請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6060完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳復國(Fuh-Kuo Chen) | |
| dc.contributor.author | Chih-Kai Chang | en |
| dc.contributor.author | 張智凱 | zh_TW |
| dc.date.accessioned | 2021-05-16T16:20:13Z | - |
| dc.date.available | 2015-08-23 | |
| dc.date.available | 2021-05-16T16:20:13Z | - |
| dc.date.copyright | 2013-08-23 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-05 | |
| dc.identifier.citation | [1] M. Banua, M. Takamura, T. Hama, O. Naidim, C. Teodosiu, and A. Makinouchi, “Simulation of springback and wrinkling in stamping of a dual phase steel rail-shaped part”, Journal of Materials Processing Technology, Vol. 173, pp. 178-184, 2006.
[2] W. Thomas, T. Oenoki and T. Altan, “Process simulation in stamping-recent applications for product and process design”, Journal of Materials Processing Technology, Vol. 98, pp. 232-243, 2000. [3] R. H. Wagoner and M. Li, “Simulation of springback: through-thickness integration”, International Journal of Plasticity, Vol. 23, pp. 345-360, 2007. [4] J. H. Song, H. Huh, and S. H. Kim, “Stress-based springback reduction of a channel shaped auto-body part with high-strength steel using response surface methodology”, Journal of Engineering Materials and Technology, Vol. 129, pp. 397-406, 2007. [5] 劉士維, “先進高強度鋼板沖壓成形之回彈分析”, 國立台灣大學機械工程研究所碩士論文, 2008. [6] A. Nasser, A. Yadav, P. Pathak, and T. Altan, “Determination of the flow stress of five AHSS sheet materials (DP 600, DP 780, DP 780-CR, DP 780-HY and TRIP 780) using the uniaxial tensile and the biaxial Viscous Pressure Bulge (VPB) tests”, Journal of Materials Processing Technology, pp. 429-436, 2010. [7] P. J. Armstrong and C. O. Frederick, “A mathematical representation of the multiaxial Bauschinger effect”, GEGB report RD/B/N731. Berkeley Nuclear Laboratories, Material at high temperatures 24(1), pp. 1–26, 1966. [8] Y. F. Dafalias, and E. P. Popov, “Plastic internal variables formalism of cyclic plasticity”, ASME Journal of Applied Mechanics, Vol. 43, pp. 645–651, 1976. [9] Y. F. Dafalias, “The plastic spin”, ASME Journal of Applied Mechanics, Vol. 52, pp. 865–871,1985. [10] Y. F. Dafalias and M. M. Rashid, “The effect of plastic spin on anisotropic material behavior”, International Journal of Plasticity, Vol. 5, pp. 227–246, 1989. [11] N. Ohno and J. D.Wang, “Nonlinear kinematic hardening rule with critical state of dynamic recovery, part I: formulation and basic features for ratchetting behavior”, International Journal of Plasticity, Vol. 9, pp. 3575–3590, 1993. [12] J. L. Chaboche, K. Dang-Van, and G. Cordier, “Modelization of the Strain Memory Effect on the Cyclic Hardening of 316 Stainless Steels”, SMiRT-5, Div. L, Paper No. L. 11/3, 1979. [13] J. L. Chaboche and G. Rousselier, “On the plastic and viscoplastic constitutive equations”, part I and II. ASME Journal of Pressure Vessel Technology, Vol. 105, pp. 153–164, 1983. [14] F. Yoshida, T. Uemori, and K. Fujiwara, “Elastic-plastic behavior of steel sheet under in-plane cyclic tension-compression at large strain”, International Journal of Plasticity, Vol. 18, pp. 633–659,2002. [15] F. Yoshida and T. Uemori, “A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation”, International Journal of Plasticity, Vol. 18, pp. 661–686, 2002. [16] N. Christodoulou, O. T. Woo, and S. R. MacEwen, “Effect of stress reversals on the work hardening behaviour of polycrystalline copper”, Acta Metall, Vol. 34, pp. 1553–1562,1986. [17] Z. Hu, E. F. Rauch, and C. Teodosiu, “Work-hardening behavior of mild steel under stress reversal at finite strains”, International Journal of Plasticity, Vol. 8, pp. 839–856, 1992. [18] 蔡恒光, “先進高強度鋼板反覆拉壓與雙軸拉伸變形特性之研究”, 國立台灣大學機械工程研究所博士論文, 2012. [19] Y. S. Suh, F. I. Saunders, and R. H. Wagoner, “Anisotropic yield functions with plastic-strain-induced anisotropy”, International Journal of Plasticity, Vol. 12, pp. 417-438, 1996. [20] L. Wang and T. C. Lee, “The effect of yield criteria on the forming limit curve prediction and the deep drawing process simulation”, International Journal of Machine Tools & Manufacture, Vol. 46, pp. 988-995, 2006. [21] C. Gomes, O. Onipede1, and M. Lovell, “Investigation of springback in high strength anisotropic steels”, Journal of Materials Processing Technology, Vol. 159, pp. 91-98, 2005. [22] D. C. Ahn, J. W. Yoon, and K. Y. Kim, “Modeling of anisotropic plastic behavior of ferritic stainless steel sheet”, International Journal of Mechanical Sciences, Vol. 51, pp. 718-725, 2009. [23] A. Forcellese, “Computer aided engineering of the sheet bending process”, Journal of Materials Processing Technology, Vol. 60, pp. 225-232, 1996. [24] K. Mori, K. Akita, and Y. Abe, “Springback behavior in bending of ultra-high-strength steel sheets using CNC servo press”, International Journal of Machine Tools & Manufacture, Vol. 47, pp. 321-325, 2007. [25] 蘇昱竹, “先進高強度鋼板沖壓成形回彈現象之研究”, 國立台灣大學機械工程研究所碩士論文, 2007. [26] M. Lee, D. Kim, C. Kim, M. L. Wenner, and K. Chung, ”Springback evaluation of automotive sheets based on isotropic–kinematic hardening laws and non-quadratic anisotropic yield functions, part III: applications”, International Journal of Plasticity, Vol. 21, pp. 915-953, 2005. [27] K. Yi, K. K. Choi, N. H. Kim, and M. E. Botkin, “Design sensitivity analysis and optimization for minimizing springback of sheet-formed part”, International Journal for Numerical Methods in Engineering, Vol. 71, pp. 1483-1511, 2007. [28] J. W. Yoon, D. Y. Yang, and K. Chung, “Elasto-plastic finite element method based on incremental deformation theory and continuum based shell elements for planar anisotropic sheet materials”, Computer Methods in Applied Mechanics and Engineering, Vol. 174, pp. 23-56, 1999. [29] 魏華佐, “先進高強度鋼板沖壓成形扭曲現象之研究”, 國立台灣大學機械工程研究所碩士論文, 2010. [30] 周暐宬, “高強度汽車結構件沖壓成形之扭曲現象分析”, 國立台灣大學機械工程研究所碩士論文, 2012. [31] H. S. Cheng, J. Cao, and Z. C. Xia, “An accelerated springback compensation method”, International Journal of Mechanical Sciences, Vol. 49, pp. 267-279, 2007. [32] 江子欣, “先進高強度鋼板沖壓模具設計之有限元素分析”, 國立台灣大學機械工程研究所碩士論文, 2009. [33] R. Lingbeek, J. Huetink, S. Ohnimus, M. Petzoldt, and J. Weiher, “The development of a finite elements based springback compensation tool for sheet metal products”, Journal of Materials Processing Technology, Vol. 169, pp. 115-125, 2005. [34] T. Schonbach and T. Bauer, “New method to calculate and compensate springback”, Proceedings of NUMISHEET 2008, pp. 515-520, 2008. [35] T. Meinders, I. A. Burchitz, M. H. A. Bonte, and R. A. Lingbeek, “Numerical product design: Springback prediction, compensation and optimization”, International Journal of Machine Tools & Manufacture, Vol. 48, pp. 499-514, 2008. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6060 | - |
| dc.description.abstract | 在環保意識高漲與車身輕量化之需求下,目前各大車廠開發時應用高強度鋼板已經是明確之趨勢。但由於鋼板強度的提高,高強度鋼板成形性低於一般低強度鋼板,故高強度汽車沖壓件,例如保險桿於深引伸時,其破裂情況更加嚴重,使過去低強度保險桿之模具設計法則已無法完全套用於高強度保險桿之沖壓成形。又因鋼板強度提升,成形後之回彈缺陷也較一般低強度鋼板明顯,造成回彈模面補償的設計更加困難。
針對沖壓成形之有限元素法分析,在過去研究文獻中,雖已針對模擬參數進行最佳化之收斂性測試,但對於提升預測回彈之準確度仍有改善空間。因此,本研究將透過包辛格實驗與雙軸拉伸實驗建立完整之高強度鋼板材料模型,藉以提高有限元素法模擬回彈之準確性。本研究同時針對不同材料模型對於模擬分析之準確度影響進行探討,驗證了Yoshida-Uemori材料模型不僅因考慮包辛格效應使有限元素法模擬回彈預測之準確度提升,且發現該材料模型於沖壓成形之卸載(unloading)過程中對於板材楊氏係數之修正,亦會對回彈預測之準確度具有明顯之影響性。本研究亦選擇具代表性之基礎載具進行沖壓成形回彈現象之有限元素法模擬分析並與實際試驗結果比較,得知 Barlat 91+Yoshida-Uemori材料模型與Hill 90+Yoshida-Uemori材料模型較為接近實驗值。 應用上述建立之材料模型,本研究針對高強度保險桿沖壓成形特性進行探討。首先透過不同保險桿成形模面之特徵分析,歸納出解決成形缺陷所對應之餘肉造型,進而針對本研究之高強度保險桿進行餘肉造型設計,解決其成形缺陷。並於板材沖壓成形過程中,觀察板材受力情形,發現板材於成形中受到拉伸與壓縮之變形歷程,產生完整的包辛格效應,故使用將包辛格效應加入塑性變形分析之Yoshida-Uemori材料模型確實有其必要性。最後透過試模驗證得知, 採用Barlat 91+Yoshida-Uemori材料模型或Hill 90+Yoshida-Uemori材料模型之有限元素法模擬分析,其結果仍較採用其他材料模型較為接近實驗值。 | zh_TW |
| dc.description.abstract | Due to the environmental consciousness and the demand of light-weight vehicles, high strength steel has been widely used in automotive parts. However, because of the increased strength of steel, the formability of high strength steel is inferior to traditional low strength steels. Therefore, the die design concept for stamping low strength steel sheets is no longer applicable to high strength steel sheets.
Concerning the finite element analysis on the stamping of high strength steel sheets, the efforts have been endeavored to establish the optimum simulation parameters. However, the accuracy in the prediction of springback is yet to be improved even with the optimum simulation parameters adopted. Therefore, biaxial stretching experiments and cyclic tension-compression experiments were implemented in the present study to establish a complete material model for the high strength steels so as to enhance the accuracy of the finite element simulations in predicting the springback phenomenon. The finite element simulations with different material models adopted were also performed in the present study to evaluate their efficiency on predicting springback occurred in the stamping process. The simulation results were compared with the experimental data and the outcome reveals that the Yoshida-Uemori material model which considers the Bauschinger effect lends itself to the most efficient model in improving the accuracy of springback prediction. It is also found that the change of Young's modulus that is taken into account in the Yoshida-Uemori model during the unloading process affects the springback prediction significantly. By comparing the simulation and experiment results of the stamping of simple bent parts, it indicates that the simulation results with Barlat 91 yield criterion and Yoshida-Uemori model adopted, or the Hill 90 yield criterion and Yoshida-Uemori model employed, are much closer to the experimental values. The forming characteristics of stamping a front bumper