請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59820完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳銘憲(Ming-Syan Chen) | |
| dc.contributor.author | Wei-Yu Chen | en |
| dc.contributor.author | 陳威宇 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:39:39Z | - |
| dc.date.available | 2018-02-16 | |
| dc.date.copyright | 2017-02-16 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-02-08 | |
| dc.identifier.citation | [1] H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, and M. Marchand. Domainadversarial neural networks. In JMLR, 2014.
[2] Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid. Label-embedding for attribute based classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 819–826, 2013. [3] Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid. Label-embedding for image classification. volume 38, pages 1425–1438. IEEE, 2016. [4] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features. In European conference on computer vision, pages 404–417. Springer, 2006. [5] W.-L. Chao, S. Changpinyo, B. Gong, and F. Sha. An empirical study and analysis of generalized zero-shot learning for object recognition in the wild. In European Conference on Computer Vision, 2016. [6] B. Chidlovskii, G. Csurka, and S. Gangwar. Assembling heterogeneous domain adaptation methods for image classification. In CLEF (Working Notes), pages 448–461, 2014. [7] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng. Nus-wide: a real-world web image database from national university of singapore. In Proceedings of the ACM international conference on image and video retrieval, page 48. ACM, 2009. [8] W. Dai, Y. Chen, G.-R. Xue, Q. Yang, and Y. Yu. Translated learning: Transfer learning across different feature spaces. In Advances in neural information processing systems, pages 353–360, 2008. [9] H. Daum´e III. Frustratingly easy domain adaptation. page 256. Citeseer, 2007. [10] H. Daum´e III, A. Kumar, and A. Saha. Frustratingly easy semi-supervised domain adaptation, 2010. [11] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition 2009., pages 248–255. IEEE, 2009. [12] J. Donahue, J. Hoffman, E. Rodner, K. Saenko, and T. Darrell. Semi-supervised domain adaptation with instance constraints. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 668–675, 2013. [13] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. In Proceedings of The 31st International Conference on Machine Learning, pages 647–655, 2014. [14] L. Duan, D. Xu, and I. W. Tsang. Learning with augmented features for heterogeneous domain adaptation. In Proceedings of the 29th International Conference on Machine Learning (ICML-12), pages 711–718, 2012. [15] B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars. Unsupervised visual domain adaptation using subspace alignment. In Proceedings of the IEEE International Conference on Computer Vision, pages 2960–2967, 2013. [16] Y. Ganin and V. Lempitsky. Unsupervised domain adaptation by backpropagation. In Proceedings of The 32nd International Conference on Machine Learning, pages 1180–1189, 2015. [17] B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow kernel for unsupervised domain adaptation. In IEEE Conference on Computer Vision and Pattern Recognition, pages 2066–2073. IEEE, 2012. [18] G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset. 2007. [19] J. Hoffman, E. Rodner, T. Darrell, J. Donahue, and K. Saenko. Efficient learning of domain-invariant image representations. In In Proc. ICLR. Citeseer, 2013. [20] P. Kontschieder, M. Fiterau, A. Criminisi, and S. Rota Bulo. Deep neural decision forests. In Proceedings of the IEEE International Conference on Computer Vision, pages 1467–1475, 2015. [21] B. Kulis, K. Saenko, and T. Darrell. What you saw is not what you get: Domain adaptation using asymmetric kernel transforms. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1785–1792. IEEE, 2011. [22] C. H. Lampert, H. Nickisch, and S. Harmeling. Attribute-based classification for zero-shot visual object categorization. volume 36, pages 453–465. IEEE, 2014. [23] W. Li, L. Duan, D. Xu, and I. W. Tsang. Learning with augmented features for supervised and semi-supervised heterogeneous domain adaptation. volume 36, pages 1134–1148. IEEE, 2014. [24] M. Long, Y. Cao, J. Wang, and M. Jordan. Learning transferable features with deep adaptation networks. In Proceedings of The 32nd International Conference on Machine Learning, pages 97–105, 2015. [25] X. Min and G. Yuhong. Feature space independent semi-supervised domain adaptation via kernel matching. volume 37, pages 54–66, 2015. [26] M. Norouzi, T. Mikolov, S. Bengio, Y. Singer, J. Shlens, A. Frome, G. Corrado, and J. Dean. Zero-shot learning by convex combination of semantic embeddings. In International Conference on Learning Representations. [27] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang. Domain adaptation via transfer component analysis. volume 22, pages 199–210. IEEE, 2011. [28] S. J. Pan and Q. Yang. A survey on transfer learning. volume 22, pages 1345–1359. IEEE, 2010. [29] P. Prettenhofer and B. Stein. Cross-language text classification using structural correspondence learning. In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pages 1118–1127. Association for Computational Linguistics, 2010. [30] B. Romera-Paredes and P. Torr. An embarrassingly simple approach to zero-shot learning. In Proceedings of The 32nd International Conference on Machine Learning, pages 2152–2161, 2015. [31] S. Rota Bulo and P. Kontschieder. Neural decision forests for semantic image labelling. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 81–88, 2014. [32] K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting visual category models to new domains. In European conference on computer vision, pages 213–226. Springer, 2010. [33] I. K. Sethi. Entropy nets: from decision trees to neural networks. volume 78, pages 1605–1613. IEEE, 1990. [34] X. Shi, Q. Liu, W. Fan, S. Y. Philip, and R. Zhu. Transfer learning on heterogenous feature spaces via spectral transformation. In Proceedings of the IEEE international conference on data mining, pages 1049–1054. IEEE, 2010. [35] X. Shu, G.-J. Qi, J. Tang, and J. Wang. Weakly-shared deep transfer networks for heterogeneous-domain knowledge propagation. In Proceedings of the 23rd ACM international conference on Multimedia, pages 35–44. ACM, 2015. [36] R. Socher, M. Ganjoo, C. D. Manning, and A. Ng. Zero-shot learning through cross-modal transfer. In Advances in neural information processing systems, pages 935–943, 2013. [37] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1–9, 2015. [38] T. Tommasi and T. Tuytelaars. A testbed for cross-dataset analysis. In European Conference on Computer Vision, pages 18–31. Springer, 2014. [39] E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko. Simultaneous deep transfer across domains and tasks. In Proceedings of the IEEE International Conference on Computer Vision, pages 4068–4076, 2015. [40] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell. Deep domain confusion: Maximizing for domain invariance. In CoRR, abs/1412.3474, 2014. [41] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd birds-200-2011 dataset. 2011. [42] C. Wang and S. Mahadevan. Heterogeneous domain adaptation using manifold alignment. In IJCAI Proceedings-International Joint Conference on Artificial Intelligence, volume 22, page 1541, 2011. [43] X. Wu, H. Wang, C. Liu, and Y. Jia. Cross-view action recognition over heterogeneous feature spaces. In Proceedings of the IEEE International Conference on Computer Vision, pages 609–616, 2013. [44] M. Xiao and Y. Guo. Semi-supervised subspace co-projection for multi-class heterogeneous domain adaptation. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 525–540. Springer, 2015. [45] T. Yao, Y. Pan, C.-W. Ngo, H. Li, and T. Mei. Semi-supervised domain adaptation with subspace learning for visual recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2142–2150, 2015. [46] Z. Zhang and V. Saligrama. Zero-shot learning via semantic similarity embedding. In Proceedings of the IEEE International Conference on Computer Vision, pages 4166–4174, 2015. [47] Z. Zhang and V. Saligrama. Zero-shot learning via joint latent similarity embedding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 6034–6042, 2016. [48] J. T. Zhou, I. W. Tsang, S. J. Pan, and M. Tan. Heterogeneous domain adaptation for multiple classes. In AISTATS, pages 1095–1103, 2014. [49] Y. Zhu, Y. Chen, Z. Lu, S. Pan, G. Xue, Y. Yu, and Q. Yang. Heterogeneous transfer learning for image classification. In Proceedings of the National Conference on Artificial Intelligence, 25th AAAI Conference on Artificial Intelligence and the 23rd Innovative Applications of Artificial Intelligence Conference, AAAI-11/IAAI-11, 2011. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59820 | - |
| dc.description.abstract | 本論文提出了一異質領域適應(HeterogeneousDomainAdaptation,
HDA)的演算法。異質領域適應旨在找出由不同特徵所描述的領域資 料間的關聯性。受最近蓬勃發展的類神經網路與深度學習的啟發, 我們提出了遷移類神經樹(TransferNeuralTrees,TNT),將跨領域的特 徵投影、適應、以及辨識整合於一個類神經網路架構之中。在其中 的辨識層,我們提出了遷移學習版本的類神經森林(Transfer-Neural DecisionForest),以機率剪枝(stochasticpruning)的技巧讓我們架構中的神經元能夠更加適應於領域的差異。而為了有效利用半監督式的異質領域適應問題內所擁有的資訊,我們提出了一個獨特的嵌入誤差函 數(embeddinglossterm)來保存有標記(labeled)與無標記(unlabeled)目標領域資料(targetdomaindata)間,預測結果與投影後結構的一致性。我們進一步將我們的演算法延伸至零樣本學習(zero-shotlearning),透過找出影像與屬性資料間的關聯來得到良好的表現。最後,我們將會進行跨特徵、跨資料來源、跨型態的異質領域適應實驗,來證明我們所提出的遷移類神經樹的能力。 | zh_TW |
| dc.description.abstract | This thesis presents a novel algorithm for Heterogeneous domain adaptation (HDA). HDA addresses the task of associating data not only across dissimilar domains but also described by different types of features. Inspired
by the recent advances of neural networks and deep learning, we propose a deep learning model of Transfer Neural Trees (TNT), which jointly solves cross-domain feature mapping, adaptation, and classification in a unified architecture. As the prediction layer in TNT, we introduce Transfer Neural Decision Forest (Transfer-NDF), which is able to learn the neurons in TNT for adaptation by stochastic pruning. In order to handle semi-supervised HDA, a unique embedding loss term is introduced to TNT for preserving prediction and structural consistency between labeled and unlabeled target-domain data. We further show that our TNT can be extended to zero shot learning for associating image and attribute data with promising performance. Finally, experiments on different classification tasks across features, datasets, and modalities would verify the effectiveness of our TNT. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:39:39Z (GMT). No. of bitstreams: 1 ntu-106-R04921038-1.pdf: 3184167 bytes, checksum: a81ae8ac50d5862ff10ff9cae0539af5 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 1 Introduction 1
2 Related work 3 3 Proposed method 5 4 Experiment 15 5 Conclusion 23 6 Appendix 24 Bibliography 26 | |
| dc.language.iso | en | |
| dc.subject | 類神經網路 | zh_TW |
| dc.subject | 領域適應 | zh_TW |
| dc.subject | 遷移學習 | zh_TW |
| dc.subject | Neural Network | en |
| dc.subject | Domain adaptation | en |
| dc.subject | Transfer learning | en |
| dc.title | 遷移類神經樹:在異質領域適應的應用與延伸 | zh_TW |
| dc.title | Transfer Neural Trees: Heterogeneous Domain Adaptation and
Beyond | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 王鈺強(Yu-Chiang Wang) | |
| dc.contributor.oralexamcommittee | 陳祝嵩(Chu-Song Chen),洪一平(Yi-Ping Hung) | |
| dc.subject.keyword | 領域適應,遷移學習,類神經網路, | zh_TW |
| dc.subject.keyword | Domain adaptation,Transfer learning,Neural Network, | en |
| dc.relation.page | 30 | |
| dc.identifier.doi | 10.6342/NTU201700384 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-02-08 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 3.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
