x, y) = xy, where x, y ∈ Fp.

By efficient, we mean the lower the number of clock cycles on the platform in

question, the better.

1.3 Contributions

Our contributions include:

• We present a tool with a simple interface for crypto developers to generate fast

modular multiplication routines in a few keystrokes: you provide the prime as

the modulus and it throws out several candidate results or enumerates them

all.

• We extend the principle of the hybrid multiplication method to put multi-

precision multiplication and modulo reduction together, and incorporate them

to work with the mixed-radix representation.
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• Even without auto-tuning and enumerating, the tool produces high-quality

code comparable to the fastest one enumerated. The produced code runs

up to 16.4% faster than the convolved multiplication compiled by defacto-

standard compilers such as gcc, and is 4 to 8 times faster than the GMP

modular multiplication.
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Chapter 2

Preliminaries

This section summarizes necessary information to understand the approach we take.

We first introduce the pseudo-Mersenne primes. Next, we analyze two different rep-

resentations for large integers. Finally, we sketch common multiplication techniques.

2.1 Pseudo-Mersenne Primes

Definition 1. A pseudo-Mersenne prime is a prime of the form p = 2m − k with

k � 2m.

Some such primes attract attention because their modular reduction requires

only additions and multiplications by k. In FIPS 186-2 [Nat00], NIST recommended

prime fields for elliptic curves with pseudo-Mersenne moduli:

p192 = 2192 − 264 − 1

p224 = 2224 − 296 + 1

p256 = 2256 − 2224 + 2192 + 296 − 1

p384 = 2384 − 2128 − 296 + 232 − 1

p521 = 2521 − 1.

Except p512, the form as the sum or difference of powers of 232 makes fast reduction
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routines possible on 32-bit processors.

In the thesis, we confine the primes with rather small k, for example k < 32.

Several cryptography schemes and libraries intended at high speed, such as Ed25519

[BDL+12] and Poly1305 [Ber05] in the library NaCl [HS13], has chosen primes 2255−

19 and 2130 − 5, for their simplicity of modular reduction.

2.2 Radix Representations

Let W be the word size of the processor (e.g. 8, 16, 32 or 64 bits) and p the m-bit

prime modulo for Fp.

Implementations usually decompose an m-bit number x as n unsigned integers

(x0, x1, . . . , xn−1) with x =
∑n−1

i=0 xi2
Wi, where n = dm/W e and each xi ∈ [0, 2W−1].

Definition 2. The unique representation of x as a sum of multiples of powers of

2W , as given above, is called the radix-2W representation of x.

Algorithm 1 shows the standard way to add two numbers on Fp. Although on

most processors with the add-with-carry instruction, overflow checks in the loop

can be implicit, these consecutive word-wide additions still hinder possible paral-

lelization. Moreover, a costly comparison to p and a reduction modulo p may occur

unpredictably within each addition, which is invulnerable to timing attacks.

Algorithm 1 Addition in Fp using radix-2W representation.

Require: a, b ∈ [0, . . . , 2Wn − 1]
Ensure: c = a+ b mod p
(ε, c0)← a0 + b0 . ε is the carry bit.
for i = 1→ n− 1 do

(ε, ci)← ai + bi + ε

if ε = 1 or c ≥ p then . Reduction modulo p.
c← c− p

return c

Fortunately, the lazy-reduction technique gets rid of all these downfalls. By

trading off the number of limbs and not using each word to the full extent, these
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excessive reductions can be shrunk into one and postponed until after several add

operations. The carry chain can also be eliminated to empower parallelism.

Definition 3. Let B be an integer smaller than W . We represent x as an n =

dm/Be-tuple (x0, x1, . . . , xn−1) with each xi ∈ [0, 2W − 1] and x =
∑n−1

i=0 xi2
Bi. This

non-unqiue representation of x is called the radix-2B (redundant) representation of

x.

This a non-unique redundant representation does not enforce the bounds xi ≤

2B−1 on each limbs. An integer x is fully-reduced if each xi is below 2B.1 For exam-

ple, on a 32-bit processor, a 5-limb radix-232 representation splits a 130-bit number

into five 32-bit parts. But with a more cost-effective 5-limb radix-226 representation,

limb-wisely adding together 64 fully-reduced integers still conform to the redundant

representation since 64 × (226 − 1) < 232. Only after then a reduction is needed to

allow another addition.

2.3 Multi-precision Multiplication Techniques

In the following subsections, we sketch common multiplication techniques: the row-

wise method, the column-wise method and the hybrid method. They all assumes

the radix-2W representation and need to cope with carry propagation. Their main

ideas differ in how they cache operands to use the register file efficiently. In order

words, they differs in how they reduce the number of reduplicate loads and stores.

We adopted the rhombus form [HW11] to illustrate the structure of each method.

Also we rule out complex methods, such as the Karatsuba algorithm or FFT meth-

ods, as they generally lead to high overhead on resource-limited processors.
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c14 c7 c0

a0b0

a0b7

a7b0

a7b7

Figure 2.1: Row-wise method for 8-word numbers. Each point a partial product
ai × bj.

2.3.1 Row-Wise Method

Also called the schoolbook or the operand-scanning method, the row-wise method

corresponds to how a primary school pupil would multiply a and b — keep a word

ai, loop through b and accumulate ai × bj to ci+j (Figure 2.1). Whenever a partial

product ai × bj overflows, the result is carried into the next partial product ci+j+1.

The pitfall of the row-wise method is that each word of b is reloaded every time

as the outer loop walks through a. This is unclever if the processor owns a large

bank of registers to store these value for later use. We can do better.

2.3.2 Column-Wise Method

The column-wise method is also called the Comba [Com90] or the product-scan

method because it walks through each accumulator and calculates all partial prod-

ucts in the same column (Figure. 2.2). The register usage is immediately visible. In

each column a bunch of 2-word partial products are added together and carried to

a third word, so totally 3 words of accumulator are required, but only 2 of them are

stored.
1We do not always reduce xi below 2B . In this case, we say x is reduced, depending on the

context.
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c14 c7 c0

a0b0

a0b7

a7b0

a7b7

Figure 2.2: Column-wise method for 8-word numbers.

c14 c7 c0

1

3

2

4

a0b0

a0b7

a7b0

a7b7

Figure 2.3: Hybrid method for 8-word numbers. (d = 4)

2.3.3 Hybrid Method

The hybrid method [GPW+04] combines the advantages of both the row-wise and

column-wise methods. The basic idea is simple — perform the multiplication as if

the word size is actually Wd and do the inner large partial product, which consists

of d2 word-wise multiplications, using the row-wise method (Figure 2.3). Often we

choose a proper d so that in each block, the 2d+ 1 accumulators are all maintained

in the register file. We will later adopt the idea of putting all accumulators in the

register file when discussing how we extend the hybrid method to deal with the
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convolved structure.
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Chapter 3

Convolved Multiplication

3.1 Two Examples

Usually, modular reduction comes only after a full multiplication; they do not inter-

leave to maximize throughput. We adopted the ideas from Bernstein, who first used

floating points to speed up operations modulo 2127 − 1 [Ber00] and modulo 2130 − 5

[Ber05], and later adopted by Schwabe to accelerate arithmetic modulo 2255− 19 on

a variety of platforms [Sch11, BDL+12].

The first subsection exemplifies how the fix-sized redundant representation on

F2130−5 puts multiplication and reduction together; the second one shows that it is

not a cure-all — the mixed representation outworks on F2127−25. This is because

the bit length of the prime 2127 − 25 is not a multiple of any integer, but 130 is a

multiple of 26.

The following examples assumes a 32-bit processor with a 32 × 32 to 64-bit

multiplication instruction. The methods described in the section do not necessarily

require prime moduli, but the examples are given with prime moduli because these

are practical in cryptography. After each example we provides several points to

consider on choosing limb sizes so it facilitates even more efficient calculations.
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3.1.1 First Example

The field operations on F2130−5 profits from the radix-226 representation. Multiplying

without reduction two 5-limb numbers a and b yields a wedge-shaped 9-limb c, with

each ci a 64-bit word:

c0 = a0b0

c1 = a0b1 + a1b0

c2 = a0b2 + a1b1 + a2b0

c3 = a0b3 + a1b2 + a2b1 + a3b0

c4 = a0b4 + a1b3 + a2b2 + a3b1 + a4b0

c5 = a1b4 + a2b3 + a3b2 + a4b1

c6 = a2b4 + a3b3 + a4b2

c7 = a3b4 + a4b3

c8 = a4b4.

We then eliminate the coefficients c5, . . . , c8 by reduction modulo p = 2130 − 5,

which suggests 2130 ≡ 5 mod p. Therefore, 5c5 is added to c0, 5c6 is added to c1,

and so on, yielding the convolved structure before doing the carry chain:

c0 = a0b0 + 5a1b4 + 5a2b3 + 5a3b2 + 5a4b1

c1 = a0b1 + a1b0 + 5a2b4 + 5a3b3 + 5a4b2

c2 = a0b2 + a1b1 + a2b0 + 5a3b4 + 5a4b3

c3 = a0b3 + a1b2 + a2b1 + a3b0 + 5a4b4

c4 = a0b4 + a1b3 + a2b2 + a3b1 + a4b0

Finally, rewriting 5a1b4 as a1 × 5b4 and precalculating 5b4 avoids recalculation

and better uses the 32× 32 to 64 multiplication instruction.

To summarize, the overall convolved multiplication involves:

1. Precalculate 5b1 to 5b4.
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2. Carry out the multiplication in the coefficients c0 to c4, using the method

described in Section 4.1.

3. Reduce the coefficients c0 to c4, as in Section 3.1.3, so that the result can be

fed into another multiplication.

We now analyze possible overflow conditions. Only if the constraints listed below

are all true for all inputs a and b, the convolved multiplication can be carried out.

• If each sum c0, . . . , c4 exceeds 64-bit, it will takes three 32-bit registers to store.

That said, the limbs c0 . . . c4 must fit into 64-bit registers. In other words, the

sum a0b0 + 5a1b4 + 5a2b3 + 5a3b2 + 5a4b1 (and thus its partial products) must

not overflow over 64-bit.

Suppose a and b are not fully-reduced and of which ai, bj ≤ R for some R. Then

c0 is the one the most possible to overflow. We have c0 ≤ (1+5+5+5+5)R2 ≤

264 − 1, or R ≤ 1.75× 229.1

• We rewrite 5a1b4 as a1 × 5b4, so 5b4 must not overflow over 32-bit, or bi ≤

(232 − 1)/5 ≤ 1.6× 229.

3.1.2 Second Example

We now show that the radix-226 representation is inappropriate for the field F2127−25.

Since 2130 ≡ 23 · 25 ≡ 200, we have:

c0 = a0b0 + 200a1b4 + 200a2b3 + 200a3b2 + 200a4b1

c1 = a0b1 + a1b0 + 200a2b4 + 200a3b3 + 200a4b2

c2 = a0b2 + a1b1 + a2b0 + 200a3b4 + 200a4b3

c3 = a0b3 + a1b2 + a2b1 + a3b0 + 200a4b4

c4 = a0b4 + a1b3 + a2b2 + a3b1 + a4b0

1The upper bound for c0 is actually smaller than 264 − 1, because we have not considered the
carry chain yet. We will still stick with this bound in the examples. See Section 3.3.
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Similarly, we observe two limits on the limb size:

• If a and b are not fully-reduced, of which each limb is less then R, then

c0 ≤ 801R2 ≤ 264 − 1, or R ≤ 1.13× 227.

• We can rewrite 200a1b4 as 8a1 × 25b4, or 10a1 × 20b4. Either case, these two

quantities must not cause a 32-bit overflow.

The large coefficient 200 is due to the ineffective use of limb sizes. They sum

up to 130 bits but the modulus 2127 − 25 is only 127-bit long. Instead, we split 127

into 5 parts and let the i-th limb take d127/5 × ie = d25.4ie bits. This is more

cost-effective.

Specifically, an element a of F2127−25 is represented as a tuple (a0, . . . , a4) where

a =
4∑

i=0

ai2
d25.4ie.

Now the new formula set is:

c0 = a0b0 + 50a1b4 + 50a2b3 + 50a3b2 + 50a4b1

c1 = a0b1 + a1b0 + 25a2b4 + 50a3b3 + 25a4b2

c2 = a0b2 + 2a1b1 + a2b0 + 50a3b4 + 50a4b3

c3 = a0b3 + a1b2 + a2b1 + a3b0 + 25a4b4

c4 = a0b4 + 2a1b3 + a2b2 + 2a3b1 + a4b0

(3.1)

But with looser limits:

• c0 ≤ 201R2 ≤ 264 − 1, or R ≤ 1.12× 228.

• A possible approach is to rewrite 50aibj as 2ai × 25bj, 2aibj as 2ai × bj and

25aibj as ai×25bj, so we could reuse the values 2ai and 25bj. These quantities

must not overflow either.
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3.1.3 Reduction and Carry Chains

We continue with the example in Section 3.1.1 to demostrate the reduction on F2130−5

using radix-226 representation.

To reduce a large coefficient c0, we carry c0 → c1, which means replacing (c0, c1)

with (c0 mod 226, c1 + bc0/226c); carry c4 → c0 means replacing (c4, c0) with (c4

mod 226, c0 + 5bc4/226c).

A complete carry chain c0 → c1 → c2 → c3 → c4 → c0 → c1 produces appropriate

ranges for each word of c to be fed into another multiplication:

c0, c2, c3, c4 ≤ 226 − 1,

c1 ≤ 226 + 5 · 212.

Note that each c1 is reduced but not fully-reduced. We leave the tedious calcu-

lation for the upper bound of c1 until Section 3.3.

3.2 Mixed-Radix Representation

Now we give the formal definition of the mixed-radix representation.

Definition 4. Let n be an integer and B = m/n. Denote x as (x0, x1, . . . , xn−1),

where x =
∑

i xi2
dBie. This is called the radix-2B mixed-radix representation of x.

3.3 Formulating Representation Choice Criteria

We formulate the criteria for automating number representation selection, following

the same argument as in Section 3.1.1. If these constraints fail, the convolved

multiplication will not work properly. Our tool always checks these constraints

before generating the program. This section can be omitted without being lost in

the roadmap.
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For simplicity, we will leave out the case for the mixed-radix representation,

and only consider the radix-2B representation, for which B is a multiple of m, or

m = nB.

Let p = 2m − k. First, we deal with the possible overflow conditions during

reduction (carrying), assuming the carry chain c0 → c1 → . . .→ cn−1 → c0 → c1.

• Assume that before reduction, each limb of c is bounded by R, i.e. ci ≤ R,

then the carry c0 → c1 → . . .→ cn−1 should not overflow:

R +
R

2B
+ . . .++

R

2(n−1)B
≤ R

1− 1/2B
≤ 22W − 1,

or

R ≤ (22W − 1)(1− 1

2B
). (3.2)

• The carry cn−1 → c0 should not overflow:

(2B − 1) + k · 2
2W − 1

2B
≤ 22W − 1.

This condition limits the lower bound for limb size B given the prime p.

• Finally, we examine the bound of c1 after carrying c0 → c1.

(2B − 1) +
1

2B

[
(2B − 1) + k · 2

2W − 1

2B

]
≤ 2B + k · 22(W−B).

In other words, after reduction, the upper bound for c is:

c0, c2, . . . , c4 ≤ 2B − 1,

c1 ≤ 2B + k · 22(W−B).
(3.3)

Second, we deal with the possible overflow during multiplication. A convolved

15



multiplication modulo p = 2m − k would yield

c0 = a0b0 + k · a1bn−1 + k · a2bn−2 + · · ·+ k · an−1b1.

• If each ai and bj is bounded by S, then we have

c0 ≤ S2[1 + k(n− 1)] ≤ R ≤ 22W − 1,

or

ai, bj ≤ S =

√
R

1 + k(n− 1)
,

where R is defined in Equation 3.2.

• Also, a stricter bound is that both kai and kbi ≤ 2W − 1, so

ai, bj ≤
2W − 1

k
.

Combining these two inequalities, we have for all ai and bj,

ai, bj ≤ min

{√
R

1 + k(n− 1)
,
2W − 1

k

}
. (3.4)

This is a necessary condition for such an representation to work with the con-

volved multiplication method.

It follows from Equation 3.3 and Equation 3.4 that, the result of summing t

numbers without reduction can still be the input of the multiplication, where

t = min

{√
R

1 + k(n− 1)
,
2W − 1

k

}/
(2B + k · 22(W−B)).

This result is significant for ECC point addition and doubling, because the result

of several big integer additions are often the input of a multiplication.

Similar arguments can be carried out for mixed-representation, but it is really

16



complicated and sometimes verification by hand is even faster and less prone to

error. We leave it for future work.

17



Chapter 4

Multiplication on Convolved

Structures

c7 c0

a0b0

a0b7

a7b0

k · a7b1

k · a1b7

k · a7b7

(a) No data dependency in-between.

c7 c0

a0b0

a0b7

a7b0

a7 × kb1

a1 × kb7

a7 × kb7

(b) Operand reuse of a after rewriting.

Figure 4.1: Convolved structure. Reduced coefficients in rectangular markers.

Assume the radix-2B representation, where B is an integer, as Example 1 in Sec-

tion 3.1.1. We illustrate the convolved structure by shifting the left-hand half of the

rhombus to the top-right corner, aligning each column with the same accumulator

ci. The reduced partial products to be multiplied by k are designated with rectan-
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c7 c0

a0b0

a0b7

a7b0

a7 × kb1

a1 × kb7

a7 × kb7

Figure 4.2: Convolved method for 8-word numbers, split into 3 parts. (d = 3)

gular markers (Figure 4.1). In Figure 4.1a, the two triangular grids are disconnected

because they expose little or no possible operand caching, whereas in Figure 4.1b,

rewriting k · aibi as ai × kbi suggests the possibility of reusing words of a (but not

b) between the two parts, shown by the lines connecting in-between.

4.1 Convolved Multiplication

We follow the principle that hybrid method uses – keep all the accumulators in a

processed block in the register. The parameter d defines the number of columns

within a processed block, thus 2d registers are needed for accumulation. Figure 4.2

shows the structure for d = 3, which is split into 3 = d8/3e parts, and each part is

carried out using the row-wise method. Note that with the redundant representation,

there is no carry propagation among each column. Partial products of each column

could be summed simultaneously, which makes parallelism such as SIMD possible.

The above method applies to Example 1. For alternating mixed representa-
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Figure 4.3: Convolved method with mixed-radix representation. Two parts are done
with the row-wise method separately. Black arrows first, then dashed arrows.

tions as in Example 2, we observe that the same method is better carried out on

even columns and on odd columns, as in Figure 4.3. The two parts are still pro-

cessed using the row-wise method, but with the odd rows first, then the even rows.

Correspondence between Figure 4.3 and Equation 3.1 show that this reuses loaded

operands more effectively.

In the tools developed, we can choose use the default setting (particularly d = 4

on ARM11) as described above to produce a satisfying result. To achieve better per-

formance, we can also facilitate the auto-tuning mechanism to enumerate different

values for d or even split the convolved structure into more irregular parts.
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Chapter 5

Implementation

5.1 System Overview

The tool we developed is implemented in Haskell with a little more than 1000 lines

of code. We summarize the pipeline as follows:

Given an m-bit prime p = 2m − k as the input, the system first searches for

a viable number representation for an m-bit number. For each possible case, the

corresponding formula set for multiplication and reduction is generated to check

overflow conditions, as in the two examples of Chapter 3 or in Section 3.3.

After the appropriate number representation is chosen, a number of intermediate

programs will be generated using the proposed multiplication method, either by

enumerating the parameter d or by choosing the default setting. These intermediate

programs are actually assembly programs on the target platform, but with a view of

infinite registers. Each of these intermediate programs is then converted to a form

similar to SSA to apply a simplified version of the optimized linear scan register

allocation. Some parameters of the register allocation algorithm is also tunable to

probe the minimum number of spills.

Finally, a bunch of runnable programs is ready for benchmark on the target

platfrom.
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5.2 The ARM11 Processor Family

The ARM11 processor family was introduced by ARM in 2002 as the only imple-

mentation of the ARMv6 architecture. The most widely used processor from this

family is the ARM1136, others the ARM1156 and the ARM1176. We developed

and benchmarked the software described in this thesis on an ARM1136 processor,

more specifically on a Samsung GT i7500 Galaxy smartphone containing a Qual-

comm MSM7200A chip released in 2007. For details, please refer to the ARM1136

technical reference manuals. [ARM09]. In the following, we summarize the features

most relevant to the implementations described in the thesis.

ARM11 processors have a 32-bit instruction set and 16 architectural 32-bit inte-

ger registers. One register is used as the stack pointer, one as the program counter,

so 14 registers are freely usable.

Instructions are issued in order, one instruction per cycle. Except for multipli-

cation, the arithmetic instructions relevant to the implementations in the thesis,

have a latency of 1 cycle. Multiplication instructions takes 2 cycles, but their 2

word output have a latency of 4 and 5 cycles. Loads from cache have a latency of 3

cycles.

The instruction set is a standard RISC load-store instruction set except for two

features: free shifts and rotates and loads and stores of more than 32 bits. The later

yields better performance only in very special cases that we were not able to exploit

in our implementations.

5.2.1 Free shifts and rotates

All arithmetic instructions have three operands and the output does not necessarily

overwrite one of the inputs. Additionally, the second input operand can be shifted

or rotated by arbitrary distances provided as immediate value or through a register.

We use these features to speed up multiplication by k in precalculation. These shifts
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or rotates as part of arithmetic instructions do not decrease throughput or increase

latency of the instruction, they are essentially for free. However, the shifted or

rotated input value is required one stage earlier in the pipeline than a non-shifted

input. Therefore, using the output of one instruction as shifted or rotated input to

the next instruction imposes a penalty of one cycle.

5.2.2 Accessing the cycle counter.

Access to the 32-bit cycle counter is only possible from kernel mode, for example

using the following code:

unsigned int c;

asm volatile("mrc p15, 0, %0, c15, c12, 1" : "=r"(c));

In a posting to the eBATS mailing list ebats@list.cr.yp.to from August 12,

2010, Bernstein publicized code for a kernel module that gives access to the cycle

counter on ARM11 devices through the Linux device file /dev/cpucycles4ns.

5.3 Linear Register Allocation

Reducing register spilling is crucial to reducing memory accesses. Most recent re-

search on multiplication techniques precisely specifies when to load operands and

store intermediate results. To make the tool more general, we instead decided to

allocate and spill registers automatically.

For this work, we chose to use the linear scan register allocation [PS99] for several

reasons:

• The experimental results appeared satisfying. We may obtain better results

using more sophisticated methods, such as graph coloring or integer program-

ming. Traditional graph coloring is NP-complete, so is register allocation.
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• It is much easier to implement and runs faster. The overall enumeration time

can be reduced.

Specifically, we use an improved version of linear register scan algorithm with

optimized interval splitting (for details, refer to [WM05]). In a nutshell, it works

as follows: first the use positions and lifetime interval of each variable are identified

through liveness analysis. Then it uses a heuristic based on the fixed interval infor-

mation and the use positions of the active and inactive intervals: the interval that

is not used for the longest time is spilled.

Since the generated code has no control flow, we can transform our programs into

a form similar to SSA [CFR+91] (we call it the pseudo-SSA form) to further simply

the algorithm. Also, to deal with the ARM11 architectural irregularity, we allocate

registers as if each variable were used 1 cycle earlier, which reduces the load latency,

and would be used a few cycles later, which reduces the multiplication latency.

5.4 Auto-Tuning

Auto-tuning is one of the core part of our tool. Here we list several parameters that

can be tuned or enumerated:

1. The number representation and thus the corresponding limb size. Actually, it

always chooses a most effective one that passed all overflow checks.

2. The parameter d of the convolved multiplication, or more precisely, how the

convolved structure is split into several parts. We enumerate all possible com-

binations, of which each part contains no more than 5 columns. With 10

accumulators in the register file, there are still 4 registers free for use. The

default setting is as given in the two examples in Chapter 4.

3. Register allocation. Ordinary arithmetic instructions has no latency, but mul-

tiplication instructions have a result latency of 5 cycles. For simplicity, we
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allocate registers as if each variable would be used 1 or 2 cycles later. The

default value is 1 cycle.
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Chapter 6

Results and Discussion

6.1 Convolved Method on ARM11

Table 6.1: Convolved method and GMP multiplication modulo 2255−19 on ARM11.

GMP

Prime Convolved Total Multiply Reduce

2130 − 5 235.3 1898.2 435.6 1382.3
2255 − 19 662.8 3054.5 981.1 1925.8

Table 6.1 shows the modular multiplication time using the convolved method

and the GMP library 3.5.2 on ARM11. The convolved method is up to 5 times

faster than the GMP counterpart, and is even faster than only a multiplication of

the GMP library. The GMP modular reduction is slower because it assumes no

particular form of the modulus.

Table 6.2 and 6.3 summarize the instruction counts for the convolved multipli-

cation on F2255−19 and on F2130−5, using different number representations. In each

table, we compare the fastest one generated by our tool and the equivalent C code

compiled by GCC. They both follow the procedure of precalculation, multiplication

and reduction. The complex pipeline of GCC may interleave these three stages for

better performance.
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Table 6.2: Convolved method modulo 2255 − 19 on ARM11. Radix-225.5.

Instructions

Case Mem32 Mem64 MUL ADD Others Total Cycles

Best Enumerated 172 0 100 84 15 371 662.84
Default Setting 165 0 100 84 15 364 666.88
GCC 235 29 111 22 59 456 792.83

Table 6.3: Convolved method modulo 2130 − 5 on ARM11. Radix-226.

Instructions

Case Mem32 Mem64 MUL ADD Others Total Cycles

Best Enumerated 40 0 25 37 13 115 235.33
GCC 43 8 25 28 29 133 241.41

For the case of F2255−19 in Table 6.2, our method requires much less memory

access, and runs 16% faster then the GCC counterpart. Even with the default set-

ting, the result is comparable with the fastest enumerated one. Note that GCC is

equipped with more advanced instruction scheduling and register allocation mecha-

nisms. It also uses double-word memory access instructions supported by ARM11.

For the case of F2130−5 in Table 6.3, the generated code also contains less in-

struction, but the cycle count is not as significant. We conclude that the convolved

method outperforms more on larger moduli.

We expect to reduce the running time even more by interleaving the three pro-

cedures, as in the complex pipeline of GCC.

6.2 Drawbacks of Traditional Methods on ARM11

In this section, we discuss why traditional multiplication techniques work poorly

on ARM11. Specifically, we estimate the theoretical speed lower bound for the

operand-caching multiplication, and show that it can run slower than a modular

multiplication using the convolved multiplication.

As one of the fastest multiplication methods present by 2011, the operand-
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caching method [HW11] aims at reducing the number of loads on embedded plat-

forms, such as an 8-bit ATmega128 microcontroller. In Table 6.4, we list the lowest

number of memory accesses, multiplications and additions described in the original

paper, and estimate the cycles needed to carry out one multiplication on ARM11.

We compare this with the automatically generated 255-bit convolved method, of

which the cycle count is actually measured on a ARM11 processor.

Table 6.4: Lower cycle bound for 256-bit operand-caching multiplication on ARM11.
Theoretical minimum values in italic, can only be larger.

Instructions

Method Radix LDR STR MUL ADD Cycles

Operand-Caching 232, 8 limbs 34 21 64 192 665
Convolved (mod 2255 − 19) 225.5, 10 limbs 110 62 100 84 662.84

Interestingly, the result suggests that a modular multiplication can even run

faster then the operand-caching method without reduction, although the latter has

fewer instructions. Recall from Section 5.2 that on ARM11, each 32 × 32-bit mul-

tiplication takes 2 cycles. Although the result has a latency of 5 cycles, we can

carefully schedule the instructions to hide these 3-cycle latencies. Traditional mul-

tiplication techniques such as the operand-caching method, however, requires each

multiplication to set carry flags, which takes 6 cycles. Another source of latency is

that the algorithm assumes use the result of a load in the next instruction, which

causes a penalty latency of 1 cycle. The total cycle count is therefore at least

34× 2 + 21 + 64× 6 + 192 = 665.
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Chapter 7

Conclusion

We presented a domain specific compiler framework that automates the cumbersome

process of tuning and coding for fast modular multiplication on ARM11. Specifically,

we choose to use the convolved multiplication on pseudo-Mersenne prime fields, and

proposed a multiplication method on the convolved structure. The generated code

may run faster than a hand-craft counterpart. We also showed that multiplication

using radix-2W representation may cause a serious bottleneck on ARM11.

Future Works. We have four primary goals for the tool:

• Integration of domain specific languages. Extending the compiler to handle

elliptic curve point multiplication routines is more practical but checking over-

flow conditions is more completed for complex formulae.

• Early pruning for enumeration. A good pruning heuristic, such as the length

of the program, may decrease the benchmark time for running all programs.

• SIMD. The convolved method has a structure that can benefit from SIMD

improvements.

• Using Hoopl. Hoopl [RDPJ10] is a Haskell library for dataflow analysis and

code transformation for better code quality and performance.
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Subsidiary goals include more advanced multiplication techniques and more

prime forms. For example, the Karatsuba multiplication may speed up multipli-

cation only a little, but requires more complicated overflow checks. In such cases,

possible erroneous inductions or programs may be subject to formal verification.

The convolved method may also be used on generalized pseudo-Mersenne primes.

We also consider adopt signed number representations, as in [JG02, BDL+12].
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