with high strength steel sheet was then examined with the material constants established from the cyclic tension-compression tests and biaxial stretching tests conducted in the present study. The die addendum design was investigated by categorizing the features of different bumper die surfaces, and the optimum addendums that could eliminate specific defects such as wrinkle and fracture were identified. Since some portions of the sheet blank were subjected to tension and compression deformation during stamping, the Bauschinger effect predominated in the deformation process. Therefore, using the Yoshida-Uemori material model is necessary. Through the simulation validation, we confirm that the Barlat 91 yield criterion and Yoshida-Uemori model, or the Hill 90 yield criterion and Yoshida-Uemori model are still the most efficient material models to be used in the finite element simulations for stamping of high strength steel sheets. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-16T16:20:13Z (GMT). No. of bitstreams: 1 ntu-102-R00522531-1.pdf: 14750788 bytes, checksum: aee3de1f9f5e3b97cfcd70aa211d113d (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 目錄 I
圖目錄 V 表目錄 XVI 第1章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 1.3 文獻回顧 4 1.4 研究方法與步驟 9 1.5 論文總覽 10 第2章 440級與490級高強度鋼板之材料模型建立 12 2.1 降伏準則之探討 12 2.1.1 Hill 48降伏準則 13 2.1.2 Hill 90降伏準則 15 2.1.3 Barlat 89及Barlat 91降伏準則 17 2.2 Yoshida-Uemori材料模型之探討 20 2.2.1 等向硬化準則 21 2.2.2 動態硬化準則 22 2.2.3 混合型硬化準則 24 2.2.4 Yoshida-Uemori材料模型 25 2.3 Yoshida-Uemori材料參數之探討 30 2.4 材料模型參數之建立 38 2.5 基礎載具有限元素模擬 48 2.5.1 V型彎曲成形之模型、分析方法與模擬結果 48 2.5.2 V型彎曲成形不同材料模型之探討 52 2.5.3 U形帽狀引伸成形之模型、分析方法與模擬結果 56 2.5.4 U形帽狀引伸成形不同材料模型之探討 60 2.6 基礎載具不同材料模型之試驗驗證 64 2.6.1 V型彎曲成形試驗 65 2.6.2 U形帽狀引伸成形試驗 66 第3章 高強度鋼板之材料成形特性研究 68 3.1 變形模式之探討 68 3.2 U形帽狀造型參數對於引伸成形之影響 71 3.2.1 引伸比對於減薄率以及回彈現象之影響 71 3.2.2 Punch圓角對於減薄率以及回彈現象之影響 75 3.2.3 Die圓角對於減薄率以及回彈現象之影響 79 3.2.4 壓料力對於減薄率以及回彈現象之影響 84 3.3 U形帽狀引伸成形實驗驗證 88 第4章 保險桿特徵造型與餘肉造型之歸納與分析 92 4.1 保險桿特徵造型之歸納 92 4.2 保險桿餘肉造型之歸納 95 4.2.1 A保險桿之分析 96 4.2.1.1 無餘肉造型之成形缺陷分析 96 4.2.1.2 阻料條餘肉造型之成形缺陷分析 98 4.2.2 B保險桿之分析 101 4.2.2.1 無餘肉造型之成形缺陷分析 102 4.2.2.2 阻料條餘肉造型之成形缺陷分析 106 4.2.3 C保險桿之分析 108 4.2.3.1 無餘肉造型之成形缺陷分析 109 4.2.3.2 階梯餘肉造型及阻料條之成形缺陷分析 110 4.2.4 小結 114 4.3 保險桿餘肉造型對成形性之影響 115 第5章 高強度保險桿沖壓成形之分析 118 5.1 研究載具介紹 118 5.2 高強度保險桿之成形性分析 121 5.2.1 材料性質 121 5.2.2 收斂性測試 121 5.2.3 初始模面成形缺陷分析與探討 132 5.3 高強度保險桿成形缺陷之改善 149 第6章 高強度保險桿回彈現象之分析 158 6.1 研究載具之回彈模擬分析 158 6.2 定義回彈量 161 6.3 研究載具之回彈量測與補償 162 6.4 440級高強度保險桿試模驗證 164 第7章 結論 168 參考文獻 170 | |
| dc.language.iso | zh-TW | |
| dc.title | 高強度汽車保險桿沖壓成形特性之研究 | zh_TW |
| dc.title | Characterization of Formability for the Stamping of a High Strength Automotive Bumper | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃佑民(You-Min Huang),洪景華(Ching-Hua Hung),黃庭彬(Ting-Bin Huang) | |
| dc.subject.keyword | 高強度鋼板,保險桿,材料模型,沖壓成形,有限元素法分析,餘肉造型,包辛格效應, | zh_TW |
| dc.subject.keyword | high strength steel sheet,bumper,material model,stamping,finite element analysis,die addendum design,Bauschinger effect, | en |
| dc.relation.page | 174 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2013-08-06 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf | 14.41 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
