Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61254
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳進庭(Chin-tin Chen)
dc.contributor.authorMu-Ching Huangen
dc.contributor.author黃睦晴zh_TW
dc.date.accessioned2021-06-16T10:56:12Z-
dc.date.available2015-08-20
dc.date.copyright2013-08-20
dc.date.issued2013
dc.date.submitted2013-08-08
dc.identifier.citation1. Ackroyd, R., et al., The history of photodetection and photodynamic therapy.
Photochem Photobiol, 2001. 74(5): p. 656-69.
2. Kriegmair, M., et al., Fluorescence photodetection of neoplastic urothelial
lesions following intravesical instillation of 5-aminolevulinic acid. Urology,
1994. 44(6): p. 836-41.
3. Stummer, W., et al., Technical principles for protoporphyrin-IX-fluorescence
guided microsurgical resection of malignant glioma tissue. Acta Neurochir
(Wien), 1998. 140(10): p. 995-1000.
4. Tsiftsoglou, A.S., A.I. Tsamadou, and L.C. Papadopoulou, Heme as key
regulator of major mammalian cellular functions: molecular, cellular, and
pharmacological aspects. Pharmacol Ther, 2006. 111(2): p. 327-45.
5. Yamamoto, M., et al., Structure, turnover, and heme-mediated suppression of
the level of mRNA encoding rat liver delta-aminolevulinate synthase. J Biol
Chem, 1988. 263(31): p. 15973-9.
6. Hua, Z., et al., Effectiveness of delta-aminolevulinic acid-induced
protoporphyrin as a photosensitizer for photodynamic therapy in vivo. Cancer
Res, 1995. 55(8): p. 1723-31.
7. Navone, N.M., et al., Mouse mammary carcinoma porphobilinogenase and
hydroxymethylbilane synthetase. Comp Biochem Physiol B, 1991. 98(1): p.
67-71.
8. Van Hillegersberg, R., et al., Selective accumulation of endogenously produced
porphyrins in a liver metastasis model in rats. Gastroenterology, 1992. 103(2): p.
647-51.
62
9. Gibson, S.L., et al., Relationship of delta-aminolevulinic acid-induced
protoporphyrin IX levels to mitochondrial content in neoplastic cells in vitro.
Biochem Biophys Res Commun, 1999. 265(2): p. 315-21.
10. Abels, C., et al., In vivo kinetics and spectra of 5-aminolaevulinic acid-induced
fluorescence in an amelanotic melanoma of the hamster. Br J Cancer, 1994.
70(5): p. 826-33.
11. Peng, Q., et al., 5-Aminolevulinic acid-based photodynamic therapy. Clinical
research and future challenges. Cancer, 1997. 79(12): p. 2282-308.
12. Berroeta, L., et al., A randomized study of minimal curettage followed by topical
photodynamic therapy compared with surgical excision for low-risk nodular
basal cell carcinoma. Br J Dermatol, 2007. 157(2): p. 401-3.
13. Fang, J.Y., et al., Enhancement of topical 5-aminolaevulinic acid delivery by
erbium:YAG laser and microdermabrasion: a comparison with iontophoresis
and electroporation. Br J Dermatol, 2004. 151(1): p. 132-40.
14. van den Akker, J.T., et al., Effect of elevating the skin temperature during
topical ALA application on in vitro ALA penetration through mouse skin and in
vivo PpIX production in human skin. Photochem Photobiol Sci, 2004. 3(3): p.
263-7.
15. Peng, Q., et al., Distribution of 5-aminolevulinic acid-induced porphyrins in
noduloulcerative basal cell carcinoma. Photochem Photobiol, 1995. 62(5): p.
906-13.
16. Pierre, M.B., et al., Oleic acid as optimizer of the skin delivery of
5-aminolevulinic acid in photodynamic therapy. Pharm Res, 2006. 23(2): p.
360-6.
17. Chang, S.C., et al., The efficacy of an iron chelator (CP94) in increasing
63
cellular protoporphyrin IX following intravesical 5-aminolaevulinic acid
administration: an in vivo study. J Photochem Photobiol B, 1997. 38(2-3): p.
114-22.
18. Tsai, J.C., et al., In vitro/in vivo correlations between transdermal delivery of
5-aminolaevulinic acid and cutaneous protoporphyrin IX accumulation and
effect of formulation. British Journal of Dermatology, 2002. 146(5): p. 853-862.
19. Sinha, A.K., et al., Methotrexate used in combination with aminolaevulinic acid
for photodynamic killing of prostate cancer cells. Br J Cancer, 2006. 95(4): p.
485-95.
20. Moan, J., et al., Pharmacology of protoporphyrin IX in nude mice after
application of ALA and ALA esters. Int J Cancer, 2003. 103(1): p. 132-5.
21. Hurlimann, A.F., G. Hanggi, and R.G. Panizzon, Photodynamic therapy of
superficial basal cell carcinomas using topical 5-aminolevulinic acid in a
nanocolloid lotion. Dermatology, 1998. 197(3): p. 248-54.
22. Turchiello, R.F., et al., Cubic phase gel as a drug delivery system for topical
application of 5-ALA, its ester derivatives and m-THPC in photodynamic
therapy (PDT). J Photochem Photobiol B, 2003. 70(1): p. 1-6.
23. Lieb, S., R.M. Szeimies, and G. Lee, Self-adhesive thin films for topical delivery
of 5-aminolevulinic acid. Eur J Pharm Biopharm, 2002. 53(1): p. 99-106.
24. Casas, A., et al., ALA and ALA hexyl ester in free and liposomal formulations for
the photosensitisation of tumour organ cultures. Br J Cancer, 2002. 86(5): p.
837-42.
25. Sabol, Z. and L. Kipke-Sabol, [Neurofibromatosis type 1 (von Recklinghausen's
disease or peripheral neurofibromatosis): from phenotype to gene]. Lijec Vjesn,
2005. 127(11-12): p. 303-11.
64
26. Reynolds, R.M., et al., Von Recklinghausen's neurofibromatosis:
neurofibromatosis type 1. Lancet, 2003. 361(9368): p. 1552-4.
27. Riccardi, V.M.a.J.S., Neurofibromatosis, Phenotype, Natural History, and
Pathogenesis. Journal of Neuropathology & Experimental Neurology, 1992. 51:
p. 658.
28. Xu, G.F., et al., The catalytic domain of the neurofibromatosis type 1 gene
product stimulates ras GTPase and complements ira mutants of S. cerevisiae.
Cell, 1990. 63(4): p. 835-41.
29. Yunoue, S., et al., Neurofibromatosis type I tumor suppressor neurofibromin
regulates neuronal differentiation via its GTPase-activating protein function
toward Ras. J Biol Chem, 2003. 278(29): p. 26958-69.
30. Martuza, R.L., et al., Melanin macroglobules as a cellular marker of
neurofibromatosis: a quantitative study. J Invest Dermatol, 1985. 85(4): p.
347-50.
31. Elefteriou, F., et al., Skeletal abnormalities in neurofibromatosis type 1:
approaches to therapeutic options. Am J Med Genet A, 2009. 149A(10): p.
2327-38.
32. North, K.N., et al., Cognitive function and academic performance in
neurofibromatosis. 1: consensus statement from the NF1 Cognitive Disorders
Task Force. Neurology, 1997. 48(4): p. 1121-7.
33. Carmi, D., et al., Growth, puberty, and endocrine functions in patients with
sporadic or familial neurofibromatosis type 1: a longitudinal study. Pediatrics,
1999. 103(6 Pt 1): p. 1257-62.
34. Friedman, J.M., et al., Cardiovascular disease in neurofibromatosis 1: report of
the NF1 Cardiovascular Task Force. Genet Med, 2002. 4(3): p. 105-11.
65
35. Menon, A.G., et al., Chromosome 17p deletions and p53 gene mutations
associated with the formation of malignant neurofibrosarcomas in von
Recklinghausen neurofibromatosis. Proc Natl Acad Sci U S A, 1990. 87(14): p.
5435-9.
36. Gottfried, O.N., et al., Molecular, genetic, and cellular pathogenesis of
neurofibromas and surgical implications. Neurosurgery, 2006. 58(1): p. 1-16;
discussion 1-16.
37. Ferner, R.E., et al., Guidelines for the diagnosis and management of individuals
with neurofibromatosis 1. J Med Genet, 2007. 44(2): p. 81-8.
38. http://www.who.int/mediacentre/factsheets/fs297/en/.
39. Litman, T., et al., From MDR to MXR: new understanding of multidrug
resistance systems, their properties and clinical significance. Cell Mol Life Sci,
2001. 58(7): p. 931-59.
40. Doyle, L.A., et al., A multidrug resistance transporter from human MCF-7
breast cancer cells. Proc Natl Acad Sci U S A, 1998. 95(26): p. 15665-70.
41. Allikmets, R., et al., A human placenta-specific ATP-binding cassette gene
(ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer
Res, 1998. 58(23): p. 5337-9.
42. Knutsen, T., et al., Amplification of 4q21-q22 and the MXR gene in
independently derived mitoxantrone-resistant cell lines. Genes Chromosomes
Cancer, 2000. 27(1): p. 110-6.
43. Bailey-Dell, K.J., et al., Promoter characterization and genomic organization of
the human breast cancer resistance protein (ATP-binding cassette transporter
G2) gene. Biochim Biophys Acta, 2001. 1520(3): p. 234-41.
44. Hegedus, C., et al., Ins and outs of the ABCG2 multidrug transporter: an update
66
on in vitro functional assays. Adv Drug Deliv Rev, 2009. 61(1): p. 47-56.
45. Maliepaard, M., et al., Subcellular localization and distribution of the breast
cancer resistance protein transporter in normal human tissues. Cancer Res,
2001. 61(8): p. 3458-64.
46. Zhou, S., et al., The ABC transporter Bcrp1/ABCG2 is expressed in a wide
variety of stem cells and is a molecular determinant of the side-population
phenotype. Nat Med, 2001. 7(9): p. 1028-34.
47. Krishnamurthy, P., et al., The stem cell marker Bcrp/ABCG2 enhances hypoxic
cell survival through interactions with heme. J Biol Chem, 2004. 279(23): p.
24218-25.
48. Susanto, J., et al., Porphyrin homeostasis maintained by ABCG2 regulates
self-renewal of embryonic stem cells. PLoS One, 2008. 3(12): p. e4023.
49. Saison, C., et al., Null alleles of ABCG2 encoding the breast cancer resistance
protein define the new blood group system Junior. Nat Genet, 2012. 44(2): p.
174-7.
50. Helias, V., et al., ABCB6 is dispensable for erythropoiesis and specifies the new
blood group system Langereis. Nat Genet, 2012. 44(2): p. 170-3.
51. Peyrard, T., et al., Fatal hemolytic disease of the fetus and newborn associated
with anti-Jr. Transfusion, 2008. 48(9): p. 1906-11.
52. Garcia-Escarp, M., et al., Flow cytometry-based approach to ABCG2 function
suggests that the transporter differentially handles the influx and efflux of drugs.
Cytometry A, 2004. 62(2): p. 129-38.
53. Robey, R.W., et al., Pheophorbide a is a specific probe for ABCG2 function and
inhibition. Cancer Res, 2004. 64(4): p. 1242-6.
54. Robey, R.W., et al., ABCG2-mediated transport of photosensitizers: potential
67
impact on photodynamic therapy. Cancer Biol Ther, 2005. 4(2): p. 187-94.
55. Zhou, S., et al., Increased expression of the Abcg2 transporter during erythroid
maturation plays a role in decreasing cellular protoporphyrin IX levels. Blood,
2005. 105(6): p. 2571-6.
56. Robey, R.W., et al., The livestock photosensitizer, phytoporphyrin
(phylloerythrin), is a substrate of the ATP-binding cassette transporter ABCG2.
Res Vet Sci, 2006. 81(3): p. 345-9.
57. Zheng, X., et al., Conjugation of
2-(1'-hexyloxyethyl)-2-devinylpyropheophorbide-a (HPPH) to carbohydrates
changes its subcellular distribution and enhances photodynamic activity in vivo.
J Med Chem, 2009. 52(14): p. 4306-18.
58. Tamura, A., et al., Functional validation of the genetic polymorphisms of human
ATP-binding cassette (ABC) transporter ABCG2: identification of alleles that
are defective in porphyrin transport. Mol Pharmacol, 2006. 70(1): p. 287-96.
59. Hegedűs, C., et al., Ins and outs of the ABCG2 multidrug transporter: An update
on in vitro functional assays. Advanced Drug Delivery Reviews, 2009. 61(1): p.
47-56.
60. Scheffer, G.L., et al., Breast cancer resistance protein is localized at the plasma
membrane in mitoxantrone- and topotecan-resistant cell lines. Cancer Res, 2000.
60(10): p. 2589-93.
61. Diop, N.K. and C.A. Hrycyna, N-Linked glycosylation of the human ABC
transporter ABCG2 on asparagine 596 is not essential for expression, transport
activity, or trafficking to the plasma membrane. Biochemistry, 2005. 44(14): p.
5420-9.
62. Nakagawa, H., et al., Disruption of N-linked glycosylation enhances
68
ubiquitin-mediated proteasomal degradation of the human ATP-binding cassette
transporter ABCG2. FEBS J, 2009. 276(24): p. 7237-52.
63. Rabindran, S.K., et al., Reversal of a novel multidrug resistance mechanism in
human colon carcinoma cells by fumitremorgin C. Cancer Res, 1998. 58(24): p.
5850-8.
64. Robey, R.W., et al., A functional assay for detection of the mitoxantrone
resistance protein, MXR (ABCG2). Biochim Biophys Acta, 2001. 1512(2): p.
171-82.
65. Stauber, R.H., et al., Development and applications of enhanced green
fluorescent protein mutants. Biotechniques, 1998. 24(3): p. 462-6, 468-71.
66. Takada, T., H. Suzuki, and Y. Sugiyama, Characterization of polarized
expression of point- or deletion-mutated human BCRP/ABCG2 in LLC-PK1
cells. Pharm Res, 2005. 22(3): p. 458-64.
67. Haider, A.J., et al., Dimerization of ABCG2 analysed by bimolecular
fluorescence complementation. PLoS One, 2011. 6(10): p. e25818.
68. Kikuchi, S., et al., Radixin deficiency causes conjugated hyperbilirubinemia
with loss of Mrp2 from bile canalicular membranes. Nat Genet, 2002. 31(3): p.
320-5.
69. Luciani, F., et al., P-glycoprotein-actin association through ERM family
proteins: a role in P-glycoprotein function in human cells of lymphoid origin.
Blood, 2002. 99(2): p. 641-8.
70. Hegedus, T., et al., C-terminal phosphorylation of MRP2 modulates its
interaction with PDZ proteins. Biochem Biophys Res Commun, 2003. 302(3): p.
454-61.
71. Short, D.B., et al., An apical PDZ protein anchors the cystic fibrosis
69
transmembrane conductance regulator to the cytoskeleton. J Biol Chem, 1998.
273(31): p. 19797-801.
72. Harris, M.J., et al., Identification of the apical membrane-targeting signal of the
multidrug resistance-associated protein 2 (MRP2/MOAT). J Biol Chem, 2001.
276(24): p. 20876-81.
73. Moyer, B.D., et al., A PDZ-interacting domain in CFTR is an apical membrane
polarization signal. J Clin Invest, 1999. 104(10): p. 1353-61.
74. Orban, T.I., et al., Combined localization and real-time functional studies using
a GFP-tagged ABCG2 multidrug transporter. Biochem Biophys Res Commun,
2008. 367(3): p. 667-73.
75. Sarkadi, B., et al., Expression of the human multidrug resistance cDNA in insect
cells generates a high activity drug-stimulated membrane ATPase. J Biol Chem,
1992. 267(7): p. 4854-8.
76. Telbisz, A., et al., Membrane cholesterol selectively modulates the activity of the
human ABCG2 multidrug transporter. Biochim Biophys Acta, 2007. 1768(11):
p. 2698-713.
77. Novo, M., G. Huttmann, and H. Diddens, Chemical instability of
5-aminolevulinic acid used in the fluorescence diagnosis of bladder tumours. J
Photochem Photobiol B, 1996. 34(2-3): p. 143-8.
78. Darnell, G. and D.R. Richardson, The potential of iron chelators of the pyridoxal
isonicotinoyl hydrazone class as effective antiproliferative agents III: the effect
of the ligands on molecular targets involved in proliferation. Blood, 1999. 94(2):
p. 781-92.
79. Kwok, J.C. and D.R. Richardson, The iron metabolism of neoplastic cells:
alterations that facilitate proliferation? Crit Rev Oncol Hematol, 2002. 42(1): p.
70
65-78.
80. Le, N.T. and D.R. Richardson, The role of iron in cell cycle progression and the
proliferation of neoplastic cells. Biochim Biophys Acta, 2002. 1603(1): p.
31-46.
81. Kalinowski, D.S. and D.R. Richardson, The evolution of iron chelators for the
treatment of iron overload disease and cancer. Pharmacol Rev, 2005. 57(4): p.
547-83.
82. Krieg, R.C., et al., Cell-type specific protoporphyrin IX metabolism in human
bladder cancer in vitro. Photochem Photobiol, 2000. 72(2): p. 226-33.
83. Krieg, R.C., et al., Metabolic characterization of tumor cell-specific
protoporphyrin IX accumulation after exposure to 5-aminolevulinic acid in
human colonic cells. Photochem Photobiol, 2002. 76(5): p. 518-25.
84. 洪士軒, 五氨基酮戊酸應用於第一型神經纖維瘤病治療之研究探討, in 生
化科技學系2011, 國立台灣大學.
85. Strand, L.J., et al., Heme biosynthesis in intermittent acute prophyria: decreased
hepatic conversion of porphobilinogen to porphyrins and increased delta
aminolevulinic acid synthetase activity. Proc Natl Acad Sci U S A, 1970. 67(3):
p. 1315-20.
86. Correa Garcia, S., et al., Mechanistic studies on delta-aminolevulinic acid
uptake and efflux in a mammary adenocarcinoma cell line. Br J Cancer, 2003.
89(1): p. 173-7.
87. Rud, E., et al., 5-aminolevulinic acid, but not 5-aminolevulinic acid esters, is
transported into adenocarcinoma cells by system BETA transporters.
Photochem Photobiol, 2000. 71(5): p. 640-7.
88. Novotny, A., et al., Mechanisms of 5-aminolevulinic acid uptake at the choroid
71
plexus. J Neurochem, 2000. 75(1): p. 321-8.
89. Doring, F., et al., Delta-aminolevulinic acid transport by intestinal and renal
peptide transporters and its physiological and clinical implications. J Clin
Invest, 1998. 101(12): p. 2761-7.
90. Taketani, S., Y. Adachi, and Y. Nakahashi, Regulation of the expression of
human ferrochelatase by intracellular iron levels. Eur J Biochem, 2000. 267(15):
p. 4685-92.
91. Ludwig, H., et al., Prevalence of iron deficiency across different tumors and its
association with poor performance status, disease status and anemia. Ann
Oncol, 2013.
92. Berg, K., et al., The influence of iron chelators on the accumulation of
protoporphyrin IX in 5-aminolaevulinic acid-treated cells. Br J Cancer, 1996.
74(5): p. 688-97.
93. Nick, H., et al., Development of tridentate iron chelators: from desferrithiocin to
ICL670. Curr Med Chem, 2003. 10(12): p. 1065-76.
94. Pye, A. and A. Curnow, Direct comparison of delta-aminolevulinic acid and
methyl-aminolevulinate-derived protoporphyrin IX accumulations potentiated by
desferrioxamine or the novel hydroxypyridinone iron chelator CP94 in cultured
human cells. Photochem Photobiol, 2007. 83(3): p. 766-73.
95. Yu, Y., Z. Kovacevic, and D.R. Richardson, Tuning cell cycle regulation with
an iron key. Cell Cycle, 2007. 6(16): p. 1982-94.
96. Chai, S., K.K. To, and G. Lin, Circumvention of multi-drug resistance of cancer
cells by Chinese herbal medicines. Chin Med, 2010. 5: p. 26.
97. Ishikawa, T., Pharmacogenomics in Multidrug Resistance. Encyclopedia of
Cancer. 2008. 2304.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61254-
dc.description.abstract五胺基酮戊酸光動力療法(ALA-mediated Photodynamic Therapy, ALA-PDT),主要是利用外源投予5-aminolevulinic acid (ALA) 的方式,藉由細胞中血紅素生成路徑代謝成內生性的光感物質PpIX。由於其具有腫瘤選擇性的優點,本實驗室希望將ALA-PDT 發展成治療第一型神經纖維瘤(Neurofibromatosis type I, NF1)的療法。實驗室先前研究結果顯示利用ALA-PDT 搭配其他藥物處理NF1細胞株,對於細胞毒殺的效果產生協同效應,其中主要原因是在在這些藥物存在下細胞內由ALA 所代謝產生的光感物質PpIX 之累積增加,進而達到增強光動力治療的效果。CX1 造成PpIX 之累積量提升,可能的影響機制包括以下幾點: (1)增加細胞對於ALA 的吸收;(2)參與在原血紅素生成路徑中;(3)抑制PpIX或其前軀物排出細胞外。有研究指出PpIX 或其前軀物會透過ABCG2轉運幫浦排出至細胞外,而ABCG2 近年來被證實與腫瘤的多重抗藥性(multidrug resistance,MDR)有關,因此在本篇研究中我們首要探討的是這些藥物是否藉由影響ABCG2 而提升PpIX 之累積,藉由了解這些藥物是否為ABCG2 之調節者,未來或許能夠將這些藥物發展為治療抗藥性癌細胞的合併用藥。zh_TW
dc.description.abstractALA-mediated Photodynamic Therapy (ALA-PDT) is performed by exogenous administration of 5-aminolevulinic acid (ALA). Due to its tumor selective advantage, we intend to develop ALA-PDT for the treatment of Neurofibromatosis type I (NFI). Previously, we found that certain chemical compound can synergistically enhance ALA-PDT by elevating the level of PpIX in S462 cell. The mechanisms involved in enhancing PpIX accumulation might be: (1) enhances ALA uptake; (2) alters heme biosynthesis pathway; (3) inhibits PpIX or its precursor efflux from cell. It has been shown that PpIX and/or its precursors are the substrate of ABCG2. Given the role of ABCG2 that confers tumor multidrug resistance (MDR), the prime purpose of this study is to verify whether these compound is a modulator of ABCG2.en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:56:12Z (GMT). No. of bitstreams: 1
ntu-102-R00b22021-1.pdf: 6743681 bytes, checksum: 1b892ea56838973a1e18252574662ef1 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents摘要 I
Abstract II
目錄 III
圖目錄 VII
第一章 緒論 1
1.1 光動力治療(Photodynamic Therapy, ALA-PDT)
1.1.1 發展起源 1
1.1.2 光動力治療的作用機制 1
1.1.3 五胺基酮戊酸(ALA) 1
1.1.3.1 原血紅素生成路徑(heme biosynthetic pathway) 2
1.1.3.2 臨床優勢 3
1.1.3.3 臨床上應用 3
1.1.3.4 缺點與改良 4
1.2 第一型神經纖維瘤NF1 5
1.2.1 病理機轉 5
1.2.2 臨床表徵 6
1.3 多重抗藥性 (Multi-drug resistance, MDR) 7
1.3.1 多重抗藥性機制 7
1.3.2 ABCG2 8
1.3.2.1 ABCG2 基本介紹 8
1.3.2.2 ABCG2 表現 8
1.3.2.3 ABCG2 對於癌細胞多重抗藥性之重要性 9
1.3.2.4 ABCG2 對於光動力之影響 10
1.4 研究動機與目的 10
IV
第二章
材料與方法 12
2.1 藥品與儀器 12
2.1.1 藥品 12
2.1.2 細胞培養耗材 14
2.1.3 儀器 14
2.2 細胞株 (Cell line) 15
2.3 細胞培養與繼代 15
2.4 細胞解凍與冷凍 16
2.5 細胞計數 17
2.6 表現ABCG2 於細胞中 17
2.6.1 建構ABCG2 基因質體 17
2.6.2 建立大量表現ABCG2 基因之細胞株 18
2.6.3 分析ABCG2 表現位置 18
2.7 mRNA 定量分析 18
2.7.1 RNA 萃取 (RNA extraction) 18
2.7.2 反轉錄 (Reverse Transcription, RT) 19
2.7.3 聚合酶鏈鎖反應 (Polymerase Chain Reaction, PCR) 19
2.7.4 洋菜膠體電泳分析 20
2.8 西方墨點法 (Western blot) 20
2.8.1 蛋白質萃取 (Protein extraction) 20
2.8.2 烷基硫酸鈉聚丙醯胺凝膠電泳 (SDS-PAGE) 21
2.8.3 化學冷光免疫分析(Chemiluminescence Immunoassay, CLIA) 21
2.9 藥物含量分析 22
2.9.1 光感物質累積試驗 22
2.9.2 Mitoxantrone 排出試驗 22
V
2.9.3 PpIX 排出試驗 23
2.9.4 ALA 累積量實驗 23
2.10 統計分析 24
第三章 結果 25
3.1 CX1 可有效提升多種光感物質於細胞中之累積量 25
3.1.1 CX1 可提升細胞中PpIX 之累積量 25
3.1.2 CX1 對於另外兩種藉由ABCG2 排出之光感物質的影響 25
3.2 CX1 對於ABCG2 之影響 25
3.2.1 C 端帶有GFP 之ABCG2 無法實行正常功能 26
3.2.1.1 大量表現ABCG2 之細胞,其藥物累積程度與正常細胞無差異 26
3.2.1.2 C 端帶有GFP 之ABCG2 沒有正確表現於細胞膜上 26
3.2.2 轉染N 端帶有GFP 之ABCG2 於HEK293 細胞中 27
3.2.3 CX1 對於ABCG2 的影響並不明顯 28
3.3 細胞密度是影響CX1 效果之重要因素 29
3.3.1 CX1 對於PpIX 累積量之提升程度於細胞密度高時較為顯著 29
3.3.2 CX1 類似物對於PpIX 累積量之影響同樣受細胞密度影響 29
3.4 細胞密度可能的影響因子 30
3.4.1 細胞密度對培養液pH 值之影響 30
3.4.2 細胞密度對細胞內鐵離子含量的影響 30
3.5 CX1 對於ALA 累積量之影響 31
第四章討論 32
4.1 CX1 對於ABCG2 之影響 32
4.1.1 S462 細胞中ABCG2 之表現 32
4.1.2 ABCG2/GFP 融合蛋白 33
4.2 細胞密度對CX1 之效果有顯著影響 35
VI
4.2.1 細胞密度對培養液pH 值之影響 35
4.2.2 細胞密度影響細胞內鐵離子含量 35
4.3 CX1 對於PpIX 累積量提升之機制探討 37
4.3.1 CX1 對ALA 吸收之影響-CX1 能夠使細胞內ALA 累積量略微增加 37
4.3.2 CX1 對原血紅素生成路徑之影響-CX1 可能扮演鐵離子螯和劑之角色 38
4.3.3 CX1 對PpIX 排出之影響-CX1 主要不是影響ABCG2 39
第五章結論 40
參考文獻 61
dc.language.isozh-TW
dc.subjectALA-PDTzh_TW
dc.subjectMDRzh_TW
dc.subjectABCG2zh_TW
dc.titleCX1對於增進五胺基酮戊酸光動力治療之機制探討zh_TW
dc.titleThe Action Mechanisms of Compound X1 in Enhancing
ALA Mediated Photodynamic Therapy
en
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許瑞祥(Ruey-Shyang Hseu),黃慶璨(Ching-Tsan Huang),蔡翠敏(Tsui-min Tsai)
dc.subject.keywordALA-PDT,ABCG2,MDR,zh_TW
dc.relation.page71
dc.rights.note有償授權
dc.date.accepted2013-08-09
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
6.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved