Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61106
Title: 乳房彈性超音波之電腦輔助診斷
Computer-aided Diagnosis for Breast Elastography
Authors: Shao-Chien Chang
章少謙
Advisor: 張瑞峰(Ruey-Feng Chang)
Keyword: 乳癌,彈性超音波,電腦輔助診斷,
Breast cancer,Elastography,Computer-aided diagnosis,
Publication Year : 2013
Degree: 博士
Abstract: 根據統計,乳癌是全球女性因癌症死亡的第二大主因。在所有應用超音波來做乳房癌症篩檢的技術當中,彈性超音波是一種簡單而有效的方式。某些臨床上的研究指出,彈性超音波可藉由測量正常組織與病灶部位之組織的彈性程度差異,進而區分出良性及惡性的乳房腫瘤。然而,不同的放射科醫師對於一些腫瘤特徵如:腫瘤邊界、腫瘤寬度及腫瘤面程等會持有不同意見。因此不同的觀察者對於診斷結果會有不同的看法。基於上述的理由,本篇研究主要的目的就是致力於發展一套應用於彈性超音波,同時不受觀察者影響的電腦輔助診斷系統。目前已利用等階集合法實作自動腫瘤切割的技術,並利用模糊演算法對彈性圖中腫瘤內部的組織分類,進而由醫生所選的影像或是整段彈性超音波當中擷取腫瘤特徵進行診斷。此外,我們也設計一套量化影像的方式,藉由分析彈性超音波中之彈性圖裡的組織彈性資料分佈,去選擇最適合用於診斷之影像,同時研究如何將B-mode及彈性圖當中分別取出的特徵作結合,以利提升診斷之準確率。
According to statistics, breast cancer is the global second-leading cause of cancer death among women. Among all of ultrasonic techniques for breast ultrasound examination, elastography is an easily performed and efficient component of the ultrasound examination for breast. Some clinical studies had reported elastography is used to differentiate benign from malignant breast lesions based on evaluating the difference in tissue strain between normal and diseased tissue. However, diagnostic results are also observer dependent, i.e. different physicians may have different opinions on the lesion characteristics such as boundary, width, and area. Therefore the main purpose of this study is to investigate observer-independent computer-aided diagnostic schemes on ultrasound elastography. Currently we had developed an automatic tumor segmentation technique based on the level set algorithm. Tissues within the lesion on the elastogram were classified using the fuzzy c-means algorithm. Elastographic features were extracted from the physician-selected slice or from the entire sequence to diagnose tumors. In addition, an image quantification method based on analyzing the distribution of tissue strains will be used to automatically choose representative slice for diagnosis. Furthermore, features respectively extracted from B-mode image and elastogram will be combined to improve the diagnostic performance.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61106
Fulltext Rights: 有償授權
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-102-1.pdf
  Restricted Access
3.29 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved