Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60541
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳其誠(Ki-Seng Tan)
dc.contributor.authorYen-Sheng Wangen
dc.contributor.author王彥勝zh_TW
dc.date.accessioned2021-06-16T10:21:04Z-
dc.date.available2013-08-26
dc.date.copyright2013-08-26
dc.date.issued2013
dc.date.submitted2013-08-16
dc.identifier.citation[Can] Luca Candelori, Modular Curves and Mazur's Theorem, Bacheler Thesis, 2008, Harvard
University.
[Kub] D. S. Kubert, Universal bounds on the torsion of elliptic curves, Proc. London Math.
Soc. 33 (1976), 193-237.
[Maz] B. Mazur, Modular curves and the Eisenstein ideal, Publications Math ematiques de
L'IH E S Volume 47, Number 1(1977), 33-186.
[Pau] Paulo Ribenboim, Classical Theory of Algebraic Numbers, Springer, New York, 2001.
[RiS] Kenneth A. Ribet and William A. Stein, Letures on Modular Forms and Hecke Operators,
Manuscript, December 2011.
[Sch] Alexander B. Schwartz, Elliptic Curves, Group Schemes, and Mazur's Theorem, Bacheler
Thesis, 2004, Harvard University.
[Sil] Joseph H. Silverman, The arithmetic of Elliptic Curves, Springer, 1986.
[Was] Larry Washington, Introduction to Cyclotomis Fields, Springer, 1982.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60541-
dc.description.abstract根據Mordell-Weil定理,橢圓曲線群在整數體是有限生成,因此其耦合子群是個有限子群。1977年,Mazur教授給了在有理體上一個很漂亮的結果,他決定了所有的耦合子群之種類。這篇論文就是要探討這漂亮定理的證明以及Mordell-Weil定理。zh_TW
dc.description.abstractLet K be a number eld and E=K be an elliptic curve, that is, a smooth projective
curve of genus 1 with an distinguished K-rational point chosen. By the Mordell-Weil
Theorem, the group of points E(K) is a nitely generated abelian group. Its structure
is of the form:
E(K) = Etors(K) Zr
According to this theorem, we know that Etors(K) is a nite group. In 1977, Mazur
[Maz] proved a beautiful theorem for K = Q. It determines all the possible torsion
structures of Etors(Q).
In this thesis, we try to survey on the proof of this tremendous theorem as well as that
of Mordell-Weil Theorem.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:21:04Z (GMT). No. of bitstreams: 1
ntu-102-R99221030-1.pdf: 727778 bytes, checksum: 808fcba2083ea1c602ac4c51d4be4e2d (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsContents
Acknowledgements i
Abstract (in Chinese) ii
Abstract (in English) iii
Contents iv
List of Tables 1
1 Introduction and Notation 1
1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Preliminary 3
2.1 Weil-pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Galois Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 The Ideal Class Group and the Group of Units . . . . . . . . . . . . . . . . . . . 6
2.4 The Local Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.1 The reduction curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.2 The reduction map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.3 The group E=E0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.4 The m-torsion points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Mordell-Weil Theorem 11
3.1 Height Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 The Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 The Weak Mordell-Weil Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.1 The Kummer Pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.2 The niteness Proposition . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.3 The proof of the weak Mordel-Weil theorem . . . . . . . . . . . . . . . . 15
4 Mazur's Theorem 16
4.1 The Associated Galois Representation . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Two Main Ingredients in the Proof of Theorem 2 . . . . . . . . . . . . . . . . . 17
4.3 The Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 The proof of Proposition 4.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
References 22
dc.language.isoen
dc.subjectMazur定理zh_TW
dc.subjectMordell-Weil定理zh_TW
dc.subject懷爾配對zh_TW
dc.subject賀布蘭德定理zh_TW
dc.subject不分枝zh_TW
dc.subjectMordel-Weil Theoremen
dc.subjectWeil-Pairingen
dc.subjectHerbrand Theoremen
dc.subjectUnramifieden
dc.title橢圓曲線在Q上的有限子群與Mazur定理zh_TW
dc.titleA Survey on Q-torsion group of elliptic curve and Mazur's Theoremen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃柏嶧(Po-Yi Huang),黎景輝(King-Fai Lai)
dc.subject.keywordMordell-Weil定理,Mazur定理,懷爾配對,賀布蘭德定理,不分枝,zh_TW
dc.subject.keywordMordel-Weil Theorem,Weil-Pairing,Herbrand Theorem,Unramified,en
dc.relation.page22
dc.rights.note有償授權
dc.date.accepted2013-08-16
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
710.72 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved