請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60105完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔣丙煌(Been-Huang Chiang) | |
| dc.contributor.author | Chia-Chi Lin | en |
| dc.contributor.author | 林家綺 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:56:24Z | - |
| dc.date.available | 2020-08-24 | |
| dc.date.copyright | 2020-08-24 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-18 | |
| dc.identifier.citation | 江仟琦。2005。利用氣舉世發酵槽生產具有抑制肝癌及子宮頸癌細胞生長樟芝發酵液。國立臺灣大學食品科技研究所碩士論文。 侯乃勤。2015。液態發酵牛樟芝時三萜類與泛醌類衍生物產量之消長變化。國立臺灣大學食品科技研究所碩士論文。 郭佳雯。2019。超音波處理及溫度調控對液態發酵牛樟芝功能性成分 4-AAQB 生合成之影響。國立臺灣大學食品科技研究所碩士論文。 楊尚翰。2014。探討牛樟芝活性成分 4-acetylantroquinonol B 之生合成途徑以改善其液態發酵之方法。國立臺灣大學食品科技研究所碩士論文。 魏瑜瑩。2018。氧氣對液態發酵牛樟芝時4-AAQB生合成之影響。國立臺灣大學食品科技研究所碩士論文。 Adiguzel O, Li J, Lin XJ, Shao ES, Lin ZX, Zhi GT, Manole CC. 2016. Molecular cloning and expression analysis of mevalonate pyrophosphate decarboxylase in Antrodia cinnamomea. MATEC Web of Conferences, 64. Alves CA, Pio C. 2005. Secondary organic compounds in atmospheric aerosols: speciation and formation mechanisms. J Braz Chem Soc : 1017-29. Bentinger M, Grünler J, Peterson E, Swiezewska E, Dallner G. 1998. Phosphorylation of farnesol in rat liver microsomes: properties of farnesol kinase and farnesyl phosphate kinase. Archives of biochemistry and biophysics,353(2), 191-198. Bolitt V, Mioskowski C, Bhatt RK Falck JR. 1991. Synthesis of (S)-(+)-mevalonolactone and mevalonate analogs. The Journal of Organic Chemistry,56(13), 4238-4240. Carnesecchi S, Schneider Y, Ceraline J, Duranton B, Gosse F, Seiler N Raul F. 2001. Geraniol, a component of plant essential oils, inhibits growth and polyamine biosynthesis in human colon cancer cells. Journal of Pharmacology and Experimental Therapeutics, 298(1), 197-200. Chang TC,Yeh CT, Adebayo BO, Lin YC, Deng L, Rao YK, ... Wu CH. 2015. 4-Acetylantroquinonol B inhibits colorectal cancer tumorigenesis and suppresses cancer stem-like phenotype. Toxicology and applied pharmacology, 288(2), 258-268. Chang TT and Chou WN. 1995. Antrodia cinnamomea sp nov. on Cinnamomum kanehirai in Taiwan. Mycol. Res.99: 756-758. Chang TT, Chou WN. 2004. Antrodia cinnamomea reconsidered and A. salmonea sp. nov. on Cunninghamia konishii in Taiwan. Bot Bull Acad Sin, 45, 347-352. Chen CC, Shiao YJ, Lin RD, Shao YY, Lai MN, Lin CC, Kuo YH. 2006. Neuroprotective diterpenes from the fruiting body of Antrodia camphorata. J Nat Prod : 689-91. Chen YJ, Cheng PC, Lin CN, Liao HF, Chen YY, Chen CC, Lee KM. 2008. Polysaccharides from Antrodia camphorata mycelia extracts possess immunomodulatory activity and inhibits infection of Schistosoma mansoni. Int Immunopharmacol : 458-67. Chen JJ, Lin WJ, Liao CH, Shieh PC. 2007. Anti-inflammatory benzenoids from Antrodia camphorata. Journal of natural products,70(6), 989-992. Chen WL, Ho YP Chou JC. 2016. Phenologic variation of major triterpenoids in regular and white Antrodia cinnamomea. Botanical studies,57(1), 33. Chang TC, Yeh CT., Adebayo BO, Lin YC, Deng L, Rao YK., ... Wu CH.2015. 4-Acetylantroquinonol B inhibits colorectal cancer tumorigenesis and suppresses cancer stem-like phenotype. Toxicology and applied pharmacology, 288(2), 258-268. Chiu HH, Lee FP, Wang JK, Chou CC. 2009. Identification and phylogenetic analysis of Antrodia camphorata and related species based on the polymorphic D2 region of LSU rDNA.Fooyin Journal of Health Sciences,1(1), 33-40. Chou KC, Wu HL, Lin PY, Yang SH, Chang TL, Sheu F, Chiang BH. 2019. 4-Hydroxybenzoic acid serves as an endogenous ring precursor for antroquinonol biosynthesis in Antrodia cinnamomea. Phytochemistry : 97-106. Chou KC, Yang SH, Wu HL, Lin PY, Chang TL, Sheu F, Chiang BH. 2017. Biosynthesis of Antroquinonol and 4-Acetylantroquinonol B via a Polyketide Pathway Using Orsellinic Acid as a Ring Precursor in Antrodia cinnamomea. J Agric Food Chem : 74-86. Degenhardt J, Köllner TG and Gershenzon J. 2009. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 70:1621–1637. Dhar MK, Koul A Kaul S. 2013. Farnesyl pyrophosphate synthase: a key enzyme in isoprenoid biosynthetic pathway and potential molecular target for drug development. New biotechnology, 30(2), 114-123. Fischer MJ., Meyer S, Claudel P, Bergdoll M, Karst F. 2011. Identification of a lysine residue important for the catalytic activity of yeast farnesyl diphosphate synthase. The protein journal, 30(5), 334-339. Frick S, Nagel R, Schmidt A., Bodemann RR, Rahfeld P, Pauls G., ... Burse A. 2013. Metal ions control product specificity of isoprenyl diphosphate synthases in the insect terpenoid pathway. Proceedings of the National Academy of Sciences,110(11), 4194-4199 Geethangili M, Tzeng YM. 2011. Review of Pharmacological Effects of Antrodia camphorata and Its Bioactive Compounds. Evid Based Complement Alternat Med : 212641. Goldstein JL Brown MS. 1990. Regulation of the mevalonate pathway. Nature, 343(6257), 425-430. Hseu YC, Chen SC, Yech YJ, Wang L, Yang HL. 2008. Antioxidant activity of Antrodia camphorata on free radical-induced endothelial cell damage. J Ethnopharmacol : 237-45. Hseu YC, Wu FY, Wu JJ, Chen JY, Chang WH, Lu FJ, Yang HL. 2005. Anti-inflammatory potential of Antrodia Camphorata through inhibition of iNOS, COX-2 and cytokines via the NF-kappaB pathway. Int Immunopharmacol : 1914-25. Hsu YL, Kuo PL, Cho CY, Ni WC, Tzeng TF, Ng LT, Lin CC. 2007. Antrodia cinnamomea fruiting bodies extract suppresses the invasive potential of human liver cancer cell line PLC/PRF/5 through inhibition of nuclear factor kappaB pathway. Food Chem Toxicol : 1249-57. Hu Y, Legako AG, Espindola AP, MacMillan JB. 2012. Erythrolic acids A-E, meroterpenoids from a marine-derived Erythrobacter sp. J Org Chem : 3401-07. Hu YD, Zhang H, Lu RQ, Liao XR, Zhang BB, Xu GR. 2014. Enabling the biosynthesis of Antroquinonol in submerged fermentation of Antrodia camphorata. Biochem. Eng. J : 157-62. Huang YL, Chu YL, Ho CT, Chung JG, Lai CI, Su YC, Sheen LY. 2015. Antcin K, an Active Triterpenoid from the Fruiting Bodies of Basswood-Cultivated Antrodia cinnamomea, Inhibits Metastasis via Suppression of Integrin-Mediated Adhesion, Migration, and Invasion in Human Hepatoma Cells. J Agric Food Chem : 4561-69. Huang Y, Lin X, Qiao X, Ji S, Liu K, Yeh CT, Tzeng YM, Guo D,Ye M. 2014.Antcamphins A-L, ergostanoids from Antrodia camphorata J. Nat. Prod. 77, 118– 124 Jang YS, Kim B, Shin JH, Choi YJ, Choi S, Song CW ... Lee SY .2012. Bio‐based production of C2–C6 platform chemicals. Biotechnology and bioengineering,109(10), 2437-2459. Lai CI, Chu YL, Ho CT, Su YC, Kuo YH, Sheen LY. 2016.Antcin K, an active triterpenoid from the fruiting bodies of basswood cultivated Antrodia cinnamomea, induces mitochondria and endoplasmic reticulum stress-mediated apoptosis in human hepatoma cells J. Trad. Compl. Med., 6, 48– 56 Lee IH, Chen CT, Chen HC, Hsu WC. 2002. Antrodia camphorata polysaccharides exhibit anti-hepatitis B virus effects. FEMS Microbiol. Lett : 63-67. Li TY Chiang BH. 2019. 4-Acetylantroquinonol B from Antrodia cinnamomea enhances immune function of dendritic cells against liver cancer stem cells.Biomedicine Pharmacotherapy, 109, 2262-2269. Lin YL, Ma LT, Lee YR, Shaw JF, Wang SY, Chu FH. 2017. Differential Gene Expression Network in Terpenoid Synthesis of Antrodia cinnamomea in Mycelia and Fruiting Bodies. J Agric Food Chem : 1874-86. Lin YW, Pan JH, Liu RH, Kuo YH, Sheen LY, Chiang BH. 2010. The 4-acetylantroquinonol B isolated from mycelium of Antrodia cinnamomea inhibits proliferation of hepatoma cells. J Sci Food Agric : 1739-44. Lin WC, Kuo SC, Lin WL, Fang HL Wang BC. 2006. Filtrate of fermented mycelia from Antrodia camphorata reduces liver fibrosis induced by carbon tetrachloride in rats. World journal of gastroenterology: WJG,12(15), 2369. Lin YW Chiang BH. 2011. 4-acetylantroquinonol B isolated from Antrodia cinnamomea arrests proliferation of human hepatocellular carcinoma HepG2 cell by affecting p53, p21 and p27 levels. Journal of agricultural and food chemistry,59(16), 8625-8631. Lin YW, Pan JH, Liu RH, Kuo YH, Sheen LY Chiang BH. 2010. The 4‐acetylantroquinonol B isolated from mycelium of Antrodia cinnamomea inhibits proliferation of hepatoma cells. Journal of the Science of Food and Agriculture,90(10), 1739-1744. Liu M, Bamodu OA, Huang WC, Zucha MA, Lin YK, Wu AT ... Deng L. 2017. 4-Acetylantroquinonol B suppresses autophagic flux and improves cisplatin sensitivity in highly aggressive epithelial cancer through the PI3K/Akt/mTOR/p70S6K signaling pathway.Toxicology and applied pharmacology,325, 48-60. Maeda H Dudareva N .2012. The shikimate pathway and aromatic amino Acid biosynthesis in plants. Annu Rev Plant Biol, 63, 73-105. Mau JL, Huang PN, Huang SJ, Chen CC. 2004. Antioxidant properties of methanolic extracts from two kinds of Antrodia camphorata mycelia. Food Chem : 25-31. Misawa N. 2011. Pathway engineering for functional isoprenoids. Current opinion in biotechnology, 22(5), 627-633. Murthy S, Tong H Hohl RJ. 2005. Regulation of fatty acid synthesis by farnesyl pyrophosphate. Journal of Biological Chemistry, 280(51), 41793-41804. Nagata Y, Hidaka Y, Ishida F Kamei T. 1990. Effects of simvastatin (MK-733) on branched pathway of mevalonate. The Japanese Journal of Pharmacology,54(3), 315-324. Nakamura N, Hirakawa A, Gao JJ, Kakuda H, Shiro M, Komatsu Y, Hattori M. 2004. Five new maleic and succinic acid derivatives from the mycelium of Antrodia camphorata and their cytotoxic effects on LLC tumor cell line. J Nat Prod : 46-48. Olson RE Rudney H. 1983. Biosynthesis of ubiquinone. In Vitamins Hormones (Vol. 40, pp. 1-43). Academic Press. Pan JH, Chen YS, Sheen LY, Chiang BH. 2008. Large-scale submerged fermentation of Antrodia cinnamomea for anti-hepatoma activity. J. Sci. Food Agric : 2223-30. Pfeifer BA, Khosla C. 2001. Biosynthesis of polyketides in heterologous hosts. Microbiol Mol Biol Rev : 106-18. Phuong DT, Ma CM, Hattori M Jin JS. 2009. Inhibitory effects of antrodins A–E from Antrodia cinnamomea and their metabolites on hepatitis C virus protease.Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives,23(4), 582-584. Pierrel F, Hamelin O, Douki T, Kieffer-Jaquinod S, Mühlenhoff U, Ozeir M, ... Fontecave M. 2010. Involvement of mitochondrial ferredoxin and para-aminobenzoic acid in yeast coenzyme Q biosynthesis. Chemistry biology, 17(5), 449-459. Rao YK, Fan, SH, Tzeng YM. 2007. Evaluation of the anti-inflammatory and anti-proliferation tumoral cells activities of Antrodia camphorata, Cordyceps sinensis, and Cinnamomum osmophloeum bark extracts. J. Ethnopharmacol : 78-85. Romero-Guido C, Belo I, Ta TM, Cao-Hoang L, Alchihab M, Gomes N, Wache Y. 2011. Biochemistry of lactone formation in yeast and fungi and its utilisation for the production of flavour and fragrance compounds. Appl Microbiol Biotechnol : 535-47. Sanchez VM, Crespo A, Gutkind JS, Turjanski AG .2006. J Phys Chem B 110:18052–18057 Song TY, Yen GC. 2003. Protective effects of fermented filtrate from Antrodia camphorata in submerged culture against CCl4-induced hepatic toxicity in rats. J Agric Food Chem : 1571-77. Thai L, Rush JS, Maul JE, Devarenne T, Rodgers DL, Chappell J Waechter C J. 1999. Farnesol is utilized for isoprenoid biosynthesis in plant cells via far-nesyl pyrophosphate formed by successive monophosphorylation reactions. Proceedings of the National Academy of Sciences, 96(23), 13080-13085. Thomas EM, Robert DS. 1996. Regulation of 3-Hydroxy-3-methylglutaryl-Coenzyme A Reductase Degradation by the Nonsterol Mevalonate Metabolite Farnesol in Vivo. J BIOL CHEM : 7916-22. Tsai MC, Song TY, Shih PH, Yen GC. 2007. Antioxidant properties of water-soluble polysaccharides from Antrodia cinnamomea in submerged culture. Food Chem : 1115-22. Van Klink J, Becker H, Andersson S Boland W. 2003. Biosynthesis of anthecotuloide, an irregular sesquiterpene lactone from Anthemis cotula L.(Asteraceae) via a non-farnesyl diphosphate route. Organic biomolecular chemistry, 1(9), 1503-1508. Vinokur JM, Cummins MC, Korman TP, Bowie JU. 2016. An Adaptation To Life In Acid Through A Novel Mevalonate Pathway. Sci Rep : 39737. Vranova E, Coman D, Gruissem W. 2013. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol : 665-700. Waché Y, Aguedo M, Nicaud J-M, Belin J-M .2003. Catabolism of hydroxyacids and production of lactones by the yeast Yarrowia lipolytica. Appl Microbiol Biotechnol 61:393–404 Wei YY, Chou CC, Yang SH Chiang BH. 2020. Oxygen vector accelerates farnesylation and redox reaction to promote the biosynthesis of 4-acetylantroquinonol B and antroquinonol during submerged fermentation of Antrodia cinnamomea.Food and Bioproducts Processing, 120, 80-90. Wen CL, Chang CC, Huang SS, Kuo CL, Hsu SL, Deng JS, Huang GJ. 2011. Anti-inflammatory effects of methanol extract of Antrodia cinnamomea mycelia both in vitro and in vivo. J Ethnopharmacol : 575-84. Wu DP, Chiang HC. 1995. Constituents of Antrodia cinnamomea. J. Chin. Chem. Soc : 797-800. Wu SH, L Ryvarden and TT Chang. 1997. Antrodia camphoratum (“niu-chang-chih”), new combination of a medicinal fungus in Taiwan. Bot. Bull. Acad. Sin. 38: 273-275. Xia Y, Chen Y, Liu X, Zhou X, Wang Z, Wang G, Ai L. 2019. Enhancement of antroquinonol production during batch fermentation using pH control coupled with an oxygen vector. J Sci Food Agric : 449-56. Yang FC, Huang HC, Yang MJ. 2003. The influence of environmental conditions on the mycelial growth of Antrodia cinnamomea in submerged cultures. Enzyme Microb. Technol : 395-402. Yang SH, Lin YW, Chiang BH. 2017. Biosynthesis of 4-acetylantroquinonol B in Antrodia cinnamomea via a pathway related to coenzyme Q synthesis. Biochem Eng J : 23-29. Yeh CT, Rao YK, Yao CJ, Yeh CF, Li CH, Chuang SE, Tzeng YM. 2009. Cytotoxic triterpenes from Antrodia camphorata and their mode of action in HT-29 human colon cancer cells. Cancer Lett, 285(1), 73-79. Zhang BB, Hu PF, Huang J, Hu YD, Chen L, Xu GR. 2017. Current advances on the structure, bioactivity, synthesis, and metabolic regulation of novel ubiquinone derivatives in the edible and medicinal mushroom Antrodia cinnamomea.Journal of agricultural and food chemistry,65(48), 10395-10405. Zhao J, Bao X, Li C, Shen Y Hou J. 2016. Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae. Applied microbiology and biotechnology, 100(10), 4561-4571. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60105 | - |
| dc.description.abstract | 牛樟芝(Antrodia cinnamomea BCRC 35716)子實體生長於台灣高山的牛樟樹腐木上,為台灣特有的藥用真菌,許多文獻證實其次級代謝物具有多種生理功效,其中又以保肝功效最為著名。然而,樟芝子實體之商業化大量生產不易,因此近年產學界研究轉向生長快速的菌絲體。研究顯示,樟芝菌絲體萃取物抑制肝癌活性不亞於子實體,又以泛醌類衍生物:4-acetylantroquinonol B (4-AAQB)及Antroquinonol(AQ)最具功效,而4-AAQB 對於肝癌細胞的IC50 僅0.1 μg/mL,比AQ 更低,因此,確立4-AAQB生合成途徑為本次實驗目的。 牛樟芝產4-AAQB 的生合成途徑包含結構中與benzoquinone 相關的Polyketide 路徑和與isoprenoid chain 相關的Mevalonate 路徑。Polyketide路徑所產生的benzoquinone 為AQ 與4-AAQB 的共同前驅物。目前已知,farnesyl di-phosphate(FPP)以及farnesyl diphosphate B(FPPB)會競爭benzoquinone 上相同的結合位,最後生合成AQ以及4-AAQB。然而FPPB 之生合成方式尚未明確。本研究提出假說:FPPB 並不是由十五碳的FPP 在末端經γ-lactone 修飾而成,而是藉由十碳的geranyl diphosphate(GPP) 接上一五碳的 isopentenyl diphosphate B (IPPB) 所形成。因此,以兩種手段間接證實此假說,一為添加不同碳鏈長度的isoprenoid chain,一為刺激Mevalonate路徑中生成FPP 的farnesyl diphosphate synthase(FPPS)之酵素活性。透過添加geraniol 及farnesol 作為GPP 及FPP 前驅物,發現在第零天添加geraniol可增加4-AAQB 產量而不增加菌絲體乾重。然而,添加farnesol 只增加菌絲體乾重,說明GPP為FPPB前驅物,而FPP在初期會先被用於生成初級代謝產物。在第六天添加等量的geraniol 及farnesol,發現4-AAQB及AQ皆提升,而添加geraniol又可以更顯著提升4-AAQB 產量。接著以UPLC-MS/MS分析 4-AAQB 及 AQ 生合成途徑之中間產物,發現在添加前驅物的情況下,Polyketide路徑上的中間產物產量皆會提升並累積在上游。其中,又以添加geraniol 會明顯促進4-AAQB 及其上游產物產量,添加farnesol 則是明顯的提升AQ 及其上游產物產量,說明GPP確實為4-AAQB的前驅物,而FPP 是AQ 的前驅物。另一實驗則以加鎂離子刺激FPPS 的酵素活性時,結果發現4-AAQB 產量下降,推測FPPS活性上升時,刺激了isopentenyl diphosphate(IPP)及GPP轉為FPP,減少GPP轉化成FPPB。上述研究證實4-AAQB 上之FPPB 與FPP 為競爭關係非上下游關係,證實假說成立。 Mevalonate 路徑為生物體合成異戊二烯結構的重要途徑,會利用acetyl-CoA 代謝成五碳的雙磷酸結構IPP,並以IPP 為單元結構,透過頭尾相接的方式來增長碳鏈結構。基於上述所推測之FPPB 的生成途徑,形成雙磷酸結構為其必要步驟。因此,本實驗探討刺激磷酸化作用對代謝活性的影響。結果顯示,添加磷酸根確實可提高4-AAQB 生成量,與預期相符。本研究結果使我們進一步了解4-AAQB 的生合成途徑,同時也能夠應用於4-AAQB之產量的增加。 | zh_TW |
| dc.description.abstract | Antrodia cinnamomea BCRC 35716(AC)is an unique medical fungus originally grows on the rotten wood of Cinnamomum kanehirai in Taiwan. AC possesses a varity of bioactive secondary metabolites and is well known for its anti-hepatocarcinoma function. However, the growth rate of AC fruiting body is slow, thus cultivation of mycelium by submerged fermentation is now a common practice for the production of bioactive compounds. The major anti- hepatocarcinoma bioactive compounds of AC mycelium are 4-acetylantroquinonol B (4-AAQB) and antroquinonol (AQ), and it has been demonstrated the 4-AAQB is more potent in inhibiting the proliferation of hepa-tocellular carcinoma cells than that of AQ. Our laboratory has studied the biosynthetic pathways of AQ and 4-AAQB for sev-eral years and tried to increase the production of 4-AAQB. Previous studies conducted in our lab has already demonstrated that polyketide pathway and mevalonate pathway are associated with the biosynthesis of 4-AAQB in AC. In polyketide pathway, farnesyl diphosphate (FPP) and farnesyl diphosphate B (FPPB) would compete their common precursor, benzoquinone, to biosynthesize AQ and 4-AAQB. We already know that FPP is produced via mevalonate pathway, but the pathway for FPPB synthesis is still not clear. In order to increase the yields of 4-AAQB, we need to investigate the biosyn-thetic relations of FPP and FPPB. This study proposed a hypothesis:FPP cannot convert to FPPB directly. We as-sumed that FPPB is formed by the binding of GPP with IPPB. We examined this hy-pothesis indirectly by two methods, one was the addition of isoprenoid chains with dif-ferent carbon chain lengths, and the other was to activate farnesyl diphosphate synthase to promote FPP production. First, we added geraniol and farnesol as analogs, and found that addition of geraniol at the early stage of fermentation could increase 4-AAQB production without increasing biomass. However, addition of farnesol only increased biomass. These results indicated that GPP is a precursor of FPPB, and FPP can only be used to generate primary metabolites. In the next experiment, we added the same amount of geraniol and farnesol on the sixth day during fermentation. The results showed that both 4-AAQB and AQ production were improved, and the addition of ge-raniol could significantly increase 4-AAQB production. Then, UPLC-MS/MS was used to detect the intermediates of biosynthetic pathway of 4-AAQB and AQ. Experimental results revealed that addition of precursors, the upstream compounds accumulated in the polyketide pathway and most of intermediates production were increased. As men-tioned above, geraniol can increase 4-AAQB and its intermediates production, and farnesol can increase AQ and its intermediates production. We speculated that GPP is a precursor of FPPB. Farnesol is a precursor of AQ, and it can also be used for primary metabolism. In the another experiment, we added magnesium ion to stimulates the ac-tivity of FPP synthase, a key enzyme in mevalonate pathway that catalysis the for-mation of FPP. We found that addition of magnesium ion decreased the production of 4-AAQB. This result indicated that the increase of FPP synthase activity would stimu-late the conversion of isopentenyl diphosphate (IPP) and GPP to FPP, and reduce the conversion of GPP to FPPB. These results further confirmed that FPPB and FPP are competing their common precursor, benzoquinone, to synthesize AQ and 4-AAQB. Mevalonate pathway is an important way to synthesize terpenes. Acetyl-CoA is the key precursor in the mevalonate pathway to synthesize IPP and dimethylallyl di-phosphate (DMAPP). Due to the bisphosphonate, each isoprenoid unit can connect and extend to become terpenes. Thus, we thought that stimulation of phosphorylation might be able to increase the production of 4-AAQB. Indeed, the results showed that the ad-dition of phosphate during fermentation can increase 4-AAQB production. Based on these experiments, we gained more understanding about the relationship between FPP and FPPB. Thus, we are able to manipulate the submerged fermentation of Antrodia cinnamomea more easily to increase the yield of 4-AAQB. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:56:24Z (GMT). No. of bitstreams: 1 U0001-1308202013525300.pdf: 4721986 bytes, checksum: e92a84ac1028f425126bfc09354e9cc5 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 目錄
謝誌 i 摘要 ii Abstract iv 目錄 vii 圖次 x 表次 xiii 縮寫表 xiv 第一章、 文獻回顧 1 第一節、 牛樟芝 1 1.1. 牛樟芝簡介 1 1.2. 牛樟芝的功效性成分 4 第二節、 牛樟芝的培養 8 2.1. 常見培養方式 8 2.2. 牛樟芝培養的影響因子 10 第三節、 4-Acetylantroquinonol B 13 3.1. 4-Acetylantroquinonol B 的生理活性 13 3.2. 4-Acetylantroquinonol B 及 Antroquinonol 的生合成途徑 15 3.3. 合成ubiquinone 的方式 27 3.4. 提升4-AAQB產率的方式 27 3.5. 牛樟芝在液態發酵的生長週期 31 第四節、 γ-lactone 在的生合成途徑 33 4.1. γ-lactone 33 4.2. lactone 在真菌體內的生合成方式 34 4.3. 不藉由farnesyl diphosphate為前驅物所生合成的倍半萜烯內酯 34 第五節、 磷酸化作用 36 第二章、 實驗構想及架構 37 第一節、 實驗構想 37 第二節、 實驗架構 40 第三章、 材料與方法 41 第一節、 實驗材料 41 1.1. 牛樟芝菌株 41 1.2. 實驗藥品 41 1.3. 實驗器材 42 第二節、 實驗方法 43 2.1. 牛樟芝培養方法 43 2.2. 牛樟芝發酵液還原糖濃度測定 44 2.3. 牛樟芝搖瓶液態發酵 pH 值測定 46 2.4. 牛樟芝菌絲體中 4-AAQB 及 AQ 之定量 47 2.5. 4-AAQB 及 AQ 生合成途徑中間產物分析 50 2.6. FPP產物分析 54 2.7. 牛樟芝發酵液顏色測定 56 2.8. 統計分析方法 56 第四章、 實驗結果與討論 57 第一節、 探討FPPB的生合成方式 57 1.1. 發酵第零天添加異戊二烯前驅物的類緣物對牛樟芝之影響 57 1.2. 發酵第六天添加異戊二烯前驅物的類緣物對牛樟芝之影響 67 1.3. 不同發酵期間添加geraniol 做為FPPB作為異戊二烯前驅物的類緣物對牛樟芝之影響 77 1.4. 添加鎂離子刺激FPP synthase對牛樟芝之影響 84 1.5. 第一節總結論 91 第二節、 刺激磷酸化反應 92 2.1. 添加不同濃度磷酸根對牛樟芝之影響 92 2.2. 合併添加磷酸根及geraniol 對牛樟芝之影響 97 第五章、 總結論 102 第六章、 參考文獻 104 第七章、 附件 111 | |
| dc.language.iso | zh-TW | |
| dc.subject | 4-acetylantroquinonol B | zh_TW |
| dc.subject | Mevalonate路徑 | zh_TW |
| dc.subject | farnesyl diphosphate B | zh_TW |
| dc.subject | 磷酸化作用 | zh_TW |
| dc.subject | 牛樟芝 | zh_TW |
| dc.subject | Phosphorylation | en |
| dc.subject | Antrodia cinnamomea | en |
| dc.subject | Mevalonate pathway | en |
| dc.subject | farnesyl diphosphate B | en |
| dc.subject | 4-acetylantroquinonol B | en |
| dc.title | 調控GPP與FPP以探討牛樟芝液態發酵時生合成4-AAQB的機制 | zh_TW |
| dc.title | Utilization of GPP and FPP to study the biosynthesis of 4-AAQB during submerged fermentation of Antrodia cinnamomea | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周繼中,林育蔚(Yu-Wei Lin),許輔,陳時欣 | |
| dc.subject.keyword | 牛樟芝,4-acetylantroquinonol B,farnesyl diphosphate B,Mevalonate路徑,磷酸化作用, | zh_TW |
| dc.subject.keyword | Antrodia cinnamomea,4-acetylantroquinonol B,farnesyl diphosphate B,Mevalonate pathway,Phosphorylation, | en |
| dc.relation.page | 113 | |
| dc.identifier.doi | 10.6342/NTU202003241 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-19 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1308202013525300.pdf 未授權公開取用 | 4.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
