Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61335
Title: 利用化學氣相沉積聚合法製備N-羥基琥珀酰亞胺酯聚對二甲苯鍍膜及其在生物界面改質應用
Vapor-Based Synthesis of N-hydroxysuccinimide ester Functionalized Poly-p-xylylene and Its Use for Biointerface Modifications
Authors: Jen Jang
張鎮
Advisor: 陳賢燁(Hsien-Yeh Chen)
Keyword: 生物界面,N-羥基琥珀&#37232,亞胺酯,化學氣相沉積聚合技術,功能性聚對二甲苯鍍膜,生物耦合反應,
Biointerface,N-hydroxysuccinimide ester,CVD polymerization,Functionalized poly(p-xylylene),Bioconjugation,
Publication Year : 2013
Degree: 碩士
Abstract: 在過去數十年中,生物分子和表面的交互作用一直以來都是研究學者所注意的領域之一,這些作用統稱為生物界面科學。在生物界面科學的發展之下,連帶探討出許多生物分子的特性以及對於生物環境的交互作用,而且其應用在許多人工材料上發展出許多新興領域和科技。為了有效發展生物界面科學,生物分子鍵結是一大重點,而化學共價鍵結生物分子因為其持久性以及穩定性的優點,加上生物正交性的生物耦合鍵結特性,能快速且準確應用於各種領域中。而在文獻指出,化學氣相沉積具有官能性的聚對二甲苯,只需一步驟即可簡易地達到表面改質,且化學氣相沉積改質各種材料的選擇性極低,而為了因應生物分子的鍵結,發展出不同種類官能基的聚對二甲苯高分子來應用到生物領域上,例如具有炔基、胺基等官能性之聚對二甲苯等。而本研究將開發出一個新的官能基N-羥基琥珀酰亞胺酯(N-hydroxysuccinimide ester),介紹其合成方式,並藉由化學氣相沉積聚合法將其鍍在表面上,再利用各種不同特殊性的生物耦合技術來達到控制生物分子鍵結,未來希望可以應用在許多生物領域上,例如控制細胞生長、抗汙表面等。
In past decades, the field of biointerface science, which is the reaction between surface and biomolecules, has been focused by chemists and biologists. Because more and more papers reported about surface biological chemistry, the functions of biomolecules and the interactions between biomolecules and environments has been discussed, and they were applied in various types of artificial materials. Moreover, according to growth of biointerface science, many new fields and technologies have been developed, such as biomedical, tissue engineering, micro total analysis systems (μTAS) and biosensors. For the studying surface biological chemistry effectively, the selective conjugation onto surface is one of most important issue and, for the characteristics of enduring and stability, the covalence conjugation is superior. For the reason of the characteristics, the recently developing surface bioconjugations are fast and site-specific, including the carbondimide reaction of amine and carboxylic acid, the thiol-ene reaction and the click chemistry. However, many artificial materials have no functional group such as metals and ceramics. It is the reason that a new field of surface modification has raised. Through chemistry vapor deposition, coating functional poly-p-xylene onto surface to modify surface is a one-step process, and it doesn’t have any inhibition for materials. Even, for the functional groups of biomolecules, papers directed that various types of functional poly-p-xylene, such as Poly (4-ethynyl-p-xylylene-co-p-xylylene), Poly (4- aminomethyl-p-xylylene-co- p-xylylene), have been synthesized to conjugate the biomolecules and apply in many fields. My research is that synthesize a new functional group N-hydroxysuccinimide ester, and coating N-hydroxysuccinimide ester poly-p-xylene onto surface by CVD for the unique selective bioconjugation. In the future, it can control the covalence of biomolecules and can be applied in biology fields such as controlling cell growth and anti-fouling.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61335
Fulltext Rights: 有償授權
Appears in Collections:化學工程學系

Files in This Item:
File SizeFormat 
ntu-102-1.pdf
  Restricted Access
2.06 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved