Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61292
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孫璐西
dc.contributor.authorShih-Ying Panen
dc.contributor.author潘思穎zh_TW
dc.date.accessioned2021-06-16T10:58:40Z-
dc.date.available2013-08-14
dc.date.copyright2013-08-14
dc.date.issued2013
dc.date.submitted2013-08-08
dc.identifier.citation王惠娟。2005。紅藜不同發育階段光合作用潛力及相關生理活動之變化。國立屏東科技大學森林系碩士論文。
吳佩樺。2008。不同品種及生長季節之紅藜抗氧化活性的探討。國立屏東科技大學食品科學系碩士論文。
蔡碧仁。2011。台灣藜簡介與機能性食品應用。食品資訊,242 : 54-57。
林筱茜、邱淑媛、陳玉舜、康志強。2013a。脫殼台灣藜不同溶劑萃取物之抗氧化活性評估。台灣保健食品學會2013年會員大會學術論文壁報。台中。靜宜大學。
林筱茜、邱淑媛、陳玉舜、康志強。2013b。探討脫殼台灣藜不同溶劑萃取物之抗致突變性。台灣保健食品學會2013年會員大會學術論文壁報。台中。靜宜大學。
Abel, E. D., Peroni, O., Kim, J. K., Kim, Y.-B., Boss, O., Hadro, E., Minnemann, T., Shulman, G. I., and Kahn, B. B. (2001). Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature. 409, 729-733.
Alonso-Castro, A. J., Miranda-Torres, A. C., Gonzalez-Chavez, M. M., and Salazar-Olivo, L. A. (2008). Cecropia obtusifolia Bertol and its active compound, chlorogenic acid, stimulate 2-NBDglucose uptake in both insulin-sensitive and insulin-resistant 3T3 adipocytes. J Ethnopharmacol. 120, 458-64.
Broadhurst, C. L., Polansky, M. M., and Anderson, R. A. (2000). Insulin-like biological activity of culinary and medicinal plant aqueous extracts in vitro. J Agric Food Chem. 48, 849-852.
Bryant, N. J., Govers, R., and James, D. E. (2002). Regulated transport of the glucose transporter GLUT4. Nat Rev Mol Cell Biol. 3, 267-77.
Daval, M., Foufelle, F., and Ferre, P. (2006). Functions of AMP-activated protein kinase in adipose tissue. J Physiol. 574, 55-62.
Fang, X. K., Gao, J., and Zhu, D. N. (2008). Kaempferol and quercetin isolated from Euonymus alatus improve glucose uptake of 3T3-L1 cells without adipogenesis activity. Life Sci. 82, 615-22.
Farmer, S. R. (2006). Transcriptional control of adipocyte formation. Cell Metab. 4, 263-73.
Gould, G. W., and Holman, G. D. (1993). The glucose transporter family structure, function and tissue-specific expression. J Biochem. 295, 329-341.
Green, H., and Kehinde, O. (1975). An established preadipose cell line and its differentiation in culture II. Factors affecting the adipose conversion. Cell. 5, 19-27.
Hsu, C. L., and Yen, G. C. (2007). Effects of flavonoids and phenolic acids on the inhibition of adipogenesis in 3T3-L1 adipocytes. J Agric Food Chem. 72, 2815-2823.
Huang, S., and Czech, M. P. (2007). The GLUT4 glucose transporter. Cell Metab. 5, 237-252.
Hui, H., Tang, G., and Go, V. L. (2009). Hypoglycemic herbs and their action mechanisms. Chin Med. 4, 1-11.
Jacobsen, S. E. (2003). The worldwide potential for quinoa (Chenopodium quinoa Willd.) Food rev. inter. 19, 167-177
Jarvill-Taylor, K. J., Anderson, R. A., and Graves, D. J. (2001). A hydroxychalcone derived from cinnamon functions as a mimetic for insulin in 3T3-L1 adipocytes. J Am Coll Nutri. 20, 327-336.
Johnson, A. M., and Olefsky, J. M. (2013). The origins and drivers of insulin resistance. Cell. 152, 673-684.
Jung, D. W., Ha, H. H., Zheng, X., Chang, Y. T., and Williams, D. R. (2011). Novel use of fluorescent glucose analogues to identify a new class of triazine-based insulin mimetics possessing useful secondary effects. Mol Biosyst. 7, 346-58.
Kahn, B. B., Alquier, T., Carling, D., and Hardie, D. G. (2005). AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 1, 15-25.
Kahn, C. R. (1985). The molecular mechanism of insulin action. Ann Rev Med.36, 429-451.
Kuljanabhagavad, T., and Wink, M. (2009). Biological activities and chemistry of saponins from Chenopodium quinoa Willd. Phytochem Rev. 8, 473-490.
Lazar, M. A. (2005). How obesity causes diabetes: not a tall tale. Science 307, 373-375.
Liu, F., Kim, J. K., Li, Y., Liu, X. Q., Li, J., and Chen, X. (2001). A extract of Lagerstroemia speciosa L has insulin like glucose uptake stimulatory and adipocyte differentiation inhibitory activities in 3T3-L1 cells. J Nutr. 131, 2242-2247.
Lloyd, P. G., Hardin, C. D., Sturek, M. (1999). Examining glucose transport in single vascular smooth muscle cells with a fluorescent glucose analog. Physiol Res. 48, 401-410.
Maiorana, A., Del Bianco, C., and Cianfarani, S. (2007). Adipose Tissue: A metabolic regulator. potential implications for the metabolic outcome of subjects born small for gestational Age (SGA). Rev Diabet Stud. 4, 134-146.
Maritim, A. C., Sanders, R. A., and Watkins, J. B., 3rd (2003). Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol. 17, 24-38.
Mizui, F., Kasai, R., Ohtani, K., Tanaka, O. (1990). . Saponins from bran of quinoa,
Chenopodium quinoa Willd. II. Chem Pharm Bull. 38, 375-377.
Nsimba, R. Y., Kikuzaki, H., Konishi, Y. (2008). Antioxidant activity of various extracts and fractions of Chenopodium quinoa and Amaranthus spp. seeds. Food Chem. 106, 760-766.
Ntambi, J. M., and Kim, Y. C. (2000). Adipocyte differentiation and gene expression. J Nutr. 130, 3122-3126.
Ogungbenle, H. N. (2003). Nutritional evaluation and functional properties of quinoa (Chenopodium quinoa) flour. Int J Food Sci Nutr. 54, 153-158.
Oishi, Y., Sakamoto, T., Udagawa, H., Taniguchi, H., Kobayashi-Hattori, K., Ozawa, Y., and Takita, T. (2007). Inhibition of increases in blood glucose and serum neutral fat by Momordica charantia saponin fraction. Biosci Biotech Biochem. 71, 735-740.
Park, S., Ahn, I. S., Kwon, D. Y., Ko, B. S., and Jun, W. K. (2008). Ginsenosides Rb1 and Rg1 suppress triglyceride accumulation in 3T3-L1 adipocytes and enhance β-cell insulin secretion and viability in min6 cells via PKA-dependent pathways. Biosci Biotech Biochem. 72, 2815-2823.
Park, S. H., Ko, S. K., and Chung, S. H. (2005). Euonymus alatus prevents the hyperglycemia and hyperlipidemia induced by high-fat diet in ICR mice. J Ethnopharmacol. 102, 326-335.
Pessin, J. E., and Saltiel, A. R. (2000). Signaling pathways in insulin action molecular targets of insulin resistance. J Clin Invest. 106, 165-169.
Qin, B., Nagasaki, M., Ren, M., Bajotto, G., Oshida, Y., and Sato, Y. (2003). Cinnamon extract (traditional herb) potentiates in vivo insulin-regulated glucose utilization via enhancing insulin signaling in rats. Diabetes Res Clin Pract. 62, 139-148.
Roffey, B., Atwal, A., and Kubow, S. (2006). Cinnamon water extracts increase glucose uptake but inhibit adiponectin secretion in 3T3-L1 adipose cells. Mol Nutr Food Res. 50, 739-745.
Rosen, E. D., and Spiegelman, B. M. (2006). Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444, 847-853.
Ruales, J., and Nair, B. M. (1992). Nutritional quality of the protein in quinoa (Chenopodium quinoa Willd) seeds. Plant Foods Hum Nutr. 42, 1-11.
Saito, T., Abe, D., and Sekiya, K. (2008). Sakuranetin induces adipogenesis of 3T3-L1 cells through enhanced expression of PPARγ2. Biochem Biophys Res Commun. 372, 835-839.
Salt, I. P., Connell, J. M. C., and Gould, G. W. (2000). 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) inhibits insulin-stimulated glucose transport in 3T3-L1 adipocytes. Diabetes. 49, 1649-1656.
Saltiel, A. R., and Kahn, C. R. (2001). Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 414, 799-806.
Scheepers, A., Joost, H., and Schurmann, A. (2004). The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. J Parenteral Enteral Nutr. 28, 364-371.
Semenkovich, C. F. (2005). TZDs and diabetes : testing the waters. Nat Med. 11, 822-824
Shang, W., Yang, Y., Zhou, L., Jiang, B., Jin, H., and Chen, M. (2008). Ginsenoside Rb1 stimulates glucose uptake through insulin-like signaling pathway in 3T3-L1 adipocytes. J Endocrinol. 198, 561-569.
Shepherd, P. R., and Kahn, B. B. (1999). Glucose transporters and insulin action-implications for insulin resistance and diabetes mellitus. N Engl J Med. 341, 248-257.
Shim, Y. J., Doo, H. K., Ahn, S. Y., Kim, Y. S., Seong, J. K., Park, I. S., and Min, B. H. (2003). Inhibitory effect of aqueous extract from the gall of Rhus chinensis on alpha-glucosidase activity and postprandial blood glucose. J Ethnopharmacol.85, 283-287.
Spiller, H. A. and Sawyer, S. S. (2006). Toxicology of oral antidiabetic medications. Am J Health Syst Pharm. 63, 929-938.
Thorens, B., and Mueckle, M. (2010). Glucose transporters in 21st Century. Am J Physiol Endocrinol Metab. 298, 141-145.
Touchstone, J. C. and Dobbins, M. F. (1983). Practice of thin layer chromatography. 2nd ed. New York.
Tsai, P. J., Wu, S. C., and Cheng, Y. K. (2008). Role of polyphenols in antioxidant capacity of napiergrass from different growing seasons. Food Chem. 106, 27-32.
Tsai, P. J., Sheu, C. H., Wu, P. H., and Sun, Y. F. (2010). Thermal and pH stability of betacyanin pigment of Djulis (Chenopodium formosanum) in Taiwan and their relation to antioxidant activity. J Agric Food Chem. 58, 1020-1025.
Tsai, P. J., Chen, Y. S., Sheu, C. H., and Chen, C. Y. (2011a). Effect of nanogrinding on the pigment and bioactivity of Djulis ( Chenopodium formosanum Koidz.). J Agric Food Chem. 59, 1814-1820.
Tsai, P. J., Hsiao, S. M., Chaung, H. C., Hong, C. Z., and Wang, C. L. (2011b). The LDL-cholesterol-lowering effects of nano-particled Djulis grains. In 'International Conference on Bioscience, Biochemistry and Bioinformatics', Vol. 5, pp. 218-221, Singapore.
Vazquez-Vela, M. E., Torres, N., and Tovar, A. R. (2008). White adipose tissue as endocrine organ and its role in obesity. Arch Med Res. 39, 715-728.
Wang, P. H., Tsai, M. J., Hsu, C. Y., Wang, C. Y., Hsu, H. K., and Weng, C. F. (2008). Toona sinensis Roem (Meliaceae) leaf extract alleviates hyperglycemia via altering adipose glucose transporter 4. Food Chem Toxicol. 46, 2554-2560.
Woldemichael, G. M. and Wink, M. (2001). Identification and biological activities of triterpene saponins from Chenopodium quinoa. J Agri Food Chem. 49, 2327-2332
Yamamoto, N., Ueda, M., Sato, T., Kawasaki, K., Sawada, K., Kawabata, K., and Ashida, H. (2011). Measurement of glucose uptake in cultured cells. Curr Protoc Pharmacol. Chapter 12, Unit 12 14 1-22.
Yang, Y. C., Hsu. H. K., Hwang, J. H., and Hong, S. J. (2003). Enhancement of glucose uptake in 3T3-L1 adipocytes by Toona sinesis leaf extract. Kaohsiung J Med Sci. 19, 327-331.
Zou, C. H., Wang, Y. J., Shen, Z. F. (2005). 2-NBDG as a fluorescent indicator for direct glucose uptake measurement. J Biochem Biophys Methods. 64, 207-215.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61292-
dc.description.abstract糖尿病是由於缺乏胰島素、胰島素作用不良或是兩者皆有缺陷,而導致高血糖的一種代謝性疾病。約90%的病患屬於第二型糖尿病,其主要的病因為胰島素阻抗,胰島素阻抗是由於周邊組織對於胰島素的反應不良,而使血液中的葡萄糖無法被攝取進入細胞中。台灣藜為藜科草本植物,是台灣的特有種,若不將其外殼去除,則味道苦澀,因此較少被人食用,近年來研究發現台灣藜的營養及機能性成分含量相當豐富,其可能的生理活性也日漸受到重視。本研究使用3T3-L1脂肪細胞進行葡萄糖攝取試驗,探討台灣藜中具調節血糖之活性成分。初步以六種溶劑進行台灣藜脫穀粒及外殼之萃取,結果顯示,外殼之水萃物可以顯著增加細胞的葡萄糖攝取量,因此進一步利用不同極性之溶劑進行區分,發現水層在低濃度就可以展現良好的降血糖活性。接著以XAD-7管柱層析後,分離出兩個主要的活性成分P1及P2。這兩個樣品在5~10 ppm下,就可以展現其降血糖活性。當在10 nM胰島素刺激下,P1具有協同胰島素的作用,而P2則會降低脂肪細胞之葡萄糖攝取量,推測P2可能具有類似胰島素的活性。zh_TW
dc.description.abstractDiabetes mellitus is a group of metabolic diseases characterized by high blood sugar resulting from defects in insulin secretion, insulin action or both. Most patients with type 2 diabetes are deficient in glucose uptake by muscle and fat cells due to peripheral insulin resistance. Chenopodium formosanum Koidz. (djulis) is a native pseudocereal plant grown in Taiwan, it possesses numerous nutrients and bioactive components. However, it tastes bitter if the husk is not removed. Mature 3T3-L1 adipocyte was used in this investigation as cell model to study the active hypoglycemic components of djulis. Initially, six solvents with different polarities were used to extract the whole seed or the husk of djulis. Djulis husk water crude extract (DHW) was found to significantly increase glucose uptake of 3T3-L1 cell. After solvent partition of the crude extract, the water layer showed the best glucose uptake activity at low concentrations. There were two components (P1and P2) isolated from the water layer by column chromatography. They showed hypoglycemic activity at 5~10 ppm. Co-treatment with 10 nM insulin, P1 showed synergistic effect with insulin, however, P2 reduced insulin-stimulated glucose uptake. P2 might act as an insulin-mimetic substance.en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:58:40Z (GMT). No. of bitstreams: 1
ntu-102-R00641025-1.pdf: 3036567 bytes, checksum: 6fce60d9b028b772ed9b27e9d3130110 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents中文摘要 I
英文摘要 II
縮寫表 III
目錄 IV
圖次 VII
表次 IX
附圖次 X
附表次 XI
壹、前言 1
貳、文獻整理 2
第一節、 材料介紹 2
一、 台灣藜簡介 2
二、 台灣藜成分與生理活性 2
三、 台灣藜之降血糖功效 5
(一) 抗氧化 6
(二) 促進周邊組織之葡萄糖攝取 6
(三) 抑制腸道水解酵素活性 7
四、 藜麥簡介 8
第二節、 糖尿病簡介 9
一、 血糖恆定 9
二、 胰島素 10
三、 葡萄糖轉運蛋白 11
(一) PI3K pathway 11
(二) c-Cbl-CAP pathway 12
四、 糖尿病定義及分類 15
第三節、 3T3-L1脂肪細胞模式 17
一、 脂肪組織與血糖恆定 17
二、 3T3-L1脂肪細胞簡介 19
第四節、 葡萄糖攝取試驗 21
一、 葡萄糖攝取試驗簡介 21
二、 3T3-L1脂肪細胞之葡萄糖攝取試驗 22
參、研究目的與實驗架構 28
第一節、研究目的 28
第二節、實驗架構 29
肆、材料與方法 32
第一節、 實驗材料與儀器設備 32
一、 實驗材料 32
二、 實驗細胞株 32
三、 化學藥品與試劑 32
四、 細胞實驗各培養溶液 34
五、 細胞實驗各種溶液配方 35
六、 層析材料 37
七、 化學分析儀器設備 37
八、 細胞實驗儀器設備 39
九、 實驗耗材 40
第二節、 實驗方法 41
一、 台灣藜外殼之一般組成分分析 41
二、 台灣藜之分離純化 44
(一) 樣品前處理 44
(二) 台灣藜粗萃物之製備 44
1. 水粗萃物之製備 44
2. 其它溶劑粗萃物之製備 44
(三) 台灣藜外殼水粗萃物 (DHW) 之溶劑區分 45
(四) 台灣藜外殼水粗萃物水層(DHW-W)之去除多醣 45
(五) 台灣藜外殼水粗萃物水層之酒精可溶層(W-Et)XAD-7 gel管柱層析 45
1. 管柱充填 (Packing) 45
2. 樣品注入 (Loading) 46
3. 沖提條件 (Eluting) 46
4. 薄層層析法 (Thin layer chromatography, TLC) 46
(六) 台灣藜DHW-W-Et-F2之分析型高效能液相層析 47
(七) 台灣藜DHW-W-Et-F2-2之製備型高效能液相層析 48
(八) 台灣藜DHW-W-Et-F2-2-Ⅱ peak 1(P1)& peak 2(P2)之製備型高效能液相層析 50
三、葡萄糖攝取試驗 50
(一) 前脂肪細胞3T3-L1之培養 50
(二) 細胞繼代及冷凍保存 50
(三) 前脂肪細胞3T3-L1之分化培養 51
(四) 葡萄糖攝取試驗 52
第三節、統計分析 54
伍、結果與討論 55
第一節、台灣藜外殼之一般組成分分析 55
第二節、台灣藜之分離純化 56
一、台灣藜粗萃物之製備 56
二、台灣藜外殼水粗萃物(DHW)之溶劑區分 57
三、台灣藜外殼水粗萃物水層(DHW-W)之酒精沉澱區分 58
四、台灣藜外殼水粗萃物水層之酒精可溶層(DHW-W-Et)之XAD-7管柱層析 59
五、台灣藜外殼DHW-W-Et-F2之高效能液相層析(HPLC) 61
六、台灣藜外殼DHW-W-Et-F2-2之高效能液相層析(HPLC) 64
七、台灣藜外殼DHW-W-Et-F2-2-Ⅱ之高效能液相層析(HPLC) 68
第三節、葡萄糖攝取試驗 71
一、脂肪細胞之分化培養 71
二、台灣藜之調節血糖活性評估 74
陸、結論 96
柒、參考文獻 97
捌、附錄 103
dc.language.isozh-TW
dc.title以脂肪細胞探討台灣藜中具調節血糖之活性成分zh_TW
dc.titleInvestigation of the Hypoglycemic Components of Chenopodium formosanum Koidz. by Glucose Uptake Assay in 3T3-L1 Adipocytesen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡碧仁,吳亮宜,魏國晉,何其儻,呂廷璋
dc.subject.keyword調節血糖,台灣藜,糖尿病,葡萄糖攝取試驗,3T3-L1脂肪細胞,zh_TW
dc.subject.keywordAnti-diabetic,Chenopodium formosanum Koidz.,diabetes mellitus,glucose uptake assay,3T3-L1 adipocytes,en
dc.relation.page113
dc.rights.note有償授權
dc.date.accepted2013-08-08
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
2.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved