請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60599完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂廷璋(Ting-Jang Lu) | |
| dc.contributor.author | Ling-Chieh Kung | en |
| dc.contributor.author | 孔令杰 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:22:57Z | - |
| dc.date.available | 2018-08-28 | |
| dc.date.copyright | 2013-08-28 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-16 | |
| dc.identifier.citation | 李宜真。於醋酸溶液中以微波輔助修飾之玉米澱粉理化特性。國立臺灣大學, 2010。
鄭雅方。以微波-醋酸處理生產顆粒狀冷水可膨潤玉米澱粉。國立臺灣大學, 2011。 紀帆益。探討不同催化劑對於玉米澱粉乙醯酯化反應之影響。國立臺灣大學, 2012。 沈明來。試驗設計學第四版。九州圖書文物有限公司出版。2010 張永欣。微波食品加工原理與應用。財團法人中華民國冷凍食品發展協會出版。1992。 Agboola, S. O.; Akingbala, J. O.; Oguntimein, G. B., Production of Low Substituted Cassava Starch Acetates and Citrates. Starch/Starke 1991, 43, 13-15. BeMiller JN, W. R., Starch: chemistry and Technology. Academic Press: Orlando, 2009. Betancur, A. D.; Chel, G. L.; Canizares, H. E., Acetylation and Characterization of Canavalia ensiformis Starch. J. Agric. Food Chem. 1997, 45, 378-382. Biswas, A.; Shogren, R. L.; Selling, G.; Salch, J.; Willett, J. L.; Buchanan, C. M., Rapid and environmentally friendly preparation of starch esters. Carbohydr. Polym. 2008, 74, 137-141. Biswas, A.; Shogren, R. L.; Willett, J. L., Solvent-free process to esterify polysaccharides†. Biomacromolecules 2005, 6, 1843-1845. Bogracheva, T. Y.; Morris, V. J.; Ring, S. G.; Hedley, C. L. The granular structure 11 of C-type pea starch and its role in gelatinization. Biopolymers 1998, 45, (12) 323–332. Boutboul, A.; Giampaoli, P.; Feigenbaum, A.; Ducruet, V., Influence of the nature and treatment of starch on aroma retention. Carbohydr. Polym. 2002, 47, 73-82. Chavan, S. P.; Anand, R.; Pasupathy, K.; Rao, B. S., Catalytic acetylation of alcohols, phenols, thiols and amines with zeolite H-FER under solventless conditions. Green Chemistry 2001, 3, 320-322. Che, L.-M., Li, D., Wang, L.-J., Chen, X. D., & Mao, Z.-H., Microniation and hydrophobic modification of cassava starch. Int. J. Food. Prop. 2007, 10, 527-536. Cheetham, N. W. H.; Tao, L. Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydr. Polym. 1998, 36, (4), 277-284. Chi, H.; Xu, K.; Wu, X.; Chen, Q.; Xue, D.; Song, C.; Zhang, W.; Wang, P., Effect of acetylation on the properties of corn starch. Food Chem. 2008, 106, 923-928. Cooke, D.; Gidley, M. J. Loss of crystalline and molecular order during starch gelatinization: Origin of the enthalpic transition. Carbohydr. Res. 1992, 227, 103-112. Copeland, L.; Blazek, J.; Salman, H.; Tang, M. C. Form and functionality of starch. Food Hydrocolloid. 2009, 23, (6), 1527-1534. Degering, E. F., Derivatives of starch. In R. W. Kerr (Ed.), Chemistry and industry of starch (pp. 260–280). 1950, New York, NY: Academic Press. Diop, C. I. K.; Li, H. L.; Xie, B. J.; Shi, J., Effects of acetic acid/acetic anhydride ratios on the properties of corn starch acetates. Food Chem. 2011b, 126, 1662-1669. Diop, C. I. K.; Li, H. L.; Xie, B. J.; Shi, J., Impact of the catalytic activity of iodine on the granule morphology, crystalline structure, thermal properties and water solubility of acetylated corn (Zea mays) starch synthesized under microwave assistance. Ind. Crop. Prod. 2011a, 33, 302-309. Eliasson, A.; Gudmundsson, M. Starch: Physicochemical and Functional Aspects. In Carbohydrates in Food, edition 2.; Eliasson, A. C., Eds.; CRC Press: Boca Raton, Florida, 2006; 391-469. Ellis, H. S.; Ring, S. G.; Whittam, M. A. A comparison of the viscous behaviour of wheat and maize starch pastes. J. Cereal Sci. 1989, 10, 1, 33-44. Euverink, G. J. W., Binnema, D. J., Use of modified starch as an agent for forming a thermoreversible gel. 1998, European Patent WO 98/15347. Evans, C. D.; Bradford Croston, C.; Van Etten, C., Acetylation of Zein Fibers. Text. Res. J. 1947, 17, 562-567. Fang, J., The chemical modification of a range of starches under aqueous reaction conditions. Carbohydr. Polym. 2004, 55, 283-289. Fannon, J. E.; Hauber, R. J.; Bemiller, J. N. Surface pores of starch granules. Cereal Chem. 1992, 69, 3, 284-288. Fannon, J. E.; Shull, J. M.; Bemiller, J. N., Interior channels of starch granules. Cereal Chem. 1993, 70, 5, 611-613. Gallant, D. J.; Bouchet, B.; Baldwin, P. M., Microscopy of starch: evidence of a new level of granule organization. Carbohydr. Polym. 1997, 32, (3-4), 177-191. Galliard, T.; Bowler, P. Morphology and composition of starch. In, Starch properties and potential, Galliard, T., Eds.; John Wiley & Sons Press: Chichester, U.K. 1987; 57–78. Gonzalez, Z., & Perez, E. Effect of acetylation on some properties of rice starch. Starch/Starke 2002, 54, 148–154. Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 3rd ed.; Wiley: New York, 1999; 17–245. Han, Z., Zeng, X., Zhang, B., & Yu, S., Effect of pulsed electric fields (PEF) treatment on the properties of corn starch. J. Food. Eng. 2009, 93, 318-323. Hizukuri, S. Polymodal distribution of the chain length of amylopectins, and its significance. Carbohy. Res. 1986, 147, 342–347. Hizukuri, S.; Takeda, Y.; Yasuda, M.; Suzuki, A. Multi-branched nature of amylose and the action of debranching enzymes. Carbohy. Res. 1981, 94, (2), 205-213. Hoover, R. Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydr. Polym. 2001, 45, (3), 253-267. Hsien-Chih, H. W.; Sarko, A., The double-helical molecular structure of crystalline a-amylose. Carbohydr. Res. 1978, 61, 27-40. Huang, Z.-Q., Lu, J.-P., Li, X.-H., & Tong, Z. F., Effect of mechanical activation on physico-chemical properties and structure of cassava starch. Carbohydr Polym. 2007, 68, 128-135. Imberty, A.; Buleon, A.; Tran, V.; Perez, S. Recent advances in knowledge of starch structure. Starch/Starke 1991, 43, 375–384. Jane, J. L.; Kasemsuwan, T.; Leas, S.; Zobel, H.; Robyt, J. F. Anthology of starch granule morphology by scanning electron-microscopy. Starch/Starke 1994, 46, (4), 121-129. Jane, J., Shen L., Wang, L., and Maningat, C.C. Preparation and properties of small-particle corn starch. Cereal Chem. 1992, 69, 280–283. Jarowenko, W. Acetylated starch and miscellaneous organic esters. In Modified starches: Properties and uses. Wurzburg, O. B., Eds., CRC Press: Boca Raton, Florida, 1986, 64–73. Jenkins, P. J.; Cameron, R. E.; Donald, A. M., A Universal Feature in the Structure of Starch Granules from Different Botanical Sources. Starch/Starke 1993, 45, (12), 417-420. Jenkins, P. J.; Donald, A. M., Gelatinisation of starch: a combined SAXS/WAXS/DSC and SANS study. Carbohy. Res. 1998, 308, (1-2), 133-147. Jeon, Y.-S.; Lowell, A. V.; Gross, R. A., Studies of starch esterification: reactions with alkenylsuccinates in aqueous slurry systems. Starch/Starke 1999, 51, 90-93. Jeyakumar, K.; Chand, D. K., Copper perchlorate: Efficient acetylation catalyst under solvent free conditions. J. Mol. Catal. A: Chem. 2006, 255, 275-282. Karim, A. A., Sufha, E. H., & Zaidul, I. S. M. Dual modification of starch via partial enzymatic hydrolysis in the granular state and subsequent hydroxypropylation. J. Agric. Food Chem. 2008, 56, 10901-10907. Khoshhesab Z. M., Reflectance IR Spectroscopy, 2012, 240-242. Lepeniotis,S.; Feuer, B. I., Synthesis of starch acetate: Statistical designed experiments to optimize the reaction conditions. Chemometr. Intell. Lab. 1997, 36, 229-243. Lewandowicz, G.; Fornal, F.; Walkowski, A., Effect of microwave radiation on physico-chemical properties and structure of potato and tapioca starches. Carbohydr. Polym. 1997, 34, 213-220. Li, A.-X.; Li, T.-S.; Ding, T.-H., Montmorillonite K-10 and KSF as remarkable acetylation catalysts. Chem. Commun. 1997, 1389-1390. Li, J.; Zhang, L. P.; Peng, F.; Bian, J.; Yuan, T. Q.; Xu, F.; Sun, R. C., Microwave-assisted solvent-free acetylation of cellulose with acetic anhydride in the presence of iodine as a catalyst. Molecules 2009, 14, 3551-3566. Liu, H.; Ramsden, L.; Corke, H., Physical properties and enzymatic digestibility of acetylated ae, wx, and normal maize starch. Carbohydr. Polym. 1997, 34, 283-289. Liu, Q. Understanding starches and their role in foods. In Food Carbohydrates, Cui, S.W. Eds., CRC Press: Boca Raton, USA, 2005; 310-349. Lopez-Rubio, A.; Flanagan, B. M.; Gilbert, E. P.; Gidley, M. J., A novel approach for calculating starch crystallinity and its correlation with double helix content: A combined XRD and NMR study. Biopolymers 2008, 89, 761-768. Lu, K.-C.; Hsieh, S.-Y.; Patkar, L. N.; Chen, C.-T.; Lin, C.-C., Simple and efficient per-O-acetylation of carbohydrates by lithium perchlorate catalyst. Tetrahedron 2004, 60, 8967-8973. Mark, A. M., & Mehltretter, C. L., Facile preparation of starch triacetates. Starch/Starke, 1972, 24, 73–76. Matveev, Y. I., Soest, J. J. G. V., Nieman, C., Wasserman, L. A., The relationship between thermodynamic and structural properties of low and high amylose maize starches. Carbohydr. Polym. 2001, 44, 151–160. Mbougueng, P. D.; Tenin, D.; Scher, J.; Tchiegang, C., Influence of acetylation on physicochemical, functional and thermal properties of potato and cassava starches. J. Food. Eng. 2012, 108, 320-326. Mirmoghtadaie, L.; Kadivar, M.; Shahedi, M., Effects of cross-linking and acetylation on oat starch properties. Food Chem. 2009, 116, 709-713. Moorthy, S. N., in: Elliasson, A. C. (Ed.), Starch in Food: Structure, Function and Application, Woodhead Publishing Limited and CRC Press LLC, Cambridge and New York 2007, 321–359. Muljana, H.; Picchioni, F.; Heeres, H. J.; Janssen, L. P. B. M., Process-product studies on starch acetylation reactions in pressurised carbon dioxide. Starch/Starke 2010, 62, 566-576. Muljana, H.; Picchioni, F.; Knez, Z.; Heeres, H. J.; Janssen, L. P., Insights in starch acetylation in sub- and supercritical CO2. Carbohy. Res. 2011, 346, 1224-31. Murphy, P. Starch. In Handbook of Hydrocolloids, Edition 2., Phillips, G. O.; Williams, P. A. Eds., CRC Press: Boca Raton, Florida, 2000; 41-66. Naranjo A.; Osswald T.; Sierra J. D., Plastics Testing and Characterization: Industrial Applications, 2008, 8-20. Nicholas, S. D.; Smith F., Acetylation of sugars. Nature 1948, 4088, 349. Nunez-Santiago, M.C.; Garcia-Suarez, F.J.; Gutierrez-Meraz, F.; Sanchez-Rivera M.M.; Bello-Perez, L.A., Some intrinsic and extrinsic factors of acetylated starches: morphological, physicochemical and structural characteristics. Rev. Mex. Ing. Quim. 2011, 10, (3), 501-512. Palav, T.; Seetharaman, K. Impact of microwave heating on the physico-chemical properties of a starch-water model system. Carbohydr. Polym. 2007, 67, (4), 596-604. Pansare, S. V.; Malusare M. G.; Rai A. N., Magnesium bromide catalysed acylation of alcohols. Synthetic. commun. 2000, 30, 2587-2592. Pearson, A. L.; Roush, W. J.; Handbook of Reagents for Organic Synthesis: Acetylating Agents and Protecting Groups, John Wiley, Chichester, 1999. Pukkahuta, C., Shobsngob, S., & Varavinit, S., Effect of osmotic pressure on starch: new method of physical modification of starch. Starch/Starke 2007, 58, 78-90. Ramesh Yadav, A.; Mahadevamma, S.; Tharanathan, R. N.; Ramteke, R. S., Characteristics of acetylated and enzyme-modified potato and sweet potato flours. Food Chem. 2007, 103, 1119-1126. Ramirez-Arreola, D. E.; Robledo-Ortiz, J. R.; Arellano, M.; Gonzalez-Nunez, R.; Rodrigue, D., Rapid Starch Acetylation at Low Temperature Using Iodine as Catalyst. Macromol. symp. 2009, 283-284, 174-180. Rutenberg, M.W.; Solarek, D. Starch derivatives: Production and uses. In R. L. Whistler, J. N. Bemiller, & E. F. Paschall (Eds.), Starch: Chemistry and technology (2nd ed.) (pp. 312–388). 1984, Orlando, FL: Academic Press. Shirini, F.; Zolfigol, M. A.; Abedini, M., Al(HSO4) 3 as an efficient catalyst for the acetylation of alcohols in solution and under solvent free conditions. Monatshefte for Chemie Chemical Monthly 2004, 135, 279-282. Shogren, R. L., Rapid preparation of starch esters by high temperature/pressure reaction. Carbohydr. Polym. 2003, 52, 319-326. Shogren, R. L.; Biswas, A., Preparation of water-soluble and water-swellable starch acetates using microwave heating. Carbohydr. Polym. 2006, 64, 16-21. Shogren, R., Scandium triflate catalyzed acetylation of starch at low to moderate temperatures. Carbohydr. Polym. 2008, 72, 439-443. Singh, N.; Chawla, D.; Singh, J., Influence of acetic anhydride on physicochemical, morphological and thermal properties of corn and potato starch. Food Chem. 2004, 86, 601-608. Solarek, D.B. Phosphorylated starches and miscellaneous inorganic esters. In: O.B. Wurzburg, ed. Modified Starches: Properties and Uses. Boca Raton, FL: CRC Press, 97–112. 1986. Sun, X. F.; Sun, R. C.; Sun, J. X., Acetylation of sugarcane bagasse using NBS as a catalyst under mild reaction conditions for the production of oil sorption-active materials. Bioresource Technol. 2004, 95, 343-50. Tang, H.; Mitsunaga, T.; Kawamura, Y., Molecular arrangement in blocklets and starch granule architecture. Carbohydr. Polym. 2006, 63, 555-560. Tessler, M. M.; Billmers, R. L. Preparation of Starch Esters. J. Environ, Polym. Degr. 1996, 4, (2), 85-89. Tester, R. F.; Karkalas, J.; Qi, X., Starch-composition, fine structure and architecture. J. Cereal Sci. 2004, 39, (2), 151-165. Tester, R. F.; Morrison, W. R. Swelling and gelatinization of cereal starches. 1. Effects of amylopectin, amylose, and lipids. Cereal Chem. 1990, 67, (6), 551-557. van Soest J.J.G.; Tournois H.; de Wit D.; Vliegenthart J. F.G., Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohy. Res. 1995, 279, 201-214. Velusamy S.; Borpuzari S.; Punniyamurthy T., Cobalt(II)-catalyzed direct acetylation of alcohols with acetic acid. Tetrahedron 2005, 61, 2011-2015. Volkert, B.; Lehmann, A.; Greco, T.; Nejad, M. H., A comparison of different synthesis routes for starch acetates and the resulting mechanical properties. Carbohydr. Polym. 2010, 79, 571-577. Wang, Y.; Wang L., Characterization of acetylated waxy maize starches prepared under catalysis by different alkali and alkaline-earth hydroxides. Starch/Starke 2002, 54, 25-30. Whistler, R. L., Preparation and properties of starch esters. In W. W. Pigman, & M. L. Wolfrom (Eds.), Carbohydr. Chem. 1945, 279–307. William H. Brown, T. P., Introduction to Organic Chemistry. Hoboken, NJ : Wiley: 2005. Wurzburg, O. B., Starch, modified starch and dextrin. In Products of the Corn Refining Industry: Seminar Proceedings, Corn Refiners Association: Washington, DC, 1978. Wootton, M., Bamunuarachchi, A., Application of DSC to starch gelatinization. Starch 1979, 31, 201–204. Wurzburg, O. B. Converted starches. In Modified Starches: Properties and Uses, Wurzburg, O. B., Eds., CRC Press: Boca Raton, Florida, 1986, 18-38. Xie, S. X.; Liu, Q.; Cui, S. W. Starch modification and applications. In Food Carbohydrates, Cui, S.W. Eds., CRC Press: Boca Raton, USA, 2005; 357-405. Xu, Y. X.; Miladinov, V.; Hanna, M. A. Synthesis and characterization of starch acetates with high substitution. Cereal Chem. 2004, 81, (6), 735-740. Xu, Y., & Hanna, M. A. Physical, mechanical, and morphological characteristics of extruded starch acetate foams. J. Polym. Environ. 2005, 13, 221–230. Zhang, L.; Xie, W.; Zhao, X.; Liu, Y.; Gao, W., Study on the morphology, crystalline structure and thermal properties of yellow ginger starch acetates with different degrees of substitution. Thermochim. Acta 2009, 495, 57-62. Zobel, H. F., Molecules to granules - a comprehensive starch review. Starch/Starke 1988a, 40, 44-50. Zobel, H. F., Starch crystal transformations and their industrial importance. Starch/Starke 1988b, 40, 1-7. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60599 | - |
| dc.description.abstract | 乙醯酯化修飾可降低澱粉糊化溫度及提高澱粉產品的貯藏安定性,以克
服天然澱粉的加工應用限制。本研究以馬鈴薯澱粉做為實驗材料、醋酸酐為反應劑、家用微波爐加熱輔助,探討碘、硫酸、磷酸、硝酸及鹽酸做為催化劑之乙醯酯化反應效能。其中反應效能以硫酸(25%)最高,並且隨催化劑添加量增加而提高。接著進一步利用反應曲面法,以催化劑添加量及微波加熱時間做為反應因子,使用可控溫之微波消化爐,在固定微波溫度為130℃、澱粉脫水葡萄糖單體與醋酸酐莫耳比為1:3下,計算澱粉反應效能及回收率並找出最適化製備條件。以反應曲面法所得到的最適化條件結果,反應效能為硫酸添加量18.3毫莫耳、微波258秒及14.2毫莫耳、微波245秒,回收率為11.6毫莫耳、微波258秒,並以上述最適化條件製備樣品,其取代度依序為1.370、1.029及0.683,再以天然馬鈴薯澱粉為對照組進行後續物化特性分析。澱粉顆粒外觀在經過乙醯酯化修飾後,澱粉偏光十字強度減弱甚至消失,顆粒嚴重崩解形成碎片並聚集成塊。在X-ray繞射圖譜結果,繞射波峰強度減弱,結晶指標顯著從27.47 %下降至5.27 %,表示澱粉結晶區受到破壞。膨潤力與水溶性指標結果,高取代度乙醯酯化澱粉疏水性較高,在75℃下加熱其膨潤力(12.59 g/g)及水溶性指標(12.93 %)顯著低於天然馬鈴薯澱粉(31.15 g/g、38.95 %)。在熱性質分析結果中,經乙醯酯化修飾後其糊化溫度及熱焓值降低。以RVA分析成糊性質結果來看,尖峰黏度顯著自6955cP降低至137cP,澱粉糊安定性增加,回凝傾向降低。HPSEC分子量分佈結果,經過乙醯酯化修飾後分子量顯著下降,以取代度較高組別降解情形較嚴重。最後在FTIR官能基分析中,利用1754 cm-1與1157cm-1內標波峰強度相除之比值與取代度進行迴歸分析,可評估做為取代度快速分析方法之一。 | zh_TW |
| dc.description.abstract | Acetylation can reduce the gelatinization temperature and improve storage stability of starch-contained products, used to overcome the native starch processing application limits. In the present study, potato starch is used as reaction material, acetic anhydride as the reactant, domestic microwave-assisted, to discuss the acetylation reaction efficiency by using iodine, sulfuric acid, phosphoric acid, nitric acid and hydrochloric acid as the esterification catalyst. The reaction efficiency of sulfuric acid is the highest (25%), with the content of catalyst increases. Further use of response surface methodology, it is designed that the content of sulfuric acid catalyst and microwave heating time as dependent factor. Microwave accelerated reaction system with temperature control is used, at a fixed temperature of 130℃ and the mole ratio of starch anhydrous glucose unit (AGU) to acetic anhydride is 1:3. Starch reaction efficiency and recovery as independent responses to identify optimal preparation conditions. In the obtained RSM optimal conditions, when the content of sulfuric acid catalyst added 18.3 mmole, microwave 258 seconds and 14.2mmole, 245 seconds for the highest reaction efficiency, 11.6 mmole, 258 seconds for the highest recovery, which DS is 1.370, 1.029 and 0.683. The optimal acetylated starch samples are for subsequent analysis of physico-chemical properties with native potato starch as blank. After the acetylation, starch granules birefringence intensity is weaken or even disappear, and granules disintegration seriously fragmented. In the X-ray diffraction patterns result, peak intensity is decreased, the crystalline index significantly decreased from 27.47% to 5.27%, which means that the starch crystalline damaged. Swelling power and solubility index results, the hydrophobicity is higher when the high degree of substitution of acetylated starch. When heating at 75 ℃, its swelling power (12.59 g / g) and water solubility index (12.93%) was significantly lower than the native potato starch (31.15 g / g, 38.95%). In the results of thermal