請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59867
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 呂廷璋(Ting-Jang Lu) | |
dc.contributor.author | Ju-Hua Chou | en |
dc.contributor.author | 周汝樺 | zh_TW |
dc.date.accessioned | 2021-06-16T09:42:10Z | - |
dc.date.available | 2027-02-06 | |
dc.date.copyright | 2017-02-17 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-02-06 | |
dc.identifier.citation | 卓德九, 糯玉米澱粉分子結構對流變性質之貢獻. 碩士論文 2015.
傅青; 张秀莉; 郭志谋; 梁鑫淼, 寡糖色谱分离研究进展. 生命科学 2011, 23, 703-713. Ana Varela Coelho; Franco, C. d. M. F., Tandem Mass Spectrometry - Molecular Characterization. 2013. Bertoft, E., Investigation of the fine structure of amylopectin using alpha-and beta-amylase. Carbohydrate research 1989, 189, 19G5-207. Bertoft, E.; Zhu, Q.; Andtfolk, H.; Jungner, M., Structural heterogeneity in waxy-rice starch. Carbohydrate polymers 1999, 38, 34G9-359. Bertoft, E., Analysing starch structure. Starch in food: Structure, function and applications 2004, 57-96. Brokl, M.; Hernandez-Hernandez, O.; Soria, A. C.; Sanz, M. L., Evaluation of different operation modes of high performance liquid chromatography for the analysis of complex mixtures of neutral oligosaccharides. Journal of chromatography. A 2011, 1218, 7697-703. Clowers, B. H.; Dodds, E. D.; Seipert, R. R.; Lebrilla, C. B., Dual polarity accurate mass calibration for electrospray ionization and matrix-assisted laser desorption/ionization mass spectrometry using maltooligosaccharides. Anal Biochem 2008, 381, 20G5-13. Cui, S. W., Food carbohydrates: chemistry, physical properties, and applications. CRC Press: 2005. Derde, L.; Gomand, S.; Courtin, C.; Delcour, J., Hydrolysis of β-limit dextrins by α-amylases from porcine pancreas,< i> Bacillus subtilis</i>,< i> Pseudomonas saccharophila</i> and< i> Bacillus stearothermophilus</i>. Food Hydrocolloids 2012, 26, 231-239. Domon, B.; Costello, C. E., A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconjugate journal 1988, 5, 39G7-409. Dubois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P.; Smith, F., Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350-356. Eliasson, A.-C., Carbohydrates in food. CRC Press: 2006; Vol. 159. Fan, J.-Q.; Kondo, A.; Kato, I.; Lee, Y. C., High-performance liquid chromatography of glycopeptides and oligosaccharides on graphitized carbon columns. Analytical biochemistry 1994, 219, 22G4-229. Gérard, C.; Planchot, V.; Colonna, P.; Bertoft, E., Relationship between branching density and crystalline structure of A-and B-type maize mutant starches. Carbohydrate research 2000, 326, 130-144. Garozzo, D.; Giuffrida, M.; Impallomeni, G.; Ballistreri, A.; Montaudo, G., Determination of linkage position and identification of the reducing end in linear oligosaccharides by negative ion fast atom bombardment mass spectrometry. Analytical chemistry 1990, 62, 27G9-286. Hanai, T., Separation of polar compounds using carbon columns. Journal of Chromatography A 2003, 989, 183-196. Hehre, E. J.; Genghof, D. S.; Okada, G., The α-amylases as glycosylases, with wider catalytic capacities than envisioned or explained by their representation as hydrolases. Archives of biochemistry and biophysics 1971, 142, 382-393. Hizukuri, S., Polymodal distribution of the chain lengths of amylopectins, and its significance. Carbohydrate research 1986, 147, 342-347. Jane, J.; Chen, Y.; Lee, L.; McPherson, A.; Wong, K.; Radosavljevic, M.; Kasemsuwan, T., Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch 1. Cereal chemistry 1999, 76, 629-637. Kailemia, M. J.; Ruhaak, L. R.; Lebrilla, C. B.; Amster, I. J., Oligosaccharide analysis by mass spectrometry: a review of recent developments. Analytical chemistry 2014, 86, 19G6-212. Koimur, M.; Lu, B.; Westerlund, D., High performance liquid chromatography of disaccharides on a porous graphitic carbon column applying post-column derivatization with benzamidine. Chromatographia 1996, 43, 25G4-260. Koizumi, K.; Fukuda, M.; Hizukuri, S., Estimation of the distributions of chain length of amylopectins by high-performance liquid chromatography with pulsed amperometric detection. Journal of Chromatography A 1991, 585, 233-238. Nanmori, T., Bacterial β-amylases: Handbook of Amylases and Related Enzymes, Vol. 1. In Pergamon Press, Oxford, UK (edited by The Amylase Research Society of Japan): 1988. Peat, S.; Whelan, W.; Thomas, G. J., Evidence of multiple branching in waxy maize starch. Journal of the Chemical Society (Resumed) 1952, 4536-4538. Perez, S.; Baldwin, P. M.; Gallant, D. J., Structural features of starch granules I. Starch: Chemistry and technology 2009, 3. Robyt, J.; French, D., Action pattern and specificity of an amylase from< i> Bacillus subtilis</i>. Archives of biochemistry and biophysics 1963, 100, 451-467. Ruhaak, L. R.; Deelder, A. M.; Wuhrer, M., Oligosaccharide analysis by graphitized carbon liquid chromatography-mass spectrometry. Analytical and bioanalytical chemistry 2009, 394, 163-74. Somogyi, M., A new reagent for the determination of sugars. J. Biol. Chem. 1945, 160, 61-68. Summer, R.; French, D., Action of β-amylase on branched oligosaccharides. Journal of Biological Chemistry 1956, 222, 469-477. Toshiko TANIMOTO; Akiko IKUTA; Mayumi SUGIYAMA; KOIZUMI1, a. K., HPLC Analysis of Manno-Oligosaccharides Derived from Saccharomyces cerevisiae Mannan Using an Amino Column or a Graphitized Carbon Column. Chemical & Pharmaceutical Bulletin 2002a, 50, 280-283. Toshiko TANIMOTO; Akiko IKUTA; Mayumi SUGIYAMA; KOIZUMI, K., HPLC Analysis of Manno-Oligosaccharides Derived from Saccharomyces cerevisiae Mannan Using an Amino Column or a Graphitized Carbon Column. Chem. Pharm. Bull. 2002b, 50, 280-283. Umeki, K.; Yamamoto, T., Structures of multi-branched dextrins produced by saccharifying α-amylase from starch. Journal of biochemistry 1975, 78, 897-903. Usui, T.; Ogata, M.; Murata, T.; Ichikawa, K.; Sakano, Y.; Nakamura, Y., Sequential Analysis of α-Glucooligosaccharides with α-(1→ 4) and α-(1→ 6) Linkages by Negative Ion Q-TOF MS/MS Spectrometry. Journal of Carbohydrate Chemistry 2009, 28, 421-430. Westphal, Y.; Schols, H. A.; Voragen, A. G. J.; Gruppen, H., Introducing porous graphitized carbon liquid chromatography with evaporative light scattering and mass spectrometry detection into cell wall oligosaccharide analysis. Journal of Chromatography A 2010, 1217, 689-695. Zhu, Q.; Bertoft, E., Composition and structural analysis of alpha-dextrins from potato amylopectin. Carbohydrate research 1996, 288, 15G5-174. Zobel, H., Molecules to granules: a comprehensive starch review. Starch‐Stärke 1988, 40, 44-50. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59867 | - |
dc.description.abstract | 支鏈澱粉由糯玉米澱粉的主要組成,其物理性質除了鏈長以外,也受其分支點區塊結構的影響,但此區塊的分析目前尚無有效的分析工具可以檢視其結構,本研究嘗試使用兩種澱粉酵素結合液相層析串聯質譜法,來建構一個有效的分析平台。利用二甲亞碸(DMSO)完全分散糯玉米澱粉分子後,進行β-amylase水解完全去除澱粉分子的外鏈,再以α-amylase進行水解以得到β,α-limit dextrin (β,α-LD),此β,α-LD即是糯玉米澱粉分支點區塊,為具有α- (1→6) 分支點的短鏈麥芽糊精(dextrin)。為分析此一群複雜β,α-LD的聚合度與分支點區塊結構,使用多孔石墨碳液相層析管柱 (Hypercarb™ Porous Graphitic Carbon) 分離個別的β,α-LD分子,再利用串聯質譜偵測器,分析其聚合度與推斷其分子特徵。結果顯示以0.1%氨水為修飾劑,不會影響石墨碳管柱分離β,α-LD分子的效能,但可有效地提高麥芽糊精的游離感度,其聚合度主要分布在3~9範圍,並含有更大的聚合分佈。經由質譜撞碎機制,可得到多種α- (1→4)與α-(1→6) 的特徵斷片異構物,藉由多次質譜的高比例醣苷鍵B型和跨醣基環0,4A,以及低比例的醣苷鍵C型的特徵斷片,來作為判斷分支的位置,並以異潘諾醣 (6-o-a-D-Glucosyl-maltose) 為分析模式標準品,可以推測23種以上分支點區塊結構,做為觀察糯玉米澱粉分子特徵的工具。 | zh_TW |
dc.description.abstract | Waxy corn starch is mainly composed of amylopectin. The physical property is not only affected by chain length distribution but also its branching point blocks. However, there are barely effective analysis methods of the research in branching point blocks. To build an effective analysis method, our study try to use two enzymes to hydrolyze starch and analyze through HPLC-MS method. We use dimethyl sulfoxide to dissolve waxy corn starch, and then cut its external chain through β-amylase, which is called β-limit dextrin. Then, we use α-amylse to hydrolyze β-limit dextrin and finally get β,α-limit dextrin. These β,α-limit dextrin which have α-(1→6) branching point can represent branching point blocks. To analyze these complicated β,α-limit dextrin, first, we choose graphitic carbon chromatography column (Hypercarb™ Porous Graphitic Carbon) to separate each isomer in β,α-limit dextrin. Second, we connect mass spectrometry to detect the degree of polymerization (DP), linkage position and structure. The result shows that using 0.1% ammonium hydroxide as modifier dose not affect the effiency of seperation but can enhance the ionization sensitivity of β,α-limit dextrin. The DP range is mainly around 3-9 and has few higher DP distribution. Through the mechanism of mass collision, we can get various characteristic fragments of α-(1→4) and α-(1→6) linkage. With high ratio fragment B, 0,4A and low ratio fragment C, we may know the position of branching point. Using standard like maltotriose, isomaltotriose, panose, isopanose, maltodextrin to analyze fragment pattern, we can successfully elucidate 23 structures of branching blocks. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T09:42:10Z (GMT). No. of bitstreams: 1 ntu-106-R03641018-1.pdf: 7849523 bytes, checksum: c2e611542b222aeb2427a398fa4cffd2 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 目錄
誌謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VIII 表目錄 XV 壹、 前言 1 貳、 文獻回顧 2 一、澱粉 2 1.1 澱粉組成 2 1.2 直鏈澱粉 2 1.3 支鏈澱粉 3 1.4 澱粉顆粒與結晶型 5 1.5 糯玉米澱粉性質 7 二、澱粉結構分析 9 2.1 支鏈澱粉結構分析 9 2.1.1鏈長長度與分佈 12 2.1.2內外鏈長分佈 13 2.1.3 Clusters分析 15 2.2澱粉水解酶 17 2.2.1β-澱粉酶與β-限制糊精 17 2.2.2 α-澱粉酶與α-限制糊精 17 2.2.3 β,α-澱粉酶與β,α-限制糊精 21 三、寡醣分離分析方法 24 3.1 多孔石墨碳管柱 24 3.2質譜儀 26 3.2.1寡醣碎片離子的系統命名 31 參、 研究目的 42 肆、 材料與方法 43 一、 實驗材料 43 二、 實驗藥品 43 2.1 標準品 43 2.2 酵素、試藥、溶劑 43 三、 儀器設備 44 3.1 一般儀器設備 44 3.2 高效能液相層析與質譜串聯系統 45 3.2.1 低解析度線性離子阱質譜儀系統 45 3.2.2 高解析軌道式質譜儀系統 (Q-Exactive®) 45 四、 實驗方法 45 4.1 β,α-限制糊精 樣品製備 45 4.1.1 澱粉液製備 45 4.1.2 β-amylolysis方法 46 4.1.3 β-limit dextrin 的α-amylolysis水解方法 46 4.2 總醣含量測定(Phenol-sulfuric acid method) 47 4.3 還原醣含量測定方法(Somogyi-Nelson method) 47 4.4平均內/外鏈長、平均鏈數之計算 48 4.5 原態寡醣的質譜分析條件建立 48 4.5.1 質譜機台游離化效率品質管制 48 4.5.2 不同酸鹼修飾劑對原態寡醣在質譜中游離化之影響 49 4.5.3 探討不同與游離電壓對於游離化之影響 49 4.5.4 質譜儀最佳游離條件建立 50 4.5.6 寡醣樣品分析液相層析條件 50 4.5.7 Q-Exactive系統下二次質譜對寡醣進行斷裂片段分析 50 4.6 統計分析 51 伍、 結果與討論 52 一、含支鏈澱粉分支點區域之糊精 (β,α-limit dextrin) 52 1.1 β-limit dextrin製備條件的確定 52 1.2 α-amylolysis於β-Limit dextrin的作用時間 56 二、LC-MS/MS觀察β,α-Limit dextrin寡醣分佈輪廓 57 2.1 液相層析系統分離條件建立 58 2.2 寡醣標準品預測斷片模式 62 2.2.1 麥芽三糖的斷片模式 62 2.2.2異麥芽三醣的斷片模式 63 2.2.3 潘諾醣的斷片模式 63 2.2.4 異潘諾醣的斷片模式 64 2.3 糯玉米澱粉之β,α-Limit dextrin組成分析 70 2.3.1 四醣異構物鏈長鍵結討論 73 2.3.2 五醣異構物鏈長鍵結討論 82 2.3.3 六醣異構物鏈長鍵結討論 87 2.3.4 七醣異構物鏈長鍵結討論 93 2.3.5 八醣異構物鏈長鍵結討論 101 2.3.6 九醣異構物鏈長鍵結討論 109 2.4 21種來源糯玉米澱粉之β,α-Limit dextrin主成份分析 115 2.5 寡醣異構物與流變性質參數之間的相關程度分析 118 陸、 結論 125 柒、 參考文獻 126 捌、 附錄 131 一、 質譜儀分析方法建立 131 1.1 質譜儀游離化效率品質管制 131 1.2 調整酸鹼修飾劑、噴灑電壓與毛細管溫度對於游離化感度條件之影響 136 1.2.1酸鹼修飾劑種類與濃度之影響 136 1.2.1.1 對於離子感度高低的影響 137 1.2.2 正電模式下電壓及溫度對麥芽三糖游離化效率之影響 140 1.2.3 負電模式下電壓及溫度對麥芽三糖游離化效率之影響 141 1.2.4聚合度四至七之寡醣標準品之游離化效率 146 | |
dc.language.iso | zh-TW | |
dc.title | 利用液相層析串聯質譜儀法結合酵素水解分析糯性玉米澱粉之分支點區塊結構特徵 | zh_TW |
dc.title | Molecular characteristics of branching domains of waxy corn starch analyzed by using an enzymatic-LC-MS method | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 盧訓,張永和,邵貽沅,王惠珠 | |
dc.subject.keyword | β,α-限制糊精,寡糖鍵鍵結異構物,液相層析串聯質譜儀,多孔石墨碳管柱, | zh_TW |
dc.subject.keyword | β,α-limit dextrin,oligosaccharides linkage isomer,liquid chromatography,mass spectrometry,graphitized carbon chromatography, | en |
dc.relation.page | 148 | |
dc.identifier.doi | 10.6342/NTU201602118 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-02-06 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 食品科技研究所 | zh_TW |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 7.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。