Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60401
Title: 在非交錯網格下發展一具最佳數值色散關係式之三維時域有限差分方法以求解馬克斯威爾方程
Development of a dispersively optimized 3D FDTD solver for solving Maxwell's equations in non-staggered grids
Authors: Yu-Wei Chang
張育瑋
Advisor: 許文翰(Wen-Hann Sheu)
Keyword: 馬克斯威爾方程,非交錯網格,零散度,四階準確,色散關係,實解相速度和數值相速度,
non-staggered grids,zero-divergence,fourth-order,dispersion relation equation,exact and numerical phase velocities.,
Publication Year : 2013
Degree: 碩士
Abstract: 本論文是在非交錯網格上提出三維時域有限差分法(FDTD)求解馬克斯威爾方程。
本文的方法是在時域內透過電場和磁場的零散度條件(亦即高斯定律)以求解法拉第定律和安培定律。
所提出的數值方法於時間離散上使用具辛結構(Symplectic)二級二階之Runge-Kutta方法,在經過長時間模擬後仍得以保持馬克思威爾方程的能量守恆性質;
另透過法拉第及安培旋度方程空間微分項的推導,得到在色散關係上相當準確的解。
本文所提出的數值方法在空間上具有四階準確,且能有效減少實解相速度與數值相速度的誤差。
本文所提出的數值方法亦顯著降低了因時域有限差分所造成的明顯地數值色散誤差以及各向異性誤差。
除了本文所做的基礎分析外,亦證實了本文所提出的數值方法在具辛結構與色散關係上具有良好的保持性,尤其在針對經長時間馬克斯威爾方程的數值模擬後,其效果尤為顯著。
An explicit finite-difference scheme for
solving the three-dimensional Maxwell's equations in non-staggered grids is presented in time domain.
Our aim is to solve the Faraday's and Ampere's equations in time domain within the
discrete zero-divergence context for the electric and magnetic fields (or Gauss's law).
The local conservation laws in Maxwell's equations are also numerically preserved all the time
using the explicit second-order accurate symplectic partitioned Runge-Kutta temporal scheme.
Following the method of lines, the spatial derivative terms in the semi-discretized Faraday's and Ampere's equations are then properly discretized to get
a dispersively very accurate solution.
This proposed fourth-order accurate space centered scheme minimizes the difference between the exact and numerical phase velocities.
The significant dispersion and anisotropy errors manifested normally in finite difference time domain methods are therefore much reduced.
In addition to the fundamental study performed on the proposed scheme, the dual-preserving (symplecticity and dispersion relation equation) wave solver is numerically demonstrated to be efficient for use to get in particular long-term accurate Maxwell's solutions.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60401
Fulltext Rights: 有償授權
Appears in Collections:工程科學及海洋工程學系

Files in This Item:
File SizeFormat 
ntu-102-1.pdf
  Restricted Access
42.28 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved