Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59820
標題: 遷移類神經樹:在異質領域適應的應用與延伸
Transfer Neural Trees: Heterogeneous Domain Adaptation and
Beyond
作者: Wei-Yu Chen
陳威宇
指導教授: 陳銘憲(Ming-Syan Chen)
共同指導教授: 王鈺強(Yu-Chiang Wang)
關鍵字: 領域適應,遷移學習,類神經網路,
Domain adaptation,Transfer learning,Neural Network,
出版年 : 2017
學位: 碩士
摘要: 本論文提出了一異質領域適應(HeterogeneousDomainAdaptation,
HDA)的演算法。異質領域適應旨在找出由不同特徵所描述的領域資
料間的關聯性。受最近蓬勃發展的類神經網路與深度學習的啟發,
我們提出了遷移類神經樹(TransferNeuralTrees,TNT),將跨領域的特
徵投影、適應、以及辨識整合於一個類神經網路架構之中。在其中
的辨識層,我們提出了遷移學習版本的類神經森林(Transfer-Neural
DecisionForest),以機率剪枝(stochasticpruning)的技巧讓我們架構中的神經元能夠更加適應於領域的差異。而為了有效利用半監督式的異質領域適應問題內所擁有的資訊,我們提出了一個獨特的嵌入誤差函
數(embeddinglossterm)來保存有標記(labeled)與無標記(unlabeled)目標領域資料(targetdomaindata)間,預測結果與投影後結構的一致性。我們進一步將我們的演算法延伸至零樣本學習(zero-shotlearning),透過找出影像與屬性資料間的關聯來得到良好的表現。最後,我們將會進行跨特徵、跨資料來源、跨型態的異質領域適應實驗,來證明我們所提出的遷移類神經樹的能力。
This thesis presents a novel algorithm for Heterogeneous domain adaptation (HDA). HDA addresses the task of associating data not only across dissimilar domains but also described by different types of features. Inspired
by the recent advances of neural networks and deep learning, we propose a deep learning model of Transfer Neural Trees (TNT), which jointly solves cross-domain feature mapping, adaptation, and classification in a unified architecture. As the prediction layer in TNT, we introduce Transfer Neural Decision Forest (Transfer-NDF), which is able to learn the neurons in TNT for adaptation by stochastic pruning. In order to handle semi-supervised HDA, a unique embedding loss term is introduced to TNT for preserving prediction and structural consistency between labeled and unlabeled target-domain data. We further show that our TNT can be extended to zero shot learning for associating image and attribute data with promising performance. Finally, experiments on different classification tasks across features, datasets, and modalities would verify the effectiveness of our TNT.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59820
DOI: 10.6342/NTU201700384
全文授權: 有償授權
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
3.11 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved