Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60358
Title: 於機率性資料庫中選擇具影響力物件之技術
Techniques for Selecting Influential Objects in Probabilistic Databases
Authors: Yu-Chieh Lin
林與絜
Advisor: 陳銘憲(Ming-Syan Chen)
Keyword: 機率性資料庫,群集分析,最鄰近k 點搜&#63850,社群網路,
probabilistic database,clustering,nearest-neighbor query,social networks,
Publication Year : 2013
Degree: 博士
Abstract: In this dissertation, we study how to select influential objects in probabilistic databases. For an uncertain dataset with probabilistic attribute values, we would like to tell which objects can best improve query or mining results if we can acquire their exact attribute values. The problem is explored on both clustering and the Probabilistic k-Nearest-Neighbor (k-PNN) query. We carefully define the metrics for evaluating the quality of the results of clustering and k-PNN query, and then we design algorithms to find the solutions according to the metrics correspondingly. For the k-PNN query, we provide optimal solutions of acquisition for nearest-neighbor query (1-PNN), and we propose a scalable algorithm solving the acquisition for k-PNN query with k > 1. Besides, for a social network dataset with edge probabilities, we would like to tell which neighboring nodes of the query node can best help gather specific information if these nodes are asked. We carefully formulate the problem according to the motivated scenario, and the proposed approach considers both the strength and the diversity of a node’s influence. We conduct experiments on various datasets, and the experimental results demonstrate the effectiveness and the efficiency of the proposed approaches.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60358
Fulltext Rights: 有償授權
Appears in Collections:電機工程學系

Files in This Item:
File SizeFormat 
ntu-102-1.pdf
  Restricted Access
1.17 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved