請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59277
標題: | 使⽤遮蔽森林預測實時競價廣告之得標價 Predicting Winning Price in Real-Time Bidding via Shaded Forest |
作者: | Po-Jui Huang 黃柏睿 |
指導教授: | 盧信銘 |
關鍵字: | 實時競價廣告,需求?平台,決策樹,隨機森林,截斷分佈, Real-Time Bidding,Demand-Side Platform,Decision Tree,Random Forest,Truncated Distribution, |
出版年 : | 2017 |
學位: | 碩士 |
摘要: | 實時競價廣告 (Real-Time Bidding, RTB) 在近幾年改變了網路廣告產業的運作模式。而其中,如何幫助需求方平台 (Demand-Side Platform) 在 RTB 中獲利,是許多研究者探討的主題。過去的研究中,通常將最後得標價假想由一個機率分佈所產生,但由於 RTB 本身只有得標者能獲知最後得標假的特性,DSP 所擁有的資料是一個缺損的、部分無法觀測的分佈。本篇研究將著重在如何從部分無法觀測的分佈,還原出原本的得標價分佈。基於這些因素,提出一個新的模型:遮蔽森林 (Shaded Forest),來處理 RTB 這類部分截斷的資料。從實驗結果來看,本篇研究提出的遮蔽森林具有很好的得標價預測能力,而當無法觀測的資料比例增加時,也能有穩定的表現,並不會因此而準確率下降。 Real-Time Bidding (RTB) has changed a game changer of online advertisement. In RTB, many researchers have focus on how to maximize the profit of Demand-side platform (DSP). These researches usually consider that winning price can express as a probability distribution. However, in RTB, if a DSP lose in an auction, it will not know the winning price of that bid. Which means, what DSPs own in their data base is a partial unobserved data. In this research, we will focus on how to recover the original distribution from partial unobserved data. We propose a new model, Shaded Forest, to deal with this kind of partial unobserved data in RTB. The results of experiment show that shaded forest the accuracy of predicting winning price is better than other algorithms and have good ability to handle data with high percentage of truncation. |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59277 |
DOI: | 10.6342/NTU201701060 |
全文授權: | 有償授權 |
顯示於系所單位: | 資訊管理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 895.72 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。