請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60541| 標題: | 橢圓曲線在Q上的有限子群與Mazur定理 A Survey on Q-torsion group of elliptic curve and Mazur's Theorem |
| 作者: | Yen-Sheng Wang 王彥勝 |
| 指導教授: | 陳其誠(Ki-Seng Tan) |
| 關鍵字: | Mordell-Weil定理,Mazur定理,懷爾配對,賀布蘭德定理,不分枝, Mordel-Weil Theorem,Weil-Pairing,Herbrand Theorem,Unramified, |
| 出版年 : | 2013 |
| 學位: | 碩士 |
| 摘要: | 根據Mordell-Weil定理,橢圓曲線群在整數體是有限生成,因此其耦合子群是個有限子群。1977年,Mazur教授給了在有理體上一個很漂亮的結果,他決定了所有的耦合子群之種類。這篇論文就是要探討這漂亮定理的證明以及Mordell-Weil定理。 Let K be a number eld and E=K be an elliptic curve, that is, a smooth projective curve of genus 1 with an distinguished K-rational point chosen. By the Mordell-Weil Theorem, the group of points E(K) is a nitely generated abelian group. Its structure is of the form: E(K) = Etors(K) Zr According to this theorem, we know that Etors(K) is a nite group. In 1977, Mazur [Maz] proved a beautiful theorem for K = Q. It determines all the possible torsion structures of Etors(Q). In this thesis, we try to survey on the proof of this tremendous theorem as well as that of Mordell-Weil Theorem. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60541 |
| 全文授權: | 有償授權 |
| 顯示於系所單位: | 數學系 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 710.72 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