properties, the gelatinization temperature and enthalpy decrease after acetylation. It is showed that the peak viscosity (PV) decreased significantly since 6955 cP to 137 cP in RVA pasting profiles, while the stability increased, and the retrogradation tendency of starch paste reduced. In HPSEC molecular weight distribution results, the molecular weight significant decreased after starch acetylation, especially in the higher degree of substitution groups. Finally, in FTIR analysis of the functional groups, the intensity ratio of 1754 cm-1 and 1157cm-1 internal standard peak with the degree of substitution for the regression analysis, which assess a quick analysis method of the degree of substitution. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:22:57Z (GMT). No. of bitstreams: 1 ntu-102-R00641022-1.pdf: 9352845 bytes, checksum: 341ce2456c12d40a683b95f466153285 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 前言 1 第二章 文獻整理 2 一、澱粉 2 (一) 澱粉顆粒外觀 2 (二) 澱粉的分子組成 6 1. 直鏈澱粉 7 2. 支鏈澱粉 7 (三) 澱粉顆粒結構 9 (四) 澱粉結晶結構 12 (五) 澱粉糊化及成糊 14 二、修飾澱粉 16 (一) 澱粉化學性修飾 16 1. 酯化修飾(esterification) 16 a. 製備方法 17 2. 醚化修飾(etherification) 19 3. 交聯化修飾(cross-linking) 19 4. 氧化修飾(oxidation) 19 5. 陽離子化修飾(cationization) 20 (二) 澱粉物理性修飾 21 (三) 澱粉酵素性修飾 21 三、乙醯酯化反應催化劑 22 四、微波加熱 24 (一) 澱粉水分含量對微波加熱之影響 24 (二) 微波加熱輔助對於乙醯酯化澱粉生產之影響 29 五、反應曲面法 30 六、傅立葉轉換紅外線光譜分析 32 第三章 實驗架構 34 第四章 材料與方法 36 一、實驗材料與試藥 36 二、實驗樣品製備 38 三、實驗設計–微波輔助馬鈴薯澱粉乙醯酯化修飾最適化條件 40 四、實驗分析方法 42 (一) 取代度之測定 42 (二) 澱粉溶出率 44 (三) 澱粉顆粒外觀 44 (四) 澱粉結晶性質分析 45 (五) 膨潤力及水溶性指標 45 (六) 熱性質分析 46 (七) 澱粉成糊性質 46 (八) 澱粉分子量分佈 47 (九) 傅立葉轉換紅外線光譜儀分析 48 (十) 統計分析 48 第五章 結果與討論 49 一、探討不同催化劑對微波輔助馬鈴薯澱粉乙醯酯化反應之影響 49 (一) 微波輔助馬鈴薯澱粉乙醯酯化反應系統中催化劑對於澱粉取代度及反應效能之影響 49 (二) 微波輔助馬鈴薯澱粉乙醯酯化反應系統中硫酸催化劑添加量對於澱粉取代度及反應效能之影響 52 (三) 微波輔助馬鈴薯澱粉乙醯酯化反應系統中微波反應器對於澱粉取代度及反應效能之影響 54 二、以反應曲面法探討微波輔助乙醯酯化馬鈴薯澱粉製備 56 (一)反應曲面法之微波輔助乙醯酯化澱粉反應效能及回收率結果 56 (二) 反應曲面法預測結果之驗證 64 三、反應曲面法最適化乙醯酯化澱粉取代度、反應效能及回收率 65 四、澱粉顆粒外觀 67 (一) 光學及十字偏光性質 67 (二) 掃描式電子顯微鏡 69 五、乙醯酯化澱粉結晶性質分析 71 六、乙醯酯化澱粉顆粒膨潤力與水溶性指標 73 七、乙醯酯化澱粉熱性質分析 75 八、乙醯酯化澱粉成糊性質 77 九、乙醯酯化澱粉分子量分佈 80 十、傅立葉轉換紅外線光譜儀(FTIR)分析 84 第六章 結論 88 第七章 參考文獻 89 第八章 附錄 99 | |
| dc.language.iso | zh-TW | |
| dc.subject | 微波輔助 | zh_TW |
| dc.subject | 反應曲面法 | zh_TW |
| dc.subject | 催化劑 | zh_TW |
| dc.subject | 乙醯酯化 | zh_TW |
| dc.subject | 馬鈴薯澱粉 | zh_TW |
| dc.subject | response surface methodology | en |
| dc.subject | potato starch | en |
| dc.subject | acetylation | en |
| dc.subject | catalyst | en |
| dc.subject | microwave-assisted | en |
| dc.title | 以反應曲面法探討硫酸催化對於微波輔助系統中馬鈴薯澱粉乙醯酯化修飾作用之影響 | zh_TW |
| dc.title | Effect of sulfuric acid on acetylation of potato starch in microwave-assisted system by response surface methodology | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 盧訓,張永和,賴鳳羲,林佑勳 | |
| dc.subject.keyword | 乙醯酯化,馬鈴薯澱粉,催化劑,微波輔助,反應曲面法, | zh_TW |
| dc.subject.keyword | acetylation,potato starch,catalyst,microwave-assisted,response surface methodology, | en |
| dc.relation.page | 117 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-16 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 9.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